Possible Project 2

Consider the following SDEs on sphere

$$
d X=b(X) d t+\sigma(X) \circ d W .
$$

Here, b and $\sigma_{\cdot, k}(1 \leq k \leq p)$ are tangent vectors on \mathbb{S}^{d-1}, and W is a p dimensional Brownian motion in \mathbb{R}^{p}. The " \circ " symbol means the integration is in the Stratonovich sense.

Consider the following scheme:
1: Sample $z^{n} \sim \mathcal{N}\left(0, I_{d}\right)$.
2: Obtain a prediction

$$
Y^{n+1}=X^{n}+b\left(X^{n}\right) k+\sigma\left(\mathbb{Q}\left(X^{n}+\frac{1}{2} \sigma\left(X^{n}\right) \sqrt{k} z^{n}\right)\right) \sqrt{k} z^{n} .
$$

3: Project the point back to sphere:

$$
X^{n+1}=\mathbb{Q}\left(Y^{n+1}\right) .
$$

Here, we define

$$
\mathbb{Q} x:=\frac{x}{|x|} .
$$

- (Basic part) Show that this scheme is convergent in weak sense. Try to figure out the weak order. Do numerical tests to verify what you found.
- (Advanced part) Show that the error can be controlled uniformly in time.

