
Advanced computational methods-Lecture 7

1 Continued from last week

If we include the dt2, we get

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t)

+(L1)2σ(Xn)

∫ tn+1

tn

∫ s

tn

(W (s1)−W (tn))dWs1dWs+L
1b(Xn)

∫ tn+1

tn

(W (s)−W (tn))ds

+ L0σ(Xn)

∫ tn+1

tn

(s− tn)dW (s) +
1

2
L0b(Xn)∆t2.

Let
ρ := Xt,x(t+ h)− X̄t,x(t+ h).

We recall

|Eρ| ≤ K
√

1 + |x|2hp1 ,
√

E|ρ|2 ≤ K
√

1 + |x|2hp2 ,

For the scheme
p1 = 3, p2 = 2.

These two numbers can be read directly from the truncation errors. The
mean error is only determined by the integration on time (no dW should be
involved) while the p2 indices is determined by the lemma (counting dW as
one half and ds as 1). The order is 3/2.

Exercise: Compute p1 and p2 for Xn+1 = Xn + σ(Xn)∆Wn. Does this
scheme converge?

1.1 Modeling the integrals

The question remains: how do we model the above stochastic integrals?
Let us start with the simpler case: the noise is constant.

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn

+ L1b(Xn)

∫ tn+1

tn

(W (s)−W (tn))ds+
1

2
L0b(Xn)∆t2.

Then, we need to simulate

∆Z :=

∫ tn+1

tn

(W (s)−W (tn))ds.
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If the noise depends on time t or in general multiplicative, we can have∫ tn+1

tn

(s− tn)dW (s) = h∆W −
∫ tn+1

tn

(W (θ)−W (tn))dθ.

This stochastic integration by parts can be derived by apply Itô’s formula
to (t− tn)(W (t)−W (tn)).

For this random variable, it can be shown

E∆W∆Z =
1

2
h2.

This means ∆W is independent of ζ − 1
2h∆W (two normal variables are

independent if they are uncorrelated). Moreover,

E(ζ − 1

2
h∆W )2 =

1

12
h3.

Hence, ∆Z is with mean 0, variance 1
3h

3 such that

E(∆Z∆W ) =
1

2
h2.

A way to sample such a variable is

∆Z =
1

2
h(∆W + ∆V/

√
3),

where ∆V is i.i.d with ∆W .
The above implementation was due to Platen and Wagner. In the full

scheme, it is given by

Xn+1 = Xn + bk + σ∆Wn +
1

2
σσ′(∆W 2 − k)

+ b′σ∆Zn +
1

2
(bb′ +

1

2
σ2b′′)k2 + (bσ′ +

1

2
σ2σ′′)(∆Wnk −∆Zn)

+
1

2
σ(σσ′′ + (σ′)2)(

1

3
∆W 2

n − k)∆Wn.

A fact is that only using the increments of Brownian motion ∆Wn, the
strong order is at most 1.

Remark 1. Compared with the high order strong schemes, high order weak
schemes are more easily constructed and are much simpler. In fact, a part
of the above strong 1.5 scheme gives the weak 2 scheme:

Xn+1 = Xn + bk + σ∆Wn +
1

2
σσ′(∆W 2 − k)

+ b′σ∆Zn +
1

2
(bb′ +

1

2
σ2b′′)k2 + (bσ′ +

1

2
σ2σ′′)(∆Wnk −∆Zn).

Hence, in practice, people usually only care about high order weak schemes.
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2 Implicit schemes

2.1 Drift implicit schemes

For deterministic cases, the implicit schemes usually have better stability
conditions. However, for SDE, this is harder.

Often, one can make the drift part implicit while the stochastic part is
still explicit. For example,

Xn+1 = Xn + αb(Xn)k + (1− α)b(Xn+1)k + σ(Xn)∆Wn.

The strong convergence order of such schemes is 1/2.
One may also consider using Itô-Taylor expansion trying to involve more

terms. However, there may be some issues when doing so. Let us briefly
investigate these issues here.

We again take 1D as the example. The general dimension is similar.
The Itô’s formula reads

f(Xt) = f(Xt0)+

∫ t

t0

(
b(Xs)

∂

∂x
f(Xs) +

1

2
σ2(Xs)

∂2

∂x2
f(Xs)

)
ds+

∫ t

t0

σ(Xs)
∂f(Xs)

∂x
dWs

= f(Xt0) +

∫ t

t0

L0f(Xs)ds+

∫ t

t0

L1f(Xs)dWs,

where L0 is the generator of the scheme.
Instead of subtituting the same expansions into the functions in the

integrand, we persue an implicit way. This Itô’s integral tells us that

f(Xt1) = f(Xt)−
∫ t

t1

L0f(Xs)ds−
∫ t

t1

L1f(Xs)dWs.

Using this to replace the terms in the integrand can yield implicit schemes.
For the L0f term, we then have

f(Xt) = f(Xt0) +

∫ t

t0

[
L0f(Xt)−

∫ t

s
L0f(Xs1)ds1

−
∫ t

s
L1f(Xs1)dWs1

]
ds+

∫ t

t0

L1f(Xs)dWs,

This expansion could yield some the implicit scheme above for α = 0.
However, one might be attempted to do the same trick for the Itô integral

term, which is, however, unacceptable. The reason is that this expansion
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makes the integrand involve the futur, thus not adapted to the underlying
filtration. This is not desired for Itô’s integrals. This is the first issue for
doing such expansion.

Another way is to use the forward substitution to make this explicit first
and then make it implicit:

L1f(Xt0)∆W+

∫ t

t0

∫ s1

t0

L0(L1f)(Xs2) ds2dWs1+

∫ t

t0

∫ s1

t0

(L1)2f(Xs2)dWs2dWs1 .

Then, for the first term, apply this backward expansion:[
L1f(Xt)−

∫ t

t0

L0L1f(Xs)ds−
∫ t

t0

(L1)2f(Xs)dWs

]
∆W

+

∫ t

t0

∫ s1

t0

(L1)2f(Xs2)dWs2dWs1 .

This then gives some implicit scheme as

Xn+1 = Xn + b(Xn+1)∆t− σσ′(Xn)h+ σ(Xn+1)∆W.

The term “−σσ′(Xn)h” comes from −(L1)2f(∆W )2, which is clearly not
small.

This, however, is also undesired. The reason is that one must solve Xn+1.
For example, if it is the geometric Brownian motion,

Xn+1 =
Xn − σσ′(Xn)h

1− λ∆t− σ∆W

Since ∆W is unbounded and it takes normal distribution, the moments of
this numerical solution is often infinity. Hence, there can be no convergence.
This is the second issue. One will see that later, we will take some truncation
to make it fully implicit.

To conclude, using the Taylor expansion to obtain higher implicit schemes
is chanllenging, especially for the stochastic part.

2.2 Balanced schemes

Let us try to introduce the implicity in the stochastic term. Consider
the geometric Brownian motion with diffusion only:

dX = σXdW.
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The Euler-Maruyama scheme is

Xn+1 = Xn + σXn∆W.

Consider making the second implicit.

Xn+1 = Xn − σ2Xnh+ σXn+1∆W.

The term −σ2Xnh is here because we have Itô’s integral, using the terminal
value for the integral must be balanced by some correction terms. This
implicit method, as have mentioned, will not work since the moments of
Xn+1 is often infinity.

One possible way to deal with this is to make the part that does not
depend on ∆W implicit. For example, in the Milstein scheme:

Xn+1 = Xn + σXn∆W +
1

2
σ2Xn(∆W 2 − h).

One can make the term for h implicit:

Xn+1 = Xn + σXn∆W +
1

2
σ2(∆W 2Xn − hXn+1).

This, however, is not very satisfatory in practice.
The idea of balanced method is that the geometric Brownian motion is

always positive. Hence, when ∆W < 0, it is better to use implicit scheme.
This motivates the following scheme:

Xn+1 = Xn + σXn∆W + σ(Xn −Xn+1)|∆W |. (1)

This scheme can guarantee the positivity of the solution can it behaves well
for long time.

A natural question is: do we need the correction so that the mean is
captured correctly? In fact, for this case, we do not need.

Xn+1 =
Xn(1 + σ∆W + σ|∆W |)

1 + σ|∆W |

Formal expansion shows that the key error term is −σ2Xn|∆W |∆W . Due
to the symmetry, the mean of this term is zero. Hence, there is no need to
do correction.

The general balanced method for dX = b dt+ σdW is given by

Xn+1 = Xn + b(Xn)h+ σ(Xn)∆W + Cn(Xn −Xn+1),

where

Cn = c0(X
n)h+

m∑
r=1

cr(X
n)|∆Wr|.
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Theorem 1. If The matrices ci are all positive definite, then the balanced
method has strong order 1/2.

2.3 Fully implicit schemes

As we have seen the fully implicit scheme like

Xn+1 = Xn + b(Xn)h+ σ(Xn)∆W

is troublesome due to the unboundedness of ∆W .
Below, we focus on d = 1 to resolve this issue. The general cases can be

found in section 1.3.6 in the book of Milstein. Let

∆W =
√
hξ.

Now, we aim to truncate this variable which is still symmetric:

ζh =


Ah ξ > Ah,

ξ |ξ| ≤ Ah,

−Ah, ξ < −Ah.

We desire
E|ζh − ξ|2 ≤ hk, k ≥ 1.

Clearly, taking
Ah =

√
2m| lnh|

will suffice.
Let us check this.

Lemma 1. With the truncation above, one has

E|ζh − ξ|2 < hm,

and
|Eξ2 − Eζ2h| ≤ (1 + 2

√
2m| lnh|)hm.

With this approximation, we now get the implicit scheme

Xn+1 = Xn + b(Xn+1)h− σ(Xn)σ′(Xn)h+ σ(Xn+1)
√
hζh.

Similarly,

Xn+1 = Xn + b(Xn+1)h− βσ(Xn)σ′(Xn)h+ σ((1− β)Xn + βXn+1)
√
hζh.
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Theorem 2. These schemes have strong convergence order 1/2.

To verify this, we essentially check the conditions in the convergence
theorem. However, the verification is kind of involved. Here, we take a
simpler example to illustrate this.

b = 0, σ(x) = σx.

The method becomes (taking m = 1 in ζh)

Xn+1 = Xn − σ2Xnh+ σXn+1
√
hζh.

Hence, we have

Xn+1 =
Xn − σ2Xnh

1− σ
√
hζh

Hence, if
2h| lnh| < 1/σ2,

the denominator is guaranteed to be positive.
We now verify the two conditions in the convergence theorem. Compare

this to E-M.

|E x− σ2xh
1− σ

√
hζh
−E(x+σx∆W )| ≤ C|x|σ2h|Eζ2h−1| ≤ C|x|σ2h2(1+C

√
| lnh|)

Hence, p1 = 2− ε for any ε > 0.
Moreover,

x− σ2xh
1− σ

√
hζh
− (x+ σx∆W ) =

(ζhξ − 1)σ2hx+ xσ
√
h(ζh − ξ)

1− σ
√
hζh

Hence, the second moment is controlled by

CE|(ζhξ−1)σ2hx+xσ
√
h(ζh−ξ)|2 = C(E|(ζhξ−1)σ2hx|2+E|xσ

√
h(ζh−ξ)|2)

The first term is like h2. The second term is |x|2σ2h2 as well. Taking the
square root, we find p2 = 1.

Hence, the convergence order is 1/2.

7



3 Stochastic stability and stiff systems

3.1 The notion of stochastic stability

The theory here is an analogy of the stability region for ODE schemes.
The model problem for which we apply the scheme is the geometric Brownian
motion

dX = λXdt+ µXdW.

(Similar to dX = λXdt for ODEs.)
There are several notions of stability. Here, we consider two of them.

Definition 1. Given λ ∈ C and µ ∈ C, we say the GBM is mean-square sta-
ble if limt→∞ E|Xt|2 = 0. We say it is asymptotically stable if P(limt→∞ |Xt| =
0) = 1.

The first is satisfies if Re(λ) + 1
2 |µ| < 0 while the second is satisfied if

Re(λ− 1
2 |µ|

2) < 0.
We now move to numerical methods. What is the stability condition for

Euler-Maruyama scheme? We have the relation

Xn+1 = (1 + λh+ µ∆Wn)Xn ⇒ E|Xn+1|2 = (|1 + λk|2 + |µ|2h)E|Xn|2.

Denote
z = λh, y = |µ|2h.

We need
|1 + z|2 + y < 1,

for mean-square stable.
For asymptotic stability, one needs

E log |1 + λk + µ
√
kN(0, 1)| < 0.

In fact, we need
n∏

i=1

(1 + λk + µ
√
kzi)→ 0, a.s.

We need

lim sup
n→∞

Re

n∑
i=1

log(1 + λk + µ
√
kzi) = −∞, a.s.

The claim follows by strong LLN.
Hence, for a general numerical method, one can introduce the analogue

of stability regions, i.e. the domain for (z, y) = (λh, |µ|2h) such that the
numerical solutions are mean-square stable.
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3.2 Stiff problems and implicit schemes

We first look at the determinstic ODEs. In the so-called stiff problems,
we care about a slowly varying solution while solutions nearby are rapidly
varying with much smaller time scales. In some typical physical applications,
the transition to the equilibrium solution is fast but the equilibrium solution
itself changes slowly. We care the equilibrium solution instead of the fast
transition.

For stiff problems, designing numerical schemes is challenging since the
fast transition corresponds to negative eigenvalues with large absolute value.
For the method to be stable, we need kλ to fall into the stability region.
However, for explicit methods, the intersection of the stability region and
negative real axis usually has a finite length. The explicit schemes requires
that k to be very small for stiff problems.

The issue is that we don’t care the fast transition, i.e. we only care the
smaller eigenvalues but the eigenvalues for fast transition put restrictions.
We hope k ∼ 1/|λslow| instead of 1/|λfast|.

Example in the book...
A scheme is said to be A-stable if its stability region contains the whole

left half plane. Clearly, if we use A-stable schemes, we won’t face instability
even if our k is large. For deterministic problems, schemes like backward
Euler is A-stable.

What happens about the stochastic stability for implicit schemes?
This is a possible course project. Figure out the current status in
literature regarding the stability of the balanced scheme, the fully
implicit schemes.
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