Computational methods-Lecture 4

Discrete Least squares approximation

Recall that for continuous functions, if we want to minimize

$$
I\left(a_{1}, \cdots, a_{n}\right)=\int_{a}^{b} w(x)\left|f(x)-\sum_{i=1}^{n} a_{i} \phi_{i}(x)\right|^{2} d x
$$

we can take derivative on a_{j} :

$$
\frac{\partial I}{\partial a_{j}}=\frac{\partial}{\partial a_{j}}\langle f-S, f-S\rangle_{w}=2\left\langle f-S,-\phi_{j}\right\rangle=0 .
$$

This implies that $f-S$ is perpendicular to ϕ_{j} and thus to the subspace spanned by V. This is a perfect geometric meaning. Using these normal equations, we can find a_{j}.

It is best to use orthogonal basis, like Legendre polynomials for $w=1$, the Chebyshev polynomials for $w=\frac{1}{\sqrt{1-x^{2}}}$. For trigonometric polynomials, we obtain the Fourier series.

1 Discrete least squares approximation

In practice, the values are known at discrete points. In interpolation, we require the function values to match. However, we can relax to require the mean square error to be small for functions from a particular space.

For example, consider $V=\operatorname{span}\left\{\phi_{0}, \cdots, \phi_{n}\right\}$. We know the data $\left(x_{i}, y_{i}\right)_{i=1}^{m}$. The function is then given by

$$
S(x)=\sum_{j=0}^{n} a_{j} \phi_{j}(x) .
$$

Then, we aim to minimize

$$
\begin{equation*}
I\left(a_{0}, a_{1}, \cdots, a_{n}\right):=\sum_{i=1}^{m} w_{i}\left(y_{i}-S\left(x_{i}\right)\right)^{2} . \tag{1}
\end{equation*}
$$

Using $\frac{\partial I}{\partial a_{j}}=0$, you can derive a system of equations. This is called the (discrete) least square approximation.

Introduce the inner product notation

$$
\langle u, v\rangle_{w}=\sum_{i=0}^{m} w_{i} u_{i} v_{i} .
$$

The the equations are given by

$$
\left\langle y-S, \phi_{j}\right\rangle=0, j=0, \cdots, n .
$$

Consequently, you can form this as the matrix system

$$
G a=d,
$$

where

$$
G_{j i}=\left\langle\phi_{i}, \phi_{j}\right\rangle_{w},
$$

and

$$
d_{j}=\left\langle y, \phi_{j}\right\rangle_{w} .
$$

1.1 Linear functions

Now, assume we want to use linear functions to fit the data. Hence,

$$
S(x)=a_{0}+a_{1} x .
$$

We pick the weight $w_{i}=1$. Then,

$$
I\left(a_{0}, a_{1}\right)=\sum_{i=1}^{m}\left(y_{i}-\left(a_{0}+a_{1} x_{i}\right)\right)^{2} .
$$

The two equations are then

$$
m a_{0}+a_{1} \sum_{i=1}^{m} x_{i}=\sum_{i=1}^{m} y_{i},
$$

and

$$
a_{0} \sum_{i=1}^{m} x_{i}+a_{1} \sum_{i=1}^{m} x_{i}^{2}=\sum_{i=1}^{m} x_{i} y_{i} .
$$

Alternatively, you can use $\left\langle\phi_{i}, \phi_{j}\right\rangle_{w}$ to formulate these coefficients.

Hence,

$$
\begin{gathered}
a_{0}=\frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} y_{i}-\sum_{i=1}^{m} x_{i} y_{i} \sum_{i=1}^{m} x_{i}}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right)-\left(\sum_{i=1}^{m} x_{i}\right)^{2}} . \\
a_{1}=\frac{m \sum_{i=1}^{m} x_{i} y_{i}-\sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right)-\left(\sum_{i=1}^{m} x_{i}\right)^{2}} .
\end{gathered}
$$

1.2 Matrix form for discrete least squares*(not required)

The function of a_{0}, a_{1} in the linear problem can be written as

$$
I\left(a_{0}, a_{1}\right)=\left\|\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \cdots \\
1 & x_{m}
\end{array}\right)\binom{a_{0}}{a_{1}}-\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{m}
\end{array}\right)\right\|^{2}
$$

The general least squares problem is similar (including the problem (1) where one should redefine $\tilde{y}_{i}=\sqrt{w_{i}} y_{i}$):

Given matrix A and vector b, find a vector x such that

$$
\begin{gathered}
I(x):=\|A x-b\|^{2} \\
\text { is minimized. }
\end{gathered}
$$

Taking the gradient of I, one has

$$
\nabla I=2 A^{T}(A x-b)=0
$$

Hence, the least squares solution solves

$$
A^{T} A x=A^{T} b .
$$

Using QR decomposition (discussed later), one can obtain some efficient solvers for this.

1.3 Discrete Fourier transform and FFT* (Not required)

We now consider the complex-valued function cases. For complex functions, the inner product is given by

$$
\langle u, v\rangle=\sum_{j=1}^{N} u_{i} \bar{v}_{j} .
$$

Let $\left\{\phi^{j}\right\}_{j=1}^{N}$ be orthogonal basis functions under the complex inner product. We first say for complex orthogonal basis functions, the optimal coefficient is still given by

$$
c_{j}=\left\langle f, \phi^{j}\right\rangle /\left\|\phi^{j}\right\|^{2}=\sum_{j=1}^{N} f_{i} \bar{\phi}_{i}^{j} /\left\|\phi^{j}\right\|^{2} .
$$

In fact, Consider the approximation

$$
\begin{gathered}
S=\sum_{j=1}^{N} c_{j} \phi^{j} . \\
I\left(c_{2}, \cdots, c_{N}\right)=\|f-S\|^{2}=\sum_{i=1}^{N}\left|f_{i}-\sum_{k=1}^{N} c_{k} \phi_{k, i}\right|^{2} .
\end{gathered}
$$

We need to derive $\left\{c_{j}\right\}$. At the local minimum, can we do $\partial I / \partial c_{j}=0$? No! The reason is that c_{j} is a complex number and this derivative does not make sense unless the function is analytic in c_{j}. Here, clearly, it is not.

To find the conditions for the minimum, we set $a_{j}=\operatorname{Re}\left(c_{j}\right)$ and $b_{j}=$ $\operatorname{Im}\left(c_{j}\right)$. Then,

$$
\frac{\partial I}{\partial a_{j}}=0 \Rightarrow\left\langle f-S,-\phi_{j}\right\rangle+\left\langle-\phi^{j}, f-S\right\rangle=0 .
$$

Hence, $2 \operatorname{Re}\left(\left\langle f-S, \phi^{j}\right\rangle\right)=0$. Similarly, taking the derivative on the imaginary part, you get the imaginary part equals zero. This means the conditions is still

$$
\left\langle f-S, \phi^{j}\right\rangle=0
$$

This implies

$$
c_{j}=\left\langle f, \phi^{j}\right\rangle /\left\|\phi^{j}\right\|^{2} .
$$

We focus on periodic functions on $[0,2 \pi)$, with discrete points $x_{j}=$ $\frac{2 \pi}{N} j, j=0, \cdots, N-1$

It is easily verified that for such domain the basis

$$
\phi^{k}:=\left\{e^{i k x_{j}}\right\}_{p=0}^{N-1}, k=-\frac{N}{2}+1, \cdots, \frac{N}{2},
$$

forms orthogonal basis, where assume N to be even for convenience.
Then, the best approximation coefficient is given by

$$
c_{k}=\left\langle f, \phi^{k}\right\rangle /\left\|\phi^{k}\right\|^{2}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-i k x_{j}}
$$

$\left\{c_{k}\right\}$ is called the Discrete Fourier Transform, or DFT for short.
In fact, the most often form of DFT is

$$
\hat{f}_{k}:=N c_{k}=\sum_{j=0}^{N-1} f_{j} e^{-i k x_{j}} .
$$

Computing DFT directly costs $O\left(N^{2}\right)$. However, there is an algorithm that takes $O(N \log N)$ to compute. This algorithm is called the Fast Fourier Transform (FFT).

The most frequently used one is the Cooley-Tukey algorithm (the algorithm was independently discovered also by Gauss).

The idea is based on the simple fact. Let N be even, then

$$
\sum_{n=1}^{N} u_{n} e^{-i k n \frac{2 \pi}{N}}=\sum_{m=1}^{N / 2} u_{2 m} e^{-i k m \frac{2 \pi}{(N / 2)}}+e^{i k \frac{2 \pi}{N}} \sum_{m=1}^{N / 2} u_{2 m-1} e^{-i k m \frac{2 \pi}{(N / 2)}}
$$

The DFT of an array of size N is reduced to 2 DFT of arrays with size $N / 2$ plus extra N operations. By this way, the whole complexity is $O(N \log N)$.

2 Rational approximation

We have seen that using polynomials to interpolate or approximate may cause oscilation. In particular, the high order polynomial interpolation often has Runge's phenomenon. Hence, we may seek rational functions to distribution the error more evenly on the approximating interval. Another advantage is that rational functions have larger ability: for example, for a function that may blow up near but outside the boundary of the approximating interval, the rational functions may often give better results since it can have poles.

One may use the rational functions of the following form

$$
R_{n m}(x)=\frac{P_{n}(x)}{Q_{m}(x)}=\frac{\sum_{k=0}^{n} p_{k} x^{k}}{\sum_{k=0}^{m} q_{k} x^{k}}
$$

Given a function $f(\cdot)$, one can expand it around $x=a$ by Taylor expansion

$$
f(x)=\sum_{k=0}^{N} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+r_{N}(x) .
$$

Then, use $R_{n m}$ to approximate. This will give the so-called Padé approximation. Below, we focus on $a=0$.

Similarly, one can also use the following form, where T_{k} 's are the Chebyshev polynomials.

$$
\tilde{R}_{n m}=\frac{\sum_{k=0}^{m} p_{k} T_{k}(x)}{\sum_{k=0}^{m} q_{k} T_{k}(x)}
$$

Then, one can also expand $f(x)$ in terms of $T_{k}(x)$

$$
f(x) \sim \sum_{k=0}^{\infty} a_{k} T_{k}(x),
$$

and then identify p_{k}, q_{k}. This gives us the Chebyshev approximation.
Even though $R_{n m}$ and $\tilde{R}_{n m}$ are mathematically equivalent, the conditions to find the coefficients are different, so they will yield different rational approximations: the Chebyshev approximation tends to be more uniformly accurate.

Below, we only look at the Padé approximation briefly.

2.1 Padé approximation

The conditions for Pade approximation is that

$$
\begin{equation*}
R_{n m}^{(k)}(0)=f^{(k)}(0) . \tag{2}
\end{equation*}
$$

Without loss of generality, we can impose

$$
q_{0}=1
$$

One can find that

$$
f(x)-R_{n m}(x)=\frac{f(x) \sum_{k=0}^{m} q_{k} x^{k}-\sum_{k=0}^{n} p_{k} x^{k}}{\sum_{k=0}^{m} q_{k} x^{k}}
$$

We do Taylor expansion of f and get

$$
f(x) \sim \sum_{i=0}^{\infty} a_{i} x^{i} .
$$

The conditions means that $f-R_{n m}$ has $(N+1)$ th zeros. Hence, N coefficients of x^{i} must be zero.

The coefficients of $f(x) \sum_{k=0}^{m} q_{k} x^{k}$ is given by

$$
\tilde{q}_{k}=\sum_{i=0}^{k} a_{i} q_{k-i} .
$$

This is in fact called convolution in mathematics. Of course, when the index of q exceeds m, we set it to be zero. The FFT can be used to compute convolution in $O(N \log N)$ time. However, the issue is that we do not know
p_{k} as well, so the FFT seems not available to find the Padé approximation directly.

Hence, the conditions are

$$
\sum_{i=0}^{k} a_{i} q_{k-i}=p_{k}, k=0, \cdots, N:=n+m .
$$

Since $q_{0}=1$, we in fact have

$$
a_{k}+\sum_{i=0}^{k-1} a_{i} q_{k-1}=p_{k} .
$$

For $k \geq n+1, p_{k}=0$. Hence, one has the following equations

$$
a_{k}+\sum_{i=0}^{k-1} a_{i} q_{k-1}=0, k \geq n+1 .
$$

There are m equations. There are m unknowns, so we can solve $q_{j}, j=$ $1, \cdots, m$ uniquely.

After these q are solved, one can use the first n equations to find p_{k}. Here, you may use FFT to speed up computation if n is large.

Example Find the Padé approximation $R_{2,2}$ for $f(x)=\ln (1+x)$ near $x_{0}=0$.

We need powers up to $N=2+2$. By Taylor expansion,

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{2}-\frac{1}{4} x^{4}+\cdots .
$$

For $k \geq 3$, we have

$$
\frac{1}{3}+\left(-\frac{1}{2} q_{1}+q_{2}\right)=0 .-\frac{1}{4}+\left(\frac{1}{3} q_{1}-\frac{1}{2} q_{2}\right)=0
$$

This solves $q_{1}=1, q_{2}=\frac{1}{6}$ (we know $q_{0}=1$).
Then, for $k \leq 2$, we have

$$
\begin{gathered}
p_{0}=a_{0}=0, \\
p_{1}=a_{1}+a_{0} q_{0}=1, \\
p_{2}=a_{2}+a_{1} q_{0}+a_{0} q_{1}=\frac{1}{2} .
\end{gathered}
$$

Hence,

$$
R_{2,2}=\frac{x+\frac{1}{2} x^{2}}{1+x+\frac{1}{6} x^{2}}
$$

2.2 Continued-fraction*(Not required)

The continued fraction was often used in the old days when computer resource was not enough. Nowadays, it is not so frequently used.

