
Computational methods-Lecture 1

1 Preliminaries

In solving the practical problems, we often do the following

(i) Modelling – This will introduce the modelling error, because “all mod-
els are wrong while some are useful”

(ii) Design numerical methods or algorithms to solve the models. This step
introduces the so-called truncation error or method error. This is the
main part that numerical analysis focuses on.

(iii) Using computers to compute will yield the roundoff errors. This is
because the numbers are stored as float numbers in computer. See
Section 1.2 of the book by Burden for details.

Let p be the true value while p∗ be the approximation. The absolute
error is defined by |p− p∗|; and the relative error is given by |p− p∗|/|p|.
Note that the absolute value has units (or dimension). Hence, sometimes
it is not easy to understand how large the error is by simplying staring at
the absolute error. The relative error, however, is better for describing the
bigness of the errors.

The approximation p∗ is said to have m significance digits for approx-
imating p, if

|p− p∗|
|p|

< 5× 10−m.

Intuitively, this means that the first m nonzero idigits in p∗ have meanings
while the subsequent digits in p∗ make no sense because they are polluted
by the errors. Hence, one should only keep m nonzero digits in the approx-
imation.

For example: let p = 0.012723 and p∗ = 0.012815. With the computa-
tion, |p− p∗|/|p| = 0.0072 · · · < 5× 10−2, one finds that m = 2. This means
there are two significant digits in p∗, and we should keep it as p∗ = 0.013.
With this new approximation, the error is 0.0002 · · · less one half of the mth
nonzero digit. This then says the first m nonzero digits are good, while the
error starts play the role from (m+ 1)th digits.

The definition in Qingyang Li’s book is as that:
There are n significant digits in p∗ if

p∗ = ±10m(a1 + a210−1 + · · ·+ an10−(n−1)),
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and
|p− p∗| ≤ 5× 10m−n

Using this, the number of significant digits in our case is still 2.
Some comments

• For arithmetic computations, try to avoid divisions by small numbers,
subtractions with comparable (big) numbers, additions between a very
large and a very small number. These will reduce the significance
digits.

• For numerical methods or algorithms, there are several aspects. Re-
garding complexity, try to avoid repeated computation and improve
the complexity; regarding stability and convergence, we need the method
to be well-posed. The concept of stability is very important. It roughly
says that your local errors will not be amplified significantly in the
eventual result. The so-called “condition number ” can often indicate
the stability of the system we are considering. This will be clear later.

2 Interpolation

The Weierstrass approximation theorem says that one an use polynomi-
als to approximate any continuous function on a compact set. Particularly,
in the 1D case, for f ∈ C([a, b],R), and any ε > 0, there exists a polynomial
P (x) such that

|f(x)− P (x)| < ε, ∀x ∈ [a, b].

The above theorem does not tell us how to construct the approximating
polynomials. The Taylor polynomials can charaterize the local behaviors
of functions. However, in some problems, we know the function values at
several points. Then, how can we approximate such functions?

We focus on problems where x ∈ R only.

Problem. Given the function values of f at n + 1 points: (xi, f(xi))
n
i=0,

where xi ∈ R, find a polynomial such that P (xi) = f(xi).

2.1 Two point case

Given (x0, y0) and (x1, y1), we know there is a line going through them.
The slope is

k =
y1 − y0
x1 − x0

.
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Hence, the line is

y = y0 + k(x− x0) = y0 +
y1 − y0
x1 − x0

(x− x0). (1)

Therefore, (1) satisfies the requirement. However, this cannot be gener-
alized to cases with more points easily.

To solve the general cases, we rearrange the interpolation and combine
the coefficients for y0 and y1:

y = y0(1−
x− x0
x1 − x0

)+y1
x− x0
x1 − x0

= y0
x1 − x
x1 − x0

+y1
x− x0
x1 − x0

= y0`0(x)+y1`1(x).

Observation:
`0(x0) = 1, `0(x1) = 0,

and
`1(x0) = 0, `1(x1) = 1.

Hence, `0 only picks out the value at x0 and `1 only picks out the value
at x1. Clearly, `0 and `1 will span a linear vector space consisting of all
polynomials of degree 1 that can interpolate functions with values known at
x0 and x1.

2.2 General cases

Consider the n + 1 points: (xi, f(xi))
n
i=0. The idea is again the same.

We aim to construct the interpolation basis functions `n,k(x) such that:

`n,k(xj) = δkj =

{
1 if k = j,

0 otherwise.

Then,

L(x) =

n∑
k=0

f(xk)`n,k(x)

will be a desired polynomial.
Considering that the polynomial is zero at other points and thus it must

contain factor (x− xj) for j 6= k. Hence, it is not hard to construct:

`n,k =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
=

n∏
i=0, i 6=k

(x− xi)
(xk − xi)

.
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Letting

ωn+1(x) =

n∏
j=0

(x− xj).

Then, it is not hard to see

`n,k =
ωn+1(x)

(x− xk)ω′n+1(xk)
.

The polynomial L(·) is called the nth Lagrange interpolation poly-
nomial.

2.3 Some theoretical results

The first question is: how many polynomials that will satisfy the condi-
tion?

Theorem 1. Let {xk}nk=0 be n + 1 points, and f(·) is a given function.
Then, there is a unique polynomial P (x) with degree at most n such that

P (xk) = f(xk),

and this polynomial is exactly the Lagrange interpolation polynomial.

Proof. The existence has been shown by the construction above. Now, let us
consider uniqueness. In fact, if there is another polynomial Q(x) satisfying
the same conditions. Then, Q(x)−L(x) is a polynomial with degree at most
n, but has n+ 1 zeros. As well-known, a polynomial with degree m, m ≥ 1
has m zeros only (repeated roots will count). Hence, the degree of Q − L
must be 0 and it must be zero.

Of course, if you consider polynomials with higher degree, they will not
be unique.

Another question: what is the error for the polynomial approximation?

Theorem 2. Suppose that {xk}nk=0 are n+ 1 distinct points on the interval
[a, b]. f ∈ C(n+1)([a, b];R). Let L(·) be the Lagrange interpolation polyno-
mial at these n + 1 points. Then, for any x ∈ [a, b], there exists ξ ∈ (a, b)
(depending on x) such that

f(x)− L(x) =
f (n+1)(ξ)

(n+ 1)!
ωn+1(x).
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Consider

K(x) =
f(x)− L(x)

ωn+1(x)

Intuitively, this is indeed like the (n + 1)th order derivative because the
denominator is (∆x)n+1 small. Proving such claims is just like how you
prove the Lagrange mean value theorem. This gives

f(x)− L(x)−K(x)ωn+1(x) = 0.

Proof. Consider

K(x) =
f(x)− L(x)

ωn+1(x)
,

which is continuous and bounded.
Define

ϕ(t) = f(t)− L(t)−K(x)ωn+1(t)

This function has zeros at x0, x1, . . . , xn and x. If x equals xj for some j,
we have repeated roots. For such a function, there is ξ such that

ϕ(n+1)(ξ) = 0.

It is easily seen that L(n+1)(x) ≡ 0, and ω
(n+1)
n+1 = (n+ 1)!. Hence,

f (n+1)(ξ)−K(x)(n+ 1)! = 0.

The result then follows.

Example Let h = 1/N and xj = jh for 0 ≤ j ≤ N . Suppose that we use
piecewise linear interpolation for the function f(x) = ex between these grid
points. Find an error bound for these piecewise linear interpolation.

Example Consider f(x) = ln(1 + x). Let x0 = 0, x1 = 0.5, x2 = 1. If we
use the quadratic polynomial to interpolate this function, estimate the error
for x = 0.6.
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