
Computational methods-Lecture 11

Eigenvalues; singular value decomposition; power method

1 Eigenvalues and eigenvectors

Recall:
For a square matrix A, if there exists λ and x 6= 0 such that

Ax = λx,

then λ is called an eigenvalue and x is called an eigenvector. The pairm
(λ, x) is called an eigen-pair.

The eigenvalues are roots of the characteristic polynomial

ϕ(λ) = det(λI −A).

Theorem 1 (Schur theorem). For a real square matrix A, there exists an
orthogonal matrix Q such that

QTAQ =


R11 R12 · · · R1m

R22 · · · R2m

· · ·
...

Rmm


where Rii is a number or a 2 × 2 matrix with two complex eigenvalues,
conjugate with each other.

If A is real symmetric, all Rii are numbers and the matrix on the right
hand side is in fact diagonal.

The largest eigenvalues or smallest eigenvalues can often be reduced to
the max or min of the Rayleigh quotient:

R(x) :=
〈Ax, x〉
|x|2

.

2 Singular value decomposition (SVD)

For non-square matrix, there is no eigenvalues. However, we can gener-
alize the idea to the so-called singular values. In particular, consider A of
size m× n and ATA.
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Since ATA is positive semi-definite, we can find orthogonal matrix V of
size n× n such that

ATA = V DV T .

Here, the columns of V are eigenvectors of ATA and

V T (ATA)V = D =


σ21

σ22
· · ·

σ2n


with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Define the matrix Σ of size m× n. Let Σii = σi for i ≤ min(m,n), and
other entries are zero.

Suppose σk > 0 and σk+1 = 0 (if all nonzero, then k = n; if all zero,
then k = 0). Consider

ui =
1

σi
Avi, i = 1, · · · , k

where vi’s are the columns of V .
We have the following observation:

Lemma 1. k ≤ min(m,n) and ui’s are ortho-normal.

The first is clear. The reason is that k equals the rank of ATA and thus
the rank of A. To show that they are orthonormal, we just note

uTi uj =
1

σ2i
vTi A

TAvj ,

and use the fact that vi’s are eigenvectors.
Then, we can add m − k orthonormal vectors into the list {u1, · · · , uk}

to form an orthonormal basis of Rm. Let U be the matrix whose columns
are these vectors. Then, one has:

Theorem 2 (The singular value decomposition). A = UΣV T .

Proof. One only has to verify

AV = UΣ.

For i ≤ k, Avi = σiui holds by definition. For i > k, ATAvi = 0, so
vTi A

TAvi = 0. Hence, Avi = 0. Clearly, σiui = 0 since σi = 0.
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The SVD tells us that

A =
k∑

i=1

σiuiv
T
i .

Exercise: Show that ui’s are eigenvectors of AAT .
Exercise: Show that the 2-norm of A is the largest singular value and

the Frobenius norm is the square root of the sum of squares of all singular
values.

Example find the singular value decomposition for

A =


1 0
2 0
0 −1
0 2


3 Power method

The idea of power method is as follows: suppose λ1 is the eigenvalue
with largest magnitude and the multiplicity is 1:

|λ1| > |λ2| ≥ · · · |λn| > 0.

Suppose first that A has n independent eigenvectors. Then, for any x0

x0 =
n∑

j=1

βjvj .

If we multiply A, we have

Ax0 =
n∑

j=1

βjλjvj .

If we do this k times

Akx0 =
n∑

j=1

βjλ
k
j vj .

The observation is that |λk1| � |λj |k for j ≥ 2. Hence, the vector

Akx0

will be close to the leading eigenvector. This then motivates the power
method for finding the leading eigen-pair.

If |λ1| < 1, the iteration x(k) = Akx0 → 0. If |λ1| > 1, it diverges.
Hence, to get a regular result, we need to normalize the vectors.
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1. Choose x0 6= 0; x← x0

2. For k = 1, · · ·
u← Ax

x = u/ui0 , where i0 is chosen such that |ui0 | = ‖u‖∞.

3. Lastly, compute the eigenvalue

λ← xTAx

xTx

There are some observations:

• If the matrix A is sparse, then the matrix-vector multiplication can be
fast.

• If there no enough eigenvectors, the method still works. (Try to show
this using Jordan block).

• If λ1 has multiplicity larger than 1, the method still works.

Clearly, if we set µk = ui0 in the kth iteration, then

x(m) =
Amx0∏
k≤m µk

Using this, it is easy to see

Theorem 3. If in the expansion of x0 β1 6= 0, then x(m) converges to the
leading eigenvector and λ(k) converges to the eigenvalue. Moreover, the error
estimate holds

|λ(k) − λ1| ≤ C|
λ2
λ1
|k.

If the matrix A is real symmetric, the error can be improved to |λ2/λ1|2k

If one desires other eigenvalues, one can do shifting or do deflation (like
the classical Wielandt deflation). We omit these here.
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4 The Householder’s method

Let w ∈ Rn with |w| = 1. We call the following matrix

P = I − 2wwT

the Householder transform.
The Householder matrix is orthogonal. Its eigenvalues are 1 and −1.

P−1 = P T = P.

The Householder transform is in fact the reflection about the hyperplane
perpendicular to w. To see this, we decompose v into v = x+y where x ‖ w
while y ⊥ w. Then,

Pv = P (x+ y) = x− y.

Due to this geometric meaning, for any x, y with |x| = |y|, we can find
such a reflection operator that maps x into y. In fact, the difference between
x and y is perpendicular to the symmetric plane, so parallel to x−y. Hence,
we can choose

w =
x− y
‖x− y‖2

.

In other words,

Px→y = I − 2
(x− y)(x− y)T

‖x− y‖22

(
= I − 2

(x− y)⊗ (x− y)

|x− y|2

)
.

With this observation, we can get a useful result:

Proposition 1. For any nonzero x, there exists a Householder transform
H such that

Hx = −σe1,

where
σ = sgn(x1)‖x‖2.

According to the construction above,

H = I − β−1uuT , u = x+ σe1, β =
1

2
‖u‖2 = σ(σ + x1).
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