
Computational methods-Lecture 3

Least squares approximation

Problem: Consider f ∈ C[a, b]. Let {φ0(x), φ1(x), · · · , φn(x)} be lin-
early independent functions defined on [a, b]. We aim to find a function S(x)
in the space V spanned by them such that

‖f−S‖2L2(w) :=

∫ b

a
w(x)|f(x)−S(x)|2 dx, S ∈ V = span{φ0(x), φ1(x), · · · , φn(x)}

is minimized. Here, w(x) is called the weight function.

1 Least squares approximating polynomial

1.1 A simple case

Let us consider a simple case w ≡ 1 and φk(x) = xk so that V is the set
of all polynomials with degree at most n. Then,

S(x) = a0 + a1x+ · · ·+ anx
n.

Then, we aim to minize the following function of a0, · · · , an:

I(a0, · · · , an) :=

∫ b

a
(f(x)−

n∑
k=0

akx
k)2 dx.

This function is quadratic in ak and it must has a minimizer. To find the
minimizer, we have

∂I

∂aj
= 0, ∀j = 0, · · · , n.

Hence, ∫ b

a
2(f(x)−

n∑
k=0

akx
k)(−

n∑
k=0

δkjx
k) dx = 0.

This simplifies to the normal equations

n∑
k=0

ak

∫ b

a
xjxk dx =

∫ b

a
f(x)xj dx, j = 0, · · · , n.
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Remark 1. The normal equations have clear geometric meaning. In fact,
let S be the best approximation. Then, f(x)− S(x) should be perpendicular
(or “normal”) to the subspace V . Hence,

〈f(x)− S(x), xj〉 = 0,∀j = 0, · · · , n.

This perpendicular condition is exactly the normal conditions.

This then gives a linear system for the coefficients {a0, · · · , an}:

H~a = ~d

where H is an (n + 1) × (n + 1) matrix with Hij =
∫ b
a x

i+j−2 dx, and dj =∫ b
a f(x)xj−1 dx.

Example Let a = 0, b = 1.

1. Find the matrix H for this case. This matrix is called the Hilbert
matrix.

2. Let f(x) =
√

1 + x2 and n = 1. Find the least squares approximating
polynomial.

If a = 0, b = 1, it is easy to find Hij = 1
i+j−1 .

In the question, we have

d1 =

∫ 1

0

√
1 + x2 dx =

1

2
ln(1 +

√
2) +

√
2

2
≈ 1.147.

d2 =

∫ 1

0

√
1 + x2x dx =

2
√

2− 1

3
≈ 0.609.

Hence, a0 ≈ 0.934 and a1 ≈ 0.426.
There are several issues using {xk} as basis.

• The matrix H is a full matrix. Then, solving the linear system is
expensive, which often takes O(n3).

• The condition number is big, i.e. max(|λi|)/min(|λi|) is big. This is a
big issue while we see later.

• After we obtain a0, · · · , an. If we want one more coefficient an+1, we
have to solve the whole system again, wasting the previously computed
results.
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1.2 Orthogonal polynomials

Let us consider the basis functions {φk} such that∫ b

a
w(x)φi(x)φj(x) dx = 0, i 6= j.

This is much better. Why?
Consider S(x) =

∑n
k=0 akφk(x). Then, following similar approach, one

has

n∑
k=0

ak

∫ b

a
w(x)φk(x)φj(x) dx =

∫ b

a
w(x)f(x)φj(x) dx, j = 0, · · · , n.

The left hand side now becomes aj
∫ b
a w(x)φ2j (x) dx. Hence, the matrix

now is a diagonal matrix. Moreover, if we want one more coefficient, the
previously computed coefficients will be unchanged. This resolves the first
and the third issues! How about the second one? If we multiply φj by some

constant to make
∫ b
a w(x)φ2j ≈ 1, then the second issue can also be resolved.

Hence, it is highly desirable to use orthogonal polynomials to find least
sqaure approximating polynomials. To obtain the orthogonal functions, one
can apply the Gram-Schmidt process, which we omit here.

If w(x) ≡ 1 and [a, b] = [−1, 1], the orthogonal polynomials are given by
by Legendre polynomials:

Pn(x) =
1

2nn!

dn

dxn
{(x2 − 1)n}.

Hence,

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), · · · .

In particular,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− nPn−1(x).

One has ∫ 1

−1
Pn(x)Pm(x) dx =

2

2n+ 1
δm,n.

If

w(x) =
1√

1− x2
,

the orthogonal polynomials are given by

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,
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and in general given by

Tn+1(x) = 2xTn(x)− Tn−1(x).

These are called the Chebyshev polynomials and one has

∫ 1

−1

1√
1− x2

Tn(x)Tm(x) =


0 m 6= n
π
2 n = m 6= 0

π, n = m = 0.

In fact, the Chebyshev polynomials are given by

Tn(x) = cos(n arccosx).

Hence, if we do change of variables θ = arccosx for θ ∈ [0, π], one then has

fn(θ) = Tn(cos θ) = cos(nθ).

Also, 1√
1−x2dx = 1

sin θ (− sin θ)dθ = −dθ, θ : π → 0. In other words, the

Chebyshev polynomials are just the cosine modes on the unit circle. The
Chebyshev points will then be the equi-spaced points in θ.

What if the interval is not [−1, 1]? One can do linear transform to change
it into [−1, 1] first and then use these orthogonal polynomials.

Using the theory of Hilbert space, one can show that

Theorem 1. Let w = 1. Suppose f ∈ C[a, b] (in fact, more generally
L2[a, b]) and Sn(x) is the best least square approximating polynomial with
degree at most n, then

‖f − Sn‖2 → 0, n→∞.

Example Find the best least square polynomial approximation using
orthogonal basis for f(x) =

√
1 + x2, x ∈ [0, 1].

We use the Legendre polynomials. However, the interval now is [0, 1]
instead of [−1, 1]. Define

α =
1− (−1)

1− 0
= 2.

Then, we use

P̃n(x) =
√
αPn

(
α(x− 1

2
)

)
.
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Hence, we find

P̃0(x) =
√

2, P̃1(x) = 2
√

2(x− 1

2
)

are orthogonal polynomials on [0, 1].
Hence, we find

a0 =

∫ 1

0
P̃0(x)

√
1 + x2 dx/

∫ 1

0
P̃ 2
0 (x) dx =

√
2

2
(
1

2
ln(1+

√
2)+

√
2

2
) ≈ 0.812.

Similarly,

a1 =

∫ 1

0

√
1 + x2(2

√
2(x−1

2
)) dx/(2/3) = 3

√
2

∫ 1

0

√
1 + x2(x−1

2
) dx ≈ 0.151.

Hence, the approximation is

0.812 ∗
√

2 + 0.151 ∗ 2
√

2(x− 1

2
) ≈ 0.935 + 0.427x.

This is in fact the same as before. The difference is clearly due to roundoff
error.

2 Trigonometric polynomial approximation

If the target function f is periodic, like on [0, 2π] with periodic boundary
condition. We can use trigonomietric polynomiasl, i.e. {1, cosx, sinx, cos(2x), sin(2x), · · · }.

One can consider the space

Vn := span{1

2
, cosx, sinx, · · · , cos(nx), sin(nx)}.

These functions are orthogonal on [0, 2π].
The approximation is given by

Sn(x) =
1

2
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx)).

Using similar technique, one finds

ak =
1

π

∫ 2π

0
f(x) cos(kx) dx, bk =

1

π

∫ 2π

0
f(x) sin(kx) dx.
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This is called the Fourier series. A more frequently used basis function
is given by {eikx}∞k=−∞. Then,

Sn(x) =
n∑

k=−n
cke

ikx,

and

ck =
1

2π

∫ 2π

0
f(x)e−ikx dx.

Recall that
eikx = cos(kx) + i sin(kx).

This gives the same approximation. This is in fact more often used form of
Fourier series.

Similarly,

Theorem 2. Suppose f ∈ C[0, 2π] (in fact, more generally L2[0, 2π]) and
Sn(x) is the best least square Fourier series with degree at most n, then

‖f − Sn‖2 → 0, n→∞.

Note that the convergence is not pointwise convergence.
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