
Computational methods-Lecture 4

Discrete Least squares approximation

Recall that for continuous functions, if we want to minimize

I(a1, · · · , an) =

∫ b

a
w(x)|f(x)−

n∑
i=1

aiφi(x)|2 dx,

we can take derivative on aj :

∂I

∂aj
=

∂

∂aj
〈f − S, f − S〉w = 2〈f − S,−φj〉 = 0.

This implies that f − S is perpendicular to φj and thus to the subspace
spanned by V . This is a perfect geometric meaning. Using these normal
equations, we can find aj .

It is best to use orthogonal basis, like Legendre polynomials for w = 1,
the Chebyshev polynomials for w = 1√

1−x2 . For trigonometric polynomials,

we obtain the Fourier series.

1 Discrete least squares approximation

In practice, the values are known at discrete points. In interpolation, we
require the function values to match. However, we can relax to require the
mean square error to be small for functions from a particular space.

For example, consider V = span{φ0, · · · , φn}. We know the data (xi, yi)
m
i=1.

The function is then given by

S(x) =
n∑
j=0

ajφj(x).

Then, we aim to minimize

I(a0, a1, · · · , an) :=
m∑
i=1

wi(yi − S(xi))
2. (1)

Using ∂I
∂aj

= 0, you can derive a system of equations. This is called the

(discrete) least square approximation.
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Introduce the inner product notation

〈u, v〉w =
m∑
i=0

wiuivi.

The the equations are given by

〈y − S, φj〉 = 0, j = 0, · · · , n.

Consequently, you can form this as the matrix system

Ga = d,

where
Gji = 〈φi, φj〉w,

and
dj = 〈y, φj〉w.

1.1 Linear functions

Now, assume we want to use linear functions to fit the data. Hence,

S(x) = a0 + a1x.

We pick the weight wi = 1. Then,

I(a0, a1) =
m∑
i=1

(yi − (a0 + a1xi))
2.

The two equations are then

ma0 + a1

m∑
i=1

xi =

m∑
i=1

yi,

and

a0

m∑
i=1

xi + a1

m∑
i=1

x2i =
m∑
i=1

xiyi.

Alternatively, you can use 〈φi, φj〉w to formulate these coeffi-
cients.

Hence,

a0 =

∑m
i=1 x

2
i

∑m
i=1 yi −

∑m
i=1 xiyi

∑m
i=1 xi

m(
∑m

i=1 x
2
i )− (

∑m
i=1 xi)

2
.

a1 =
m
∑m

i=1 xiyi −
∑m

i=1 xi
∑m

i=1 yi
m(
∑m

i=1 x
2
i )− (

∑m
i=1 xi)

2
.
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1.2 Matrix form for discrete least squares*(not required)

The function of a0, a1 in the linear problem can be written as

I(a0, a1) =

∥∥∥∥∥∥∥∥


1 x1
1 x2
· · · · · ·
1 xm

( a0
a1

)
−


y1
y2
· · ·
ym


∥∥∥∥∥∥∥∥
2

.

The general least squares problem is similar (including the problem
(1) where one should redefine ỹi =

√
wiyi):

Given matrix A and vector b, find a vector x such that

I(x) := ‖Ax− b‖2

is minimized.

Taking the gradient of I, one has

∇I = 2AT (Ax− b) = 0

Hence, the least squares solution solves

ATAx = AT b.

Using QR decomposition (discussed later), one can obtain some efficient
solvers for this.

1.3 Discrete Fourier transform and FFT*(Not required)

We now consider the complex-valued function cases. For complex func-
tions, the inner product is given by

〈u, v〉 =
N∑
j=1

uiv̄j .

Let {φj}Nj=1 be orthogonal basis functions under the complex inner prod-
uct. We first say for complex orthogonal basis functions, the optimal coef-
ficient is still given by

cj = 〈f, φj〉/‖φj‖2 =
N∑
j=1

fiφ̄
j
i/‖φ

j‖2.
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In fact, Consider the approximation

S =

N∑
j=1

cjφ
j .

I(c2, · · · , cN ) = ‖f − S‖2 =
N∑
i=1

|fi −
N∑
k=1

ckφk,i|2.

We need to derive {cj}. At the local minimum, can we do ∂I/∂cj = 0?
No! The reason is that cj is a complex number and this derivative does not
make sense unless the function is analytic in cj. Here, clearly, it is not.

To find the conditions for the minimum, we set aj = Re(cj) and bj =
Im(cj). Then,

∂I

∂aj
= 0⇒ 〈f − S,−φj〉+ 〈−φj , f − S〉 = 0.

Hence, 2Re(〈f − S, φj〉) = 0. Similarly, taking the derivative on the imagi-
nary part, you get the imaginary part equals zero. This means the conditions
is still

〈f − S, φj〉 = 0

This implies
cj = 〈f, φj〉/‖φj‖2.

We focus on periodic functions on [0, 2π), with discrete points xj =
2π
N j, j = 0, · · · , N − 1

It is easily verified that for such domain the basis

φk := {eikxj}N−1p=0 , k = −N
2

+ 1, · · · , N
2
,

forms orthogonal basis, where assume N to be even for convenience.
Then, the best approximation coefficient is given by

ck = 〈f, φk〉/‖φk‖2 =
1

N

N−1∑
j=0

fje
−ikxj

{ck} is called the Discrete Fourier Transform, or DFT for short.
In fact, the most often form of DFT is

f̂k := Nck =

N−1∑
j=0

fje
−ikxj .
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Computing DFT directly costs O(N2). However, there is an algorithm
that takes O(N logN) to compute. This algorithm is called the Fast Fourier
Transform (FFT).

The most frequently used one is the Cooley-Tukey algorithm (the algo-
rithm was independently discovered also by Gauss).

The idea is based on the simple fact. Let N be even, then

N∑
n=1

une
−ikn 2π

N =

N/2∑
m=1

u2me
−ikm 2π

(N/2) + eik
2π
N

N/2∑
m=1

u2m−1e
−ikm 2π

(N/2)

The DFT of an array of size N is reduced to 2 DFT of arrays with size N/2
plus extra N operations. By this way, the whole complexity is O(N logN).

2 Rational approximation

We have seen that using polynomials to interpolate or approximate may
cause oscilation. In particular, the high order polynomial interpolation of-
ten has Runge’s phenomenon. Hence, we may seek rational functions to
distribution the error more evenly on the approximating interval. Another
advantage is that rational functions have larger ability: for example, for a
function that may blow up near but outside the boundary of the approxi-
mating interval, the rational functions may often give better results since it
can have poles.

One may use the rational functions of the following form

Rnm(x) =
Pn(x)

Qm(x)
=

∑n
k=0 pkx

k∑m
k=0 qkx

k
.

Given a function f(·), one can expand it around x = a by Taylor expansion

f(x) =

N∑
k=0

f (k)(a)

k!
(x− a)k + rN (x).

Then, use Rnm to approximate. This will give the so-called Padé approxi-
mation. Below, we focus on a = 0.

Similarly, one can also use the following form, where Tk’s are the Cheby-
shev polynomials.

R̃nm =

∑m
k=0 pkTk(x)∑m
k=0 qkTk(x)
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Then, one can also expand f(x) in terms of Tk(x)

f(x) ∼
∞∑
k=0

akTk(x),

and then identify pk, qk. This gives us the Chebyshev approximation.
Even though Rnm and R̃nm are mathematically equivalent, the condi-

tions to find the coefficients are different, so they will yield different rational
approximations: the Chebyshev approximation tends to be more uniformly
accurate.

Below, we only look at the Padé approximation briefly.

2.1 Padé approximation

The conditions for Padé approximation is that

R(k)
nm(0) = f (k)(0). (2)

Without loss of generality, we can impose

q0 = 1.

One can find that

f(x)−Rnm(x) =
f(x)

∑m
k=0 qkx

k −
∑n

k=0 pkx
k∑m

k=0 qkx
k

We do Taylor expansion of f and get

f(x) ∼
∞∑
i=0

aix
i.

The conditions means that f − Rnm has (N + 1)th zeros. Hence, N
coefficients of xi must be zero.

The coefficients of f(x)
∑m

k=0 qkx
k is given by

q̃k =

k∑
i=0

aiqk−i.

This is in fact called convolution in mathematics. Of course, when the
index of q exceeds m, we set it to be zero. The FFT can be used to compute
convolution in O(N logN) time. However, the issue is that we do not know
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pk as well, so the FFT seems not available to find the Padé approximation
directly.

Hence, the conditions are

k∑
i=0

aiqk−i = pk, k = 0, · · · , N := n+m.

Since q0 = 1, we in fact have

ak +

k−1∑
i=0

aiqk−1 = pk.

For k ≥ n+ 1, pk = 0. Hence, one has the following equations

ak +
k−1∑
i=0

aiqk−1 = 0, k ≥ n+ 1.

There are m equations. There are m unknowns, so we can solve qj , j =
1, · · · ,m uniquely.

After these q are solved, one can use the first n equations to find pk.
Here, you may use FFT to speed up computation if n is large.

Example Find the Padé approximation R2,2 for f(x) = ln(1 + x) near
x0 = 0.

We need powers up to N = 2 + 2. By Taylor expansion,

ln(1 + x) = x− 1

2
x2 +

1

3
x2 − 1

4
x4 + · · · .

For k ≥ 3, we have

1

3
+ (−1

2
q1 + q2) = 0.− 1

4
+ (

1

3
q1 −

1

2
q2) = 0

This solves q1 = 1, q2 = 1
6 (we know q0 = 1).

Then, for k ≤ 2, we have

p0 = a0 = 0,

p1 = a1 + a0q0 = 1,

p2 = a2 + a1q0 + a0q1 =
1

2
.

Hence,

R2,2 =
x+ 1

2x
2

1 + x+ 1
6x

2
.
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2.2 Continued-fraction*(Not required)

The continued fraction was often used in the old days when computer
resource was not enough. Nowadays, it is not so frequently used.
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