
Computational methods-Lecture 13

Runga-Kutta methods and the convergence of one step
method

1 Local Truncation error and the order

The local truncation error describes how well the exact solution satis-
fies the numerical scheme.

The consistency is measured by the local truncation error (LTE) where
un is replaced by u(tn). For a method

un+1 = un + hφ(tn, u0, u1, · · · , um, h),

the local truncation error (LTE) is defined by

τn =
1

h

[
u(tn+1)−

(
u(tn) + hφ(tn, u(t0), u(t1), · · · , u(tm), h)

)]
Note that we have divided h here because un+1−un

h is in the same order as
the derivative.

Remark 1. This is different from the definiton in the Chinese reference
book, which is given by

Tn+1 = u(tn+1)− u(tn)− hφ(tn, u(t0), u(t1), · · · , u(tm), h).

This error is often called the “one-step error” instead of “local truncation
error” in some literature.

Example: For the forward Euler (FE):

τn =
1

h
(u(tn+1)− u(tn)− hf(tn, u(tn)))

=
1

h
(u(tn+1)− u(tn)− ku′(tn)) = O(h).

Definition 1. The ODE solvers are said to be consistent if the local trun-
cation error goes to zero as h→ 0.

Definition 2. If there exists a largest number p > 0 such that

τn = O(hp),

then the method is said to be of order p.
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Direct Taylor expansion shows that the two Euler methods are first order
while the trapezoidal method is a second order method.

*****************
(This part is not required in exam)
To improve the order, one can consider the higher Taylor schemes as

follows.

2 Runga Kutta method (Not required for exam)

The Runga-Kutta methods are one-step methods, but with multi-stage
to improve the accuracy, but possibly avoid computing high order deriva-
tives. (Recall that the higher order Taylor schemes involve many deriva-
tives.)

The starting point is again the integral relation:

u(tn+1) = u(tn) +

∫ tn+1

tn

f(s, u(s)) ds.

The idea is to use many nodes to approximate the integral.∫ tn+1

tn

f(s, u(s)) ds ≈ h
r∑
i=1

cif(tn + λih, u(tn + λih)).

Hence, a possible way is to do the following:

un+1 = un + h
r∑
i=1

cif(tn + λih, Ui) =: un + h
r∑
i=1

ciKi,

where Uj is approximation of u(tn + λjh), which can be found by setting

Ui = un + h
r∑
j=1

µijf(tn + λjh, Uj), i = 1, 2, . . . , r

Since Ui is an approximation of the value at tn + λih, one should have

r∑
j=1

µij = λi.

Moreover, for the consistency, we must have

r∑
i=1

ci = 1.
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This class of methods are called the r-stage Runga-Kutta method. If
we have

µij = 0, j ≥ i,

then the method is explicit. Otherwise, we have implicit Runga-Kutta meth-
ods. The most frequently used schemes are RK2, RK3, RK4. In general the
Runga-Kutta methods are not unique. Often, we require RK-r methods
to have order r.

In general, to determine the coefficients, you need to do a lot of tedious
Taylor expansions.

Here, we explore a quick way for you to choose the coefficients µij and
ci. We apply the method to the model problem with f(t, u) = σu. Then,

Ui = un + h
r∑
j=1

µijσUj , un+1 = un + h
r∑
i=1

ciσUi

However, we know that u(tn+1) = eσhu(tn). Note

eσh =
∑
n≥0

(σh)n

n!

We can therefore solve Yj out in the first equation and determine the coef-
ficients in ∑

n≥0

(σh)n

n!
un ≈ un + h

r∑
i=1

ciσUi,

by comparing the powers of h.

2.1 Derivation of Runga-Kutta 2 methods

Let us consider the explicit RK-2 methods.

un+1 = un + h

2∑
i=1

cif(tn + λih, Ui),

where

Ui = un + h
i−1∑
j=1

µijf(tn + λjh, Uj), i = 1, 2.

Hence, for explicit method, we must have

U1 = un, λ1 = 0.
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Then,
un+1 = un + h(c1f(tn, un) + c2f(tn + λ2h, U2))

and
U2 = un + hµ21f(tn + λ1h, U1).

By the consistency conditions

c1 + c2 = 1, µ21 = λ2.

Now, we set
f(t, u) = σu.

Then,
U2 = un + hµ21σU1 = un(1 + σhµ21)

Hence,
un+1 = un + c1hσun + c2hσun(1 + σhµ21).

To compare with
une

σh,

we ask

c1 + c2 = 1, c2µ21 =
1

2
.

The midpoint method
Let us choose λ2 = µ21 = 1

2 . Then, c2 = 1 and c1 = 0. Then, method is
then given by

U2 = un +
h

2
f(tn, un), un+1 = un + hf(tn +

h

2
, U2).

The improved Euler method
If we choose µ21 = λ2 = 1, then c2 = 1

2 = c1.
Hence,

U2 = un + hf(tn, un), un+1 = un +
h

2
(f(tn, un) + f(tn + h, U2)).

Clearly, this can be viewed as the modification of trapezoidal method
where the value at tn+1 is obtained by the forward Euler’s method. This
is called the improved Euler’s method. This is a predictor-corrector
method.
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2.2 A RK4 method

The following Runga-Kutta 4 method is also used frequently in practice.

un+1 = un +
h

6
[K1 + 2K2 + 2K3 +K4],

where

K1 = f(tn, un), K2 = f(tn +
h

2
, un +

h

2
K1),

K3 = f(tn +
h

2
, un +

h

2
K2), K4 = f(tn + h, un + hK3).

In other words, U1 = un, U2 = un + h
2K1, U3 = un + h

2K2, U4 = un +hK3.

3 The convergence of one step method

An ODE solver is convergent if for a problem u′ = f(t, u) where f is
continuous and Lipschitz continuous in u on [0, T ], we have

lim
k→0,nk=T

|un − u(T )| = 0,

where T is in the largest interval of existence.
f is Lipschitz in u means

sup
0≤t≤T

|f(t, u1)− f(t, u2)| ≤ L(T )|u1 − u2|

Claim:
For one step solvers, un+1 = un + kΨ(un, tn, h), as long as Ψ is con-

tinuous and uniformly Lipschitz continuous in u, the solver is stable. Here,
‘stable’ means that the global error introduced by the m-th step error will not
be amplified too much. If further it is consistent, then it is convergent.

Proof. Let τj be the local truncation error. Then, the one step error is

u(tj+1)− u(tj)− hΨ(u(tj), tj , h) = hτj .

Let Ej = |u(tj)− uj |. Then, we have

Ej+1 ≤ Ej + h|Ψ(uj , tj , h)− f(u(tj), tj , h)|+ h|τj | ≤ Ej + hLEj + Ch2.

Then,

En ≤ E0enkL +
n−1∑
j=0

h|τn−1−j |(1 + hL)j ≤ CeTLh
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In this proof, we have implicitly used the so-called stability. The error
term hτj is amplified by (1 +hL)n−j which is uniformly bounded by eTL, so
we have stability.

Example We take the forward Euler as the example. Again f is assumed
to be Lipschitz.
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