Computational methods-Lecture 13

Runga-Kutta methods and the convergence of one step
method

1 Local Truncation error and the order

The local truncation error describes how well the exact solution satis-
fies the numerical scheme.

The consistency is measured by the local truncation error (LTE) where
u™ is replaced by u(ty,). For a method

Un+1 = Up + h¢(tn,uO,U1, oy Umy, h)>

the local truncation error (LTE) is defined by

) = (wtn) + holtn, ulto),u(tr), - ultm), )]

Tn =

Note that we have divided h here because is in the same order as

the derivative.

un+1 —un
h

Remark 1. This is different from the definiton in the Chinese reference
book, which is given by

Tht1 = ultng1) — u(ty) — héd(tn, u(to), u(tr), - ,u(tm), h).

This error is often called the “ome-step error” instead of “local truncation
error” in some literature.

Example: For the forward Euler (FE):
1

Tn = E(U(tmrl) —u(tn) — hf(tn, u(tn)))
_ %(u(tmrl) —ultn) — k(b)) = O(h).

Definition 1. The ODFE solvers are said to be consistent if the local trun-
cation error goes to zero as h — 0.

Definition 2. If there exists a largest number p > 0 such that
Tn = O(RP),

then the method is said to be of order p.



Direct Taylor expansion shows that the two Euler methods are first order

while the trapezoidal method is a second order method.
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(This part is not required in exam)
To improve the order, one can consider the higher Taylor schemes as
follows.

2 Runga Kutta method (Not required for exam)

The Runga-Kutta methods are one-step methods, but with multi-stage
to improve the accuracy, but possibly avoid computing high order deriva-
tives. (Recall that the higher order Taylor schemes involve many deriva-
tives.)

The starting point is again the integral relation:

wltnst) = ultn) + /t " b, u(s) ds.

The idea is to use many nodes to approximate the integral.

[ st ds mwY st + bt + Ach).
tn

=1

Hence, a possible way is to do the following:

Up+1 = Up + hz Cif(tn + )\Zh, Uz) =: U + hz CZ‘Ki,
i=1 =1

where Uj; is approximation of u(t, + Ajh), which can be found by setting

U, = Un+hZMijf(tn+)\jh,Uj),’i =1,2,...,r
j=1

Since U; is an approximation of the value at t,, + A\;h, one should have

T
Z Hij = Ai.
=1

Moreover, for the consistency, we must have

r

ZCZ' =1.

=1



This class of methods are called the r-stage Runga-Kutta method. If

we have
pi; =0, j =1,

then the method is explicit. Otherwise, we have implicit Runga-Kutta meth-
ods. The most frequently used schemes are RK2, RK3, RK4. In general the
Runga-Kutta methods are not unique. Often, we require RK-r methods
to have order r.

In general, to determine the coefficients, you need to do a lot of tedious
Taylor expansions.

Here, we explore a quick way for you to choose the coefficients p;; and
¢i. We apply the method to the model problem with f(¢,u) = ou. Then,

T r
Uizu"—i—hz,uijan, un+1:un+hZchi
j=1 i=1
However, we know that u(t,1) = e”"u(t,). Note

och)"
eah — Z ( n')

n>0

We can therefore solve Y; out in the first equation and determine the coef-
ficients in

h)™ d
Z (o ') Up = U+ hZCZ’UUi,
n>0 n' i=1

by comparing the powers of h.

2.1 Derivation of Runga-Kutta 2 methods
Let us consider the explicit RK-2 methods.

2
Unp+1 = Unp + hz Cif(tn + )\lh, UZ),
=1

where
i—1

U, =u, + hz,uijf(tn + )\jh, Uj),i =1,2.
j=1

Hence, for explicit method, we must have

U1 = Un, )\1 =0.



Then,
Unt1 = Up + h(crf(tn, un) + caf (tn + A2h,Us))

and
Uz = up + hpo1 f(tn + A1h,Uy).

By the consistency conditions
c1+co=1, por = Aa.

Now, we set
f(t,u) = ou.

Then,
Uz = up + hpo1oUy = up (1 + ohpor)
Hence,
Unt1 = Up + crhou, + cohou, (1 + ohuay).
To compare with
upe®",
we ask .
c1t+c2=1, copor = 3

The midpoint method
Let us choose Ao = g1 = % Then, co = 1 and ¢; = 0. Then, method is
then given by

h h
Us = up + §f(tna Un), Upt1 = Up + hf(tn + 57 U2)

The improved Euler method
If we choose po; = Ao =1, then ¢o = % = 1.
Hence,

h
Us = up + hf(tn7un>7 Up4+1 = Up + §(f(tn; un) =+ f(tn + h, UQ))
Clearly, this can be viewed as the modification of trapezoidal method
where the value at t,+; is obtained by the forward Euler’s method. This
is called the improved Euler’s method. This is a predictor-corrector
method.



2.2 A RK4 method

The following Runga-Kutta 4 method is also used frequently in practice.

h
Un+1 = Un + < [Ky 4 2K + 2K5 + K,

where
h h
K1 = [t un), Ko = [(tn+ 5, un + 5 K1),
h h
K3 = f(ta+ 5 tn + 5K2), Ka= f(tn +h,un + hEK3).

In other words, Uy = uy, Us = up, + %Kl, Us = up+ %Kg, Uy = up+ hKs.

3 The convergence of one step method

An ODE solver is convergent if for a problem u' = f(¢,u) where f is
continuous and Lipschitz continuous in u on [0, 7], we have

lim |u" —u(T)| =0,
k—0,nk=T

where T is in the largest interval of existence.

f is Lipschitz in u means

sup | f(t,u1) = f(t,u2)| < L(T)u1 — g
0<t<T

Claim:

For one step solvers, unt1 = up + kV(up,tn, h), as long as ¥V is con-
tinuous and uniformly Lipschitz continuous in u, the solver is stable. Here,
‘stable’ means that the global error introduced by the m-th step error will not
be amplified too much. If further it is consistent, then it is convergent.

Proof. Let 7; be the local truncation error. Then, the one step error is
u(tjer) — ulty) — h¥(u(ty), tj, h) = h7;.
Let BJ = |u(tj) — u;|. Then, we have
EITY < B 4 h|W(uj, ty, h) — f(u(t;),tj, h)| + hlr| < B9 + hLE? 4+ Ch?.
Then,

n—1
E" < BE%™ ) " him, 1 4l(1+ L) < CeTFh
=0



In this proof, we have implicitly used the so-called stability. The error
term h7; is amplified by (1+ hL)"~J which is uniformly bounded by e’ so
we have stability.

Example We take the forward Euler as the example. Again f is assumed
to be Lipschitz.



