Computational methods-Lecture 2

1 Some methods to speed up computing the in-
terpolation polynomials

The previous error bound is in the a priori type, namely the error
involves the information of the true function, which is sometimes hard to
control. Hence, we often do not know how many points we need to use.
If we increase the number of points, can we use the previously computed
values, avoiding starting over?

1.1 Neville’s method

The Neville’s method is to treat this issue and convenient for evaluating
the function value at a given points.

Let v = {xg,x1,-- ,x,} be a list of points. We let L, be the interpola-
tion at the points in v.

Proposition 1. It holds that

(T = 25) Lp\ (2} (%) — (¥ — 23) Loy (2} (%)

Ly(z) = pe——
i~ T

The proof is straightforward. First of all, the degree of the polynomial
is at most n + 1. Secondly, it agrees with f at these n + 1 points. By the
uniqueness of the interpolation polynomial with degree n, the claim follows.

The following table shows how this observation can be developed into an
algorithm for increasing the number of points.

o Lizyy = Qoo

r1 Lipy =010 Lizgay = Q11

Ty Ligy =Q20 Lizyay =021 Lizgaiz.) = Q2,2

3 Lipyy = Q30 Lizpasy = Q@31 Lz wozsy = W32 Lizgar ey = @33

1.2 Divided differences and Newton’s interpolation

The motivation of Newton’s interpolation is pretty much like the Neville’s
method, i.e. we want to use the results for the previous low order polyno-
mials, avoiding recomputing the polynomials altogether. However, this is

better for computing the coefficients of the polynomial, instead of the val-
ues.

The idea is as follows.

First of all, we use one point, only, then we have

By(x) = [(o).

The, we add x1, the polynomial has degree 1, but clearly Pi(x) — Py(z) is
zero at xg. This means (x — z¢)| P, — Po, and thus

Pi(z) = f(x0) + a1(x — 20).

Similarly, if we add x9, it is a polynomial with degree 2, but (z — zo)(z —
$1)|P2 — Pl. Hence,

Py(z) = f(zo) + a1(x — x0) + az(x — x0)(x — x1).

This process is quite good. To go from P,_1 to P,, we only need to add
an(xr —x9) - (x — xp—1). Then, we only need to determine a,,. This will save
work if we only add one more point inside.

Let us determined the coefficients. Using P;(z1) = f(x1), one has

f@1) = f(@o)

@ = r1 — X0
Similarly,
flz2)—f(zo) _ flz1)—f(zo0)
ay = T2—x0 T1—T0
Tro9 — X1

This seems to suggest that the coefficients can be defined in a recursively
way. In fact, this is true.
We define the zeroth divided difference by

flxi] = f(xi),
and the first divided difference
flziv1] — flxi]

flzi zipa1] = -
Tit1 — T4
In general, the kth divided difference is defined by

flrivt, ive, s wigk] — fli, T, Tigp—]
Titk — T4

flxi, Tig1, - Tigg) =

Remark 1. Note that the kth divided difference is symmetric:

flwo,x1,--- wp] :Z f(z))

k
j=0 (1"]' - £UO) s (l‘j — xj—l)(l’j — g;'j+1) . (!Tj _ ka) ’

Hence, the kth divided difference in fact can be defined by choosing any two
points. For example,

flxis - Tigk—2, Tivk) — flTi, Tig1, - Tigh—1]
Tit+k — LTi+k—1

flxi, Tig1s - Tigg) =

Using the divided difference, we have

f(@) = f(zo) + flz, xo](z — z0),

and
flz, o] = flxo, 1] + flxo, 21, x](z — x1).

Similarly, f[zo,z1,x] can be written out. In general, one has
f(@) = f(@o) + flzo, 21](x — 20) + flwo, 21, w2] (2 — wo) (2w — 21) + -+~
+ flzo,x1, -+ wn] (@ — x0) -+ (& — 1) + flz, 2o, - Zalwnga (@)

Since wy,+1 is zero at any xg,x1,- - , Ty, we find

Ny(z) == f(xo) + flro, z1](x — x0) + flzo, 1, 2] (x — z0)(z — z1)
+ o+ flvo, T, wn] (@ —x0) - (T — TH1),

is exactly the interpolation polynomial at these points. This is called the
Newton’s interpolatory divided difference formula. By the unique-
ness of interpolation polynomial,

Nyp(z) = Ln(z),

i.e. it is another form of the Lagrange interpolation polynomial.
Comparing with the starting formula, we have showed that

an = f[$07$1)' o ,Cﬂn].

Now consider the function

This is zero at zg, x1, ..., Zs, hence by Rolle’s theorem, if f is nth continu-
ously differentiable, we have that

™€) =0.

In other words,

The remainder term
Ry := f(x) — Nu(x) = flz, 20, , Tp)wni1(z). (2)
Using (1), we find

S (@)
(n+1)!

provided that f is (n + 1)th continuously differentiable. However, the error
formula (2) holds even if the function is not differentiable.

Netwon’s formula is clearly more convenient when the number of points
changes. It is more suitable for programming. In fact, similar to Neville’s
method, one can also fill in a certain table.

When the grid points are uniform, i.e., arranged consecutively with with
equal spacing, the Newton’s formula can be simplied. Read the book for
more details and we omit it here.

f[x7x07... 733”]

2 Hermite Interpolation

What if we want to approximate both the function values and the deriva-
tives at several points? These will lead to the osculating polynomial. When
the function values and first order derivatives are given some points, we then
have the Hermite polynomials.

The idea is again to construct basis functions { A, ;(z), izn,j (x)} such that

hon,j(@i) = dij, by (i) = 0,

hi g () = 0, 1, ;(2:) = 035

Then, the interpolation polynomial is given by
Hopy1 () =Y f(@))hnj(@) + > [(@) j(2).
j=0 §=0

The Hermite interpolation also has a speedup algorithm like Newton’s
interpolation. Read the book by Burden and Faires.

3 Runge’s phenomenon and cubic splines

If we use polynomials to intepolate some smooth functions on equally
spaced grid points, the error will grow fast near the boundary, exponentially
fast in the degree (i.e. error a” for @ > 1). This is called the Runge’s
phenomenon.

One example is

1
o) =1
on [a,b] = [—5,5]. We consider the grid points z; = —5+ 10%, j=0,...,n

It can be shown that on (—3.6, 3.6) the interplation will converge, while the
error grows fast when |z| > 4.

The Runge’s phenomenon can be understood using the potential theory
in the plane. To resolve this issue, there are essentially two ways:

e Use non-uniform grids, like Chebyshev grid points so that there are
more points near the boundary.

e Use piecewise interpolation, with degrees of the polynomial be low on
each interval.

Here, we mention the second choice briefly, called the piecewise-polynomial
approximation.

This idea of approximation is the basic idea for Finite Element Method,
used to construct certain discrete Sobolev spaces.

1. Use piecewise linear function. In this case, the unknowns one each
interval is 2, so there are 2n unknowns (we have n+ 1 points, and thus
n intervals). How about the number of conditions and thus number of
equations we can establish? For the linear function on each interval,
we need to specify the values at the two endpoints. Hence, there are
also 2n equations. The coefficients can be solved uniquely.

2. The piecewise linear interpolation only guarantees the continuity of
function values. Sometimes, one desires continuity of derivatives. What
if we want the first order derivative to be continuous?

Try using quadratic functions: there are n subintervals, and on each,
the qudratic function has three unknowns. Hence, there are 3n un-
knowns.

How about conditions? For the function values, one can get 2n condi-
tions. Moreover, the continuity of first derivatives at the n — 1 points,

yields n — 1 extra conditions. Hence, there are 3n — 1 required con-
ditions. One needs one more condition. However, you may specify
the derivatives at xy and x,, which give two more conditions. This
is overdetermined. There is often no solution! Hence, you can only
specify one derivative. This is weird.

3. Another practical requirement is that one not only knows the func-
tion values at x; but also the derivatives at x;. Then, one uses the
piecewise Hermit interpolation. On each interval you have a cubic
polynomial. For this case, the coefficients can be determined uniquely.
The interpolation is continuously differentiable.

4. What if we only know the function values at the grid points but we
require the functions to be second order continuously differentiable?
This is often desired in designing aircrafts. Then, one needs cubic
polynomials on each subinterval. There are 4n unknowns. Regarding
the conditions, the function values give 2n constraints. The continuity
of first and second derivatives gives 2(n — 1) conditions. Hence, in
total, there are 4n — 2 constraints.

We need two more conditions.

3.1 Construction of cubic splines

The interpolation with cubic polynomial on each subinterval that makes
the function C?[xg, z,] is called the cubic spline interpolation.
We need two more conditions.

e Specifying the first derivatives at the two ends.

e Specifying the second derivatives at the two ends to be zero (the second
derivatives often mean the “moments” in beam theory).

e Peridic conditions: need the continuity of function values, first and sec-
ond derivatives; however, the functions values f(z¢) and f(x,) should
not be specified.

How to find such cubic functions conveniently.
First approach Find the first derivatives b; at x; and then use Hermite
interpolation. The spline function on [z;_1, ;] is given by

Si(a) = f(z-0)BY) (@) +bj1h§) | ()4 f () hY) (@) 40,0 (), G =1, n

With this, using the continuity of the second derivatives at z;_; and x; to
establish the equations for b;. As long as b; is found. The function S(-) is
found.

Second approach A more convenient approach is to solve the moment
M; at x; first. Then, on [z;,2j41], the moment is given by

Tjr1 — X r — X
S”(aj) = M]]T +Mj+1 hj j, x € [.Tj,l‘jJrl],

where hj = Tj41 — Ty.
With S(z;) = y; := f(z;) and S(xj41) = yj+1 := f(xj41), one has

h; h; Yit1 — Yj
§'(aj) = gy - Mgy, g B0
! 377 6 h;
and 4 "
S'(zj1—) = FJM]‘ + EJMj—H + 7yj+}% L
j
Hence, at z; (j =1,---,n — 1), one has
hj—1 hj_1 Yj — Yj—1 h; h; Yj+1 — Yj
M;_ M; = g - gy 4 VLTS
R A R AL 3 M T T Ty
Hence,
LquJr?MerMjH = L(f[ﬂﬂjwjﬂ]—f[ﬂfj—l,xj]) =6f[rj—1, 75, zj11)
hj—1+ h; hj—1+h;j hj—1 + h;

With the conditions at xg, z,, one has a tri-diagonal matrix for M;. As
soon as Mj is found, the function S(-) can be found.

Theorem 1. Let h = max;hj. If f € C*a,b] and {z¢, -+ , 2} C [a,b],
Ty = a,xr, = b, then

1£® = 5B oejagy < CllF Ol ey

Though we are not requiring S’(z;) = f’(z;), the error of first derivative
is small.

