
Computational methods-Lecture 10

The Conjugate Gradient Method for solving positive
definite systems

Today, we introduce another technique, the Conjugate Gradient (CG)
Method, for solveing the linear systems when the matrix is positive definite:

Ax = b.

If the matrix is positive semi-definite, some modification of this method can
be applied, which we do not consider in our course.

The CG in principle is a direct method since it eliminates the errors step
by step and finds the exact solution in n steps. However, it can also be
viewed as an iterative method.

1 Reducing it to optimization problem and line
search

As we shall later, solving system of equations can be formulated into
an optimization problem. Finding the roots is equivalent to finding the
minimizers. For our problem, we claim

Theorem 1. Let A be positive definite. Then, x∗ is a solution of Ax = b if
and only if it is the global minimizer of

g(x) =
1

2
xTAx− xT b.

Proof. “⇐” This is straightforward, because any critical point satisfies

∇g = 0.

However,
∇g = Ax− b.

The result follows.
“⇒” In fact, since A is positive definite, for any M > 0, there exists

R > 0 such that g(x) > M when |x| > R. Hence, there is a global minimizer
of g. Hence, it must be a critical point and thus satisfies Ax = b. However,
the solution of Ax = b is unique, since A is invertible. This then justifies
the claim.

1

For the direction “⇒”, a more natural way is to consider

g(x)−g(x∗) = 〈x−x∗, Ax∗−b〉+1

2
〈x−x∗, A(x−x∗)〉 =

1

2
〈x−x∗, A(x−x∗)〉 ≥ 0.

As soon as we have the optimization setup, we can try to find the mini-
mizer as follows using the line search strategy:

• Find a search direction p and form a function

h(t) = g(x+ tp).

• Minimize the function h(t):

p · ∇h = 0⇒ p · (A(x+ t̂p)− b) = 0.

Hence

t̂ =
pT (b−Ax)

pTAp
.

• The new position is
x← x+ t̂p.

For the convenience, we denote

r := b−Ax,

which is the residual vector.

1.1 Method of steepest descent

The first natural way is to adopt a greedy strategy: the negative gradient
points the fastest direction locally. Hence, a naturaly way is to choose

p(k) := r(k) = −∇g(x(k)) = b−Ax(k).

Then,

x(k+1) = x(k) +
|r(k)|2

(r(k))TAr(k)
r(k).

Remark 1. This is different from the so-called gradient descent, where

x(k+1) = x(k) − ηk∇g(x(k))

where ηk is a small parameter and it is no a quantity that tries to minimize
the function most.

Unfortunately, the steepest descent does not perform well in practice,
and see Figure 1.

2

Figure 1: Illustration of steepest descent iterations. Figure cut from the
book of Randall Leveque.

1.2 The A-orthogonal directions

The steepest descent is not good in general. However, there is one case
when it is ideal: when the contours are spheres (circles in 2D). In this case,
the method will find the minimum in n steps.

For general A, the contours (level sets) are ellipsoids. However, if we do
change of variables

y =
√
Ax,

then the contours will be spheres in y variables. In this sense, we should
need the directions to be perpendicular in the new variables. In other words,
we need

(p(i))TAp(j) = 0.

Vectors satisfying this conditions are said to beA-conjugate, orA-orthogonal.
The intuition above suggests that using A-orthogonal search directions

can achieve zero residual in n directions. In fact, this is true.

Theorem 2. For A-orthogonal search directions, using the line search strat-
egy can yield

Ax(n) = b.

Proof. Recall
x(k+1) = x(k) + tkp

(k).

Consequently,

Ax(k) = Ax(0) +
k−1∑
j=0

tjAp
(j).

3

Using A-orthogonality,

p(k) · (Ax(k) − b) = p(k) · (Ax(0) − b).

Now, consider the residual

−rn = Ax(n) − b = (Ax(0) − b) +

k−1∑
j=0

tjAp
(j)

One finds

〈−rn, p(j)〉 = 〈Ax(0)−b, p(j)〉+tj〈Ap(j), p(j)〉 = 〈Ax(0)−b, p(j)〉+p(j)(b−Ax(j)).

Using the relation we just obtained, this equals zero.
Hence, rn is perpendicular to p(j) for all j = 0, · · · , n−1. However, since

A is positive definite, they are indpendent. Hence, rn = 0.

How do we understand? In fact, besides the sphere picture mentioned
above, we can also understand this in another way: in the kth iteration, the
algorithm achieves the minimum in the hyper-plane

x+ span{p(0), · · · , p(k−1)}

Each time, we buid in a direction, and the new result is optimal in the
new hyperplane, instead of just in the direction of the new line, due to the
A-orthogonality.

One important property that similar proof can give

Proposition 1. The residual vector at iteration k is perpendicular to all
previous search direction.

2 The conjugate gradient descent

We have been convinced that using A-orthogonal search directions can
be beneficial. How do we construct such directions? One strategy is as
follows:

• Given x(0), the initial search direction is the negative gradient direc-
tion:

p(0) := r(0) = b−Ax(0).

4

• Suppose that x(k) (k ≥ 1) is found and

r(k) := b−Ax(k)

is nonzero. We now construct p(k) that should be A-orthogonal to
previous search directions. The CG algorithm does the following:

p(k) = r(k) + sp(k−1).

To make 〈p(k), Ap(k−1)〉 = 0, we need

sk−1 = − 〈p
(k−1), Ar(k)〉

〈p(k−1), Ap(k−1)〉
.

The above provides a way to construct the search directions. However,
we must verify that {p(k)}′s are A-orthogonal.

Proposition 2. The space span{p(0), · · · , p(m−1)} = span{r(0), Ar(0), · · · , Am−1r(0)};
p(m) is A-orthogonal to the previous directions for all m ≥ 1.

Proof. The proof can be done by induction. If m = 1, p(0) = r(0) and the
first claim is clear. For the second, claim the construction of p(1) gurantess
this by choosing s.

Suppose for m = k ≥ 1, the claim holds. Since

r(k) = r(0) −
k−1∑
j=0

tjAp
(j)

Hence,

p(k) = r(0) −
k−1∑
j=0

tjAp
(j) + sp(k−1).

By the induction assumption. We write p(j) as linear combination of Aqr(0)

with q ≤ k − 1. Then, when m = k + 1, the left hand side is contained in
the right hand side.

Now, since the previous search directions are A-orthogonal, we find r(k)

is perpendicular to the all previous search directions. Hence, r(k) is inde-
pendent of the previous subspace. Hence, p(k) is linear independent to the
previous subspace. By this independence, the left hand side has dimension
m while the right hand side has dimension at most m. Then, they must be
equal.

5

Now, we verify the A-orthogonality holds for m = k + 1.

p(k+1) = r(k+1) + sp(k).

For j < k, we have

〈p(k+1), Ap(j)〉 = 〈r(k+1), Ap(j)〉

By what has been proved. Ap(j) is a linear combination of Aqr(0) for q ≤
k, thus a linear combination of p(q) for q ≤ k. Hence, by the induction
hypothesis, rk+1 · p(q) = 0. This means

〈p(k+1), Ap(j)〉 = 〈r(k+1), Ap(j)〉 = 0.

The A-orthogonality between p(k+1) and p(k) is ensured by the construction.

By the proof above, we in fact have the following

Corollary 1. • rk+1 · p(j) = 0 for j ≤ k and 〈r(k+1), Ap(j)〉 = 0 for
j < k.

• r(i) · r(j) = 0 for i 6= j.

Proof. The first part has been proved. For the second part, let us assume
i > j. Then, r(j) = p(j) − sjp

(j−1). Using the claim just proved, the
orthogonality follows easily.

Note that since r(k+1) = r(k) − tkAp(k), 〈r(k+1), Ap(k)〉 6= 0.
Here are some observation to reduce the computational cost:

−r(k+1) = −r(k) + tkAp
(k).

Hence, we do not compute r(k+1) = b−Ax(k+1) using the definiton, but with
the above formula. Moreover,

(p(k))T r(k) = |r(k)|2.

Moreover,

sk = −p
(k)Ar(k+1)

p(k)Ap(k)
= −r

(k+1) · (r(k) − r(k+1))

tkp(k)Ap(k)
=
|r(k+1)|2

|r(k)|2
.

1. Choose x0; x← x0.

6

2. r ← b−Ax, p← r

3. For k = 1, · · ·
w ← Ap;

t← rT r/(pTw);

x← x+ t ∗ p;
ro ← r;

r ← r − tw;

if stopping criterion is not achieved,

s← (rT r)/rTo ro;

p← r + s ∗ p;
Endfor

3 Convergence of the algorithm

Even though CG can achieve the accurate solution in n steps, we can
often stop far before finishing n steps. In fact, the error is like

C(

√
κ− 1√
κ+ 1

)k

See section 4.3.4 of the book “Finite Difference Methods for ordinary and
partial differential equations” by Randall J. LeVeque.

For practical systems like the ones constructed from finite difference, one
often has the condition number to be κ ≈ n. Hence, one often needs k =

√
n

to achive desired accuracy. This is much smaller than the required n steps.
Hence, it can save time compared with Gauss elimination.

Moreover, when A is sparse, the matrix-vector multiplication can be
cheap.

7

