
Computational methods-Lecture 5

Roots of nonlinear equations of one variable

Next, we will move onto solving the scalar nonlinear equations (equations
of one variables). This will be finished in two or three lectures (one or 1.5
weeks). Then, we move onto linear systems (the matrices), which will be
the second main part of our course. The third part of our course will be
about solutions or optimization of nonlinear systems, and a little bit about
solving ordinary differential equations.

1 The bisection method

The simplest possible solving nonlinear equations will the binary search
method, or bisection method.

Let f ∈ C[a, b] with f(a)f(b) < 0, then there must be a root on (a, b).
The method is like this:

1. Let [a1, b1] = [a, b]. Fix tolerance ε.

2. For i = 1, 2, · · · ,
Compute the midpoint

pi = ai +
bi − ai

2
.

If f(pi) = 0 or bi−ai
2 < ε, then stop and output pi.

Esle If f(ai)f(pi) > 0, set [ai+1, bi+1] = [pi, bi];
otherwise [ai+1, bi+1] = [ai, pi].

Clearly, the error satisfies

|pn − p| ≤
b− a

2n
.

Though the error decays exponentially in n, this is called the linear con-
vergence in optimization, and one often desires superlinear convergence,
as we will define later.

The bisection method cannot be generalized to functions of several vari-
ables. Also, the convergence is slow.
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2 Fixed point iteration

The idea is like this: one rewrites the equation f(x) = 0 into

x = g(x)

for some suitable g. One example is g = x−λf(x) for some λ > 0. Of course,
there are other ways to construct. Different construction gives different
behaviors.

Then, one repeats the the process

xn+1 = g(xn)

hoping that xn → x∗. If it has a limit, then x∗ will be a solution. Exercise:
Think about why.

The point x∗ that satisfies

x∗ = g(x∗)

is called a fixed point of g.
There are many fixed point theorems in mathematics. Here, we state

two of them.

Brouwer fixed point theorem

The first is the Brouwer fixed point theorem for topology. It says
that if a function that sends a disk in some topology space into the same
disk is continuous, then it has a fixed point.

In our special case, it becomes the following

Theorem 1. Let g ∈ C[a, b] such that g(x) ∈ [a, b] for all x ∈ [a, b], then g
has a fixed point on [a, b].

Contraction mapping theorem

The general statement from mathematics is like this:

Theorem 2. Let (X, d) be a complete metric space and that f : X → X
is a contraction mapping in the sense that there exists some q ∈ (0, 1) such
that

d(f(x), f(y)) ≤ qd(x, y), ∀x, y ∈ X,

then f has a unique fixed point z and that the sequence fn(x0)→ z for any
x0.

2



In our case, the theorem is like this

Theorem 3. Let g ∈ C[a, b] satisfy that g(x) ∈ [a, b] for x ∈ [a, b]. If there
is a constant q ∈ (0, 1) such that

|g(x)− g(y)| ≤ q|x− y|, ∀x, y ∈ (a, b),

then g has a unique fixed point z in [a, b]. Moreover, the sequence xn =
g(xn−1) converges to z with the rate

|xn − z| ≤ qn|x0 − z|

and that

|xn − z| ≤
qn

1− q
|x1 − x0|

Proof. Consider the sequence {xn}. One has

|xn − xm| = |g(xn−1)− g(xm−1)| ≤ qmin(m,n)|b− a|.

Hence, {xn} is a Cauchy sequence, and it must have a limit z. Take the
limit in

xn = g(xn−1),

one then has z = g(z).
The uniqueness follows easily from the inequality |z1 − z2| ≤ |g(z1) −

g(z2)| ≤ q|z1 − z2|. Hence, one must have |z1 − z2| = 0.
Then,

|xn − z| ≤ q|xn−1 − z| ≤ · · · ≤ qn|x0 − z|.

For the posterior error bound:

|z − xn| ≤
∞∑

m=n

|xm+1 − xm| ≤
∞∑

m=n

qm|x1 − x0| =
qn

1− q
|x1 − x0|.

The advantage of the second estimate is that we know the value of x0
and x1. Such type of estimates using computed numerical values to bound
errors are called posterior error estimates.

Example Find the root of x3 + 4x2 − 10 = 0 in [1, 2] using the fixed
point iteration.

Method 1 We set g(x) = x− f(x) = x− x3− 4x2 + 10. You can see that
|g′| > 1 for many values and the image of [1, 2] is not contained in [1, 2].
The sequence constructed using xn+1 = g(xn) is likely to diverge.
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Method 2 Consider

x =

√
10

4 + x
= g(x)

It is easily verified that |g′| < 0.15 and g[1, 2] ⊂ [1, 2]. Then, xn+1 = g(xn)
works.

3 Newton’s method

The Newton’s method is also to construct an iterative method, but it
enjoys bettor local convergence property.

Consider a function f(x) and some approximation xk for the root. We
then approximate f using its tangent line at xk:

f(xk) + f ′(xk)(x− xk) ≈ f(x).

Hence, the root is found to be

xk+1 = xk −
f(xk)

f ′(xk)
.

This is also an iterative method, which is called the Newton’s method.
The fixed point of g(x) = x− f(x)

f ′(x) is then a root of f .
Draw the picture for showing how it works geometrically.
Example Consider the example f(x) = x3+4x2−10 again. By Newton’s

method, the iteration is given by

xk+1 = xk −
x3k + 4x2k − 10

3x2k + 8xk
.

In practice, the Newton’s method either diverges or converges very
fast, depending on whether your initial guess is good enough. If you initial
guess is close to the true root, then often it converges fast. In next section,
we will try to see why it converges fast if the initial guess is good.

In practice, computing f ′(x) may be hard. In this case, we note

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Hence, we can use the quotient difference to approximate:

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1
.
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Then,

xk+1 = xk −
f(xk)(xk − xk−1)
f(xk)− f(xk−1)

.

This is called the secant method.
For the secant method, one must provides two initial guesses. The secant

method converges slower than Netwon’s method but still superlinearly. If
you use three points to interpolate, you get a parabola, which then leads to
the so-called Müller’s method.

4 Error analysis for iterative methods

Definition 1. If g(x) has a fixed point at x∗, and there is a neighborhood of
x∗: R = (x∗− δ, x∗+ δ) such that for any x0 ∈ R, the sequence xk = gk(x0)
converges to x∗, we say the iterative method converges locally.

In mathematics, ”local” is often related to ”neighborhoods” or the so-
called compact sets.

Definition 2. Suppose {xk} is a sequence that converges to x∗. If there
exists p > 0 and λ > 0 such that

|xk+1 − x∗|
|xk − x∗|p

→ λ, k →∞,

then we say {xk} converges to x∗ with order p, and asymptotic error constant
λ. If p = 1, we say it converges linearly, we say it converges superlinearly if
p > 1, and we say it converges quadratically if p = 2.

Using the contraction mapping theorem, we can show easily that

Theorem 4. If x∗ is a fixed point of g and |g′(x)| ≤ q < 1 in some a
neighborhood R = (x∗−δ, x∗+δ), then the iterative method converges locally.

This will be left as a homework problem. In fact, using this, you can
show that Newton’s method converges locally if g ∈ C2 and g′(x∗) 6= 0.

Example Assume g ∈ C1 in the interative method. Let x∗ be a fixed
point and |g′(x)| ≤ q < 1 but g′(x∗) 6= 0 in the neighborhood, then the
method converges linearly, but not superlinearly.

First of all, by the contraction mapping theorem, we know xk → x∗ as
x→∞. However,

xk+1 − x∗ = g(xk)− g(x∗) = g′(ξk)(xk − x∗)
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Hence,
|xk+1 − x∗|
|xk − x∗|

= |g′(ξk)| → |g′(x∗)|.

Now, we consider that g is pth order continuously differentiable and x∗ is
a zero of multiplicity p of g(x)− g(x∗). In other words, g(k) is continuous
around x∗ for all k ≤ p and

g(k)(x∗) = 0, ∀1 ≤ k ≤ p− 1, g(p)(x∗) 6= 0.

In this case,
g(x)− g(x∗) = (x− x∗)ph(x)

where h(x) is a continuous function around x∗ such that h(x∗) 6= 0.
We have the following theorem:

Theorem 5. Let g be pth order continuously differentiable around x∗ and
x∗ is a zero of multiplicity p of g(x)− g(x∗). Then, the iterative method
xk+1 = g(xk) converges with order p.

Proof. Again, |g′(x)| ≤ q < 1 for δ small enough. Then, the contraction
mapping theorem guarantees the convergence of {xk} to x∗.

By the Lagrangian remainder theorem:

xk+1 − x∗ =
g(p)(ξk)

p!
(xk − x∗)p.

Hence,
|xk+1 − x∗|
|xk − x∗|p

→ |g
(p)(x∗)|
p!

Now, we check Newton’s method.If f ′(x∗) 6= 0 and f ′′(x∗) 6= 0, then we
see that it converges quadratically:

g′(x) =
f(x)f ′′(x)

[f ′(x)]2
, g′′(x∗) =

f ′′(x∗)

f ′(x∗)

Hence, we basically know that the error

ek+1 ≤ Ce2k

for quadratically convergent method.
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Hence, for the example we discussed, the Newton’s method

xk+1 = xk −
x3k + 4x2k − 10

3x2k + 8xk
.

can converge faster than

xn+1 =

√
10

xn + 4

In general, quadratical convergence is hard. We expect p ∈ [1, 2) and
superlinear convergence is good enough. For example, for the secant method
p ≈ 1.618

5 Accelerating convergence*(Not required)

There are two methods that are often used to accelerate the convergence:
Aitken’s and Steffensen’s methods. You can read the reference books.
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