
Advanced computational methods-Lecture 8

1 Stochastic stability and stiff systems

1.1 The notion of stochastic stability

The theory here is an analogy of the stability region for ODE schemes.
The model problem for which we apply the scheme is the geometric Brownian
motion

dX = λXdt+ µXdW.

(Similar to dX = λXdt for ODEs.)
There are several notions of stability. Here, we consider two of them.

Definition 1. Given λ ∈ C and µ ∈ C, we say the GBM is mean-square sta-
ble if limt→∞ E|Xt|2 = 0. We say it is asymptotically stable if P(limt→∞ |Xt| =
0) = 1.

The first is satisfies if Re(λ) + 1
2 |µ| < 0 while the second is satisfied if

Re(λ− 1
2 |µ|

2) < 0.
We now move to numerical methods. What is the stability condition for

Euler-Maruyama scheme? We have the relation

Xn+1 = (1 + λh+ µ∆Wn)Xn ⇒ E|Xn+1|2 = (|1 + λk|2 + |µ|2h)E|Xn|2.

Denote
z = λh, y = |µ|2h.

We need
|1 + z|2 + y < 1,

for mean-square stable.
For asymptotic stability, one needs

E log |1 + λk + µ
√
kN(0, 1)| < 0.

In fact, we need
n∏
i=1

(1 + λk + µ
√
kzi)→ 0, a.s.

We need

lim sup
n→∞

Re

n∑
i=1

log(1 + λk + µ
√
kzi) = −∞, a.s.
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The claim follows by strong LLN.
Hence, for a general numerical method, one can introduce the analogue

of stability regions, i.e. the domain for (z, y) = (λh, |µ|2h) such that the
numerical solutions are mean-square stable.

2 Runge Kutta methods

Computing the derivative may not be desired in practice: in some appli-
cations where we do not know the formula for σ, and we only have an oracle
that gives the value of σ for a given x. Then, the following RK type scheme
can be used for Milstein scheme:

X∗ = Xn + σ(Xn)
√
h,

Xn+1 = Xn + b(Xn)h+ σ(Xn)∆Wn +
1

2

σ(X∗)− σ(Xn)√
h

(∆W 2
n − h).

The above RK scheme is for the derivatives involving σ. In some higher
order schemes, there can be derivatives in b as well. Let us consider the 3/2
order scheme

Xn+1 = Xn + bh+ σ∆Wn +
1

2
σσ′(∆W 2 − h)

+ b′σ∆Zn +
1

2
(bb′ +

1

2
σ2b′′)h2 + (bσ′ +

1

2
σ2σ′′)(∆Wnh−∆Zn)

+
1

2
σ(σσ′′ + (σ′)2)(

1

3
∆W 2

n − h)∆Wn.

For additive noise, this becomes

Xn+1 = Xn + bh+ σ∆Wn + b′σ∆Zn +
1

2
(bb′ +

1

2
σ2b′′)h2

In higher dimensional case, the last term corresponds to the form

1

2
(Lb)h2.

This involves second order derivatives of b. The idea is to use the Itô’s
formula

db(X(t)) = L∇b(X) dt+
∑
r

(Λrb)dWr,

where Λr =
∑

i σir∂i.
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This motivates to approximate

Lah = b(X̄(t+ h))− b(t, x)−
∑
r

(Λrb)∆Wr,

where X̄ can be obtained by the Euler-Maruyama scheme. This gives a type
of Runge-Kutta method. (see Theorem 5.9 in the book of Milstein)

3 General Itô-Taylor expansion*(Not required)

The general Itô-Taylor expansion, unfortunately, is kind of tedious. Here,
I only list out the result and attach the proof. We will not go over the proof
in class. You can read the book ”Numerical solution of stochastic differential
equations” by Kloeden and Platen (section 5.1-5.5).

Setup and definitions

To obtain the Itô-Taylor expansions, we need to treat the the multiple
Itô integrals carefully.

For a multi-index α, Hα denotes the set of functions for which one can
define the α interated integrals. Suppose α is of length `(α). For 1 ≤ i ≤
`(α), αi ∈ {0, 1, . . . ,m} where m is the dimension of the Brownian motion.
Let M be the set of multi-indices. If αi = 0, it means integration on time
while αi = j, it means integration on W j .

The iterated integrals are then defined as integration from the left of the
multi-index from left to right. The integral from stopping time ρ to stopping
time τ is defined as

Iα[f ]ρ,τ =

{∫ τ
ρ Iα−[f ]ρ,sds, α` = 0,∫ τ
ρ Iα−[f ]ρ,sdW

α` , α` ≥ 1,

where α− = (α1, . . . , α`−1). We use v to mean the empty α (`(α) = 0) and
define Iv[f ]ρ,τ = fτ , and this will be consistent with the definition above.
(This means for α = v, the lower bound does not matter).

To combine the integrals, one may define W 0 = t and the integrals can
be written uniformly as dW j .

Remark 1. A useful fact regarding the multiple integral for f = 1, denoted
by Iα or Iα,t, is given by the following proposition.
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Proposition 1.

W jIα,t =
∑̀
i=0

I(α1,...,αi,j,αi+1,...,α`),t +
∑̀
i=1

χαi=j 6=0I(α1,...,αi−1,0,αi+1,...,α`),t

where χ means the indicator and the left hand side means multiplication.

Proof. Let X = W j , Y = Iα. Then, we have by definition

dY = Iα−dW
α`

Hence,
d(XY ) = XdY + Y dX + d[X,Y ]

We find easily that
d[X,Y ] = χα`=j 6=0Iα−ds

Consequently,

W jIα =

∫ t

0
Iα,sdI(j),s +

∫ t

0
I(j),sIα−,sW

j
s + χα`=j 6=0

∫ t

0
Iα−,sds

= I(α1,...,α`,j) +

∫ t

0
I(j),sIα−,sdW

j
s + χα`=j 6=0I(α1,...,α`−1,0)

If `(α) ≤ 1, the claims follow directly from this formula. For ` ≥ 2, one
does induction. The key induction step is to replace I(j)Iα− with one single
I using the induction assumption.

Now, consider the Ito process,

dX = b(t,X)dt+
m∑
j=1

σj(t,X)dW j

The generator is

L0 = ∂t +

d∑
k=1

bk∂xk +
1

2

d∑
k,l=1

m∑
j=1

σk,jσl,j∂2k,l

We also introduce the following operators for j ≥ 1:

Lj =
d∑

k=1

σk,j
∂

∂xk
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These are clearly from the Itô formula.
For a smooth function f , one defines the coefficient function

fα =

{
f, ` = 0,

Lα1f−α, ` ≥ 1

where −α is the sequence by deleting the first entry: if α = (α1, . . . , α`),
then −α = (α2, . . . , α`).

Definition 2. Let A be a nonempty set of multi-indices. It is called a
hierarchical set if (1). ∀α ∈ A, `(α) < ∞; (2). For α ∈ A with `(α) ≥ 1,
we have −α ∈ A.

The remainder set B(A) is given by

B(A) = {α /∈ A,−α ∈ A}.

We have the following Itô-Taylor expansion

Theorem 1. Let Xt be the Ito process

dX = b(t,X)dt+
m∑
j=1

σj(t,X)dW j

that holds for t ∈ [t0, T ]. Let ρ and τ be two stopping times satisfying

t0 ≤ ρ(ω) ≤ τ(ω) ≤ T

with probability 1. Let A ⊂M be a hierarcical set and f be smooth enough.
Then, the Itô-Taylor expansion holds

f(τ,Xτ ) =
∑
α∈A

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈B(A)

Iα[fα(·, X·)]ρ,τ

If A = {v}, the formula reduces to Itô formula:

f(τ,Xτ ) = f(ρ,Xρ) +

∫ τ

ρ
L0f(s,Xs)ds+

m∑
j=1

∫ τ

ρ
Ljf(s,Xs)dW

j
s ,

The proof

The proof basically is done by Itô formula and induction.
We first present a lemma that allows induction.
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Lemma 1. Let t0 ≤ ρ ≤ τ ≤ T . f is smooth enough. Let α, β ∈ M with
`(β) ≥ 1. Then,

Iα[fβ(·, X·)]ρ,τ = Iα[fβ(ρ,Xρ)]ρ,τ +

m∑
j=0

I(j)∗α[f(j)∗β(·, X·)]ρ,τ

where (j) ∗ α = (j, α1, . . . , α`).

The proof is straightforward using induction on the length of α and the
Itô formula.

Proof. If `(α) = 0, the formula is just Itô’s formula (Note that Iv[f(·, X·)]ρ,τ =
f(τ,Xτ ) and Iv[f(ρ,Xρ)]ρ,τ = f(ρ,Xρ)):

fβ(τ,Xτ ) = fβ(ρ,Xρ) +
m∑
j=0

I(j)[L
jfβ(·, X·)]ρ,τ

Now, assume that the formula holds for all indices α1 with `(α1) =
k − 1 ≥ 0. Consider the index α with `(α) = k. Assume α = (j1, . . . , jk).

Iα[fβ(·, X·)]ρ,τ = I(jk)[Iα−[fβ(·, X·)]ρ,·]ρ,τ = I(jk)[Iα−[fβ(ρ,Xρ)]ρ,·]ρ,τ

+
m∑
j=0

I(jk)[I(j)∗α−[f(j)∗β(·, X·)]ρ,·]ρ,τ

By definition, the right hand side equals

Iα[fβ(ρ,Xρ)]ρ,τ +
m∑
j=0

I(j)∗α[f(j)∗β(·, X·)]ρ,τ

We now prove the Itô-Taylor expansion by induction on ` := supα∈A `(α).

Proof of the Itô-Taylor expansion. Let

` := sup
α∈A

`(α).

If ` = 0, then
B(A) = {(0), (1), . . . , (m)}.
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Clearly, ∑
α∈A

Iα[fα(ρ,Xρ)]ρ,τ = Iv[f(ρ,Xρ)]ρ,τ = f(ρ,Xρ).

It can be seen that the Itô-Taylor expansion is just Itô’s formula.
Now, assume the claim holds for ` ≤ k − 1 with k ≥ 1. We consider

` = k. Note that
E = {α ∈ A : `(α) ≤ k − 1}

is a hierarchical set. By the induction assumption:

f(τ,Xτ ) =
∑
α∈E

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈B(E)

Iα[fα(·, X·)]ρ,τ .

Clearly, A \ E ⊂ B(E). It follows that

f(τ,Xτ ) =
∑
α∈E

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈A\E

Iα[fα(·, X·)]ρ,τ

+
∑

α∈B(E)\(A\E)

Iα[fα(·, X·)]ρ,τ .

For the second term, we can apply the lemma and then get

∑
α∈A\E

Iα[fβ(·, X·)]ρ,τ =
∑

α∈A\E

Iα[fβ(ρ,Xρ)]ρ,τ+
∑

α∈A\E

m∑
j=0

I(j)∗α[f(j)∗β(·, X·)]ρ,τ

It is clear that we only need to check whether we have

B(E) \ (A \ E) ∪ [∪mj=0{(j) ∗ α : α ∈ A \ E}] = B(A).

The first set is

{α /∈ E ∪ A : −α ∈ E} = {α /∈ A : −α ∈ E}

The second set is
{α : `(α) = k + 1,−α ∈ A \ E}

Hence, the union is exactly, B(A).
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4 Weak approximations

In this lecture, we study weak schemes for SDEs (Itô equations).
Recall that there are roughly two kinds of things we want to do:

1. Approximate the sample paths of the SDE; namely t 7→ X(ω, ·).

2. Approximate the law of X(t), or the distributions.

We consider a numerical scheme of the following form:

X̄t,x(t+ h) = x+A(t, x, h; ξ) (1)

Unlike in the strong schemes, the random variable ξ can be unrelated to the
given Brownian motionW (t). The reason is that we only aim to approximate
the distributions.

We then generate the numerical solution by

Xk+1 = Xk +A(tk, X
k, h; ξk), (2)

where ξ0 is independent of X0, and ξk is independent of all the Xm,m ≤ k
and ξ`, ` ≤ k − 1.

The convergence corresponding to approximating distribution is called
weak convergence.

Definition 3. Fix time T > 0. We say a discrete approximation {Xn(k)}
of the the solution of the SDE converges in the weak sense with order p > 0
if for any φ ∈ C∞b (bounded, smooth, every derivative is bounded), there
exists C(φ, T ) > 0 such that

sup
n:nk≤T

|Eφ(Xn(k))− Eφ(X(nk))| ≤ C(φ, T )kp,

for all sufficiently small step size k.

A key tool to analyze the weak order is the backward Kolmogorov equa-
tion. Recall that

u(x, t) = Exφ(X(t))

satisfies

∂tu = Lu = b · ∇u+
1

2
σσT : ∇2u.

Then, it follows that
u(x, t) = etLφ(x).
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With some assumptions on b and σ, we have the semigroup expansion

u(x, t) =
n∑
j=0

tn

j!
Ljφ+R

with the remainder term controlled by ‖R‖∞ ≤ Ctn+1‖Ln+1φ‖∞.
Pick a test function φ,

Eφ(Xn)− Eφ(X(tn)) = Eu(0, Xn)− Eu(tn, X
0)

The meaning of E has been changed for the second term–The space for the
continuous Brownian motion disappears! With the right hand side, we can
work the probability space for the numerical random variables.

Remark 2. Some people tend to use g(t, x) = u(T − t, x) which satisfies

∂tg + Lg = 0,

with terminal condition g(T, x) = u(0, x) = φ(x). Some people also call this
the backward Kolmogorov equation. No matter which you use, the ideas are
the same.

4.1 An approach based on semigroup

In the above theorem, the test functions are chosen to have polyno-
mial growth. Nowadays, people prefer to use bounded test functions with
bounded derivatives. Bounded test functions are more convenient in theory
and proofs. The difference is that bounded test functions induce weaker
topology. However, together moment estimates, the convergence with this
weaker topology can be generalized to the test functions with polynomial
growth.

Below, we focus on bounded test functions and assume that

Assumption 1. b and σ are bounded and have bounded derivatives.

This assumption might be strong. However, it is here only for conve-
nience.

The second approach here uses the semigroup expansion and Markov
property a lot.

Note that {Xn} is a time-homogeneous Markov chain. We define the
operator

(Smf)(x) = E(f(Xm)|X0 = x).

The first key observation is:
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Lemma 2. {Sm} is a semigroup. In other words, SpSm−p = Sm.

To see this, we have

(Smf)(x) = E(f(Xm)|X0 = x) = E(E(f(Xm)|Xp)|X0 = x)

By Markov property and the time-homogenuity,

E(f(Xm)|Xp = y) = E(f(Xm−p)|X0 = y) = (Sm−pf)(y).

Hence, the right hand side is Sp(Sm−pf).
Exercise: Use this to show that the multiplication for {Sα} is associa-

tive.
Now, we focus on X0 = x, because the general initial distribution is just

a superposition of such initial conditions.

Eu(0, Xn)− Eu(tn, X
0) = (Snu(0, ·))(x)− (S0u(tn, ·))(x)

=
n−1∑
m=0

(Sm+1u(tn − tm+1, ·))(x)− (Smu(tn − tm, ·))(x).

Clearly, we only need to estimate

Sm+1u(tn− tm+1, ·)−Smu(tn− tm, ·) = Sm(Su(tn− tm+1, ·)− u(tn− tm, ·))

Lemma 3. S is L∞-non-expansive. In other words, ‖Sf − Sg‖∞ ≤ ‖f −
g‖∞.

This is clear and we omit the proof. Then, we have

‖Sm(Su(tn− tm+1, ·)−u(tn− tm, ·))‖∞ ≤ ‖Su(tn− tm+1, ·)−u(tn− tm, ·)‖∞

Theorem 2. For any formulate the local and global errors into a claim..

Example: the Euler-Maruyama scheme

By the explicit formula,

(Su(tn − tm+1, ·))(x) = Eu(tn − tm+1, x+ b(x)k + σ(x)∆W ).

On the other hand, by the semigroup expansion,

u(tn−tm, x) = (ekLu(tn−tm+1, ·))(x) = u(tn−tm+1, x)+kLu(tn−tm+1, x)+O(k2).
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To compare them, we do Taylor expansion on the first term:

Eu(tn−tm+1, x+b(x)k+σ(x)∆W ) =

∫
u(tn−tm+1, x+b(x)k+

√
kσ(x)z)ρ(z) dz

By Taylor expansion and the fact that the odd moments of z are zero, we
find easily that

Eu(tn−tm+1, x+b(x)k+σ(x)∆W ) = u(tn−tm+1, x)+kb(x)·∇u+
k

2
σ(x)σT (x) : ∇2u+O(k2)

Hence, we find

‖Su(tn − tm+1, ·)− u(tn − tm, ·)‖∞ ≤ Ck2.

Eventually,

‖Exu(0, Xn)− Eu(tn, x)‖∞ ≤ C(T )k.
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