
Computational methods-Lecture 6

Direct methods for solving linear systems

We now move onto linear system of equations (the matrices), which will
be the second main part of our course.

1 Linear system of equations and matrices

As we have known, the linear system of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,

· · ·
am1x1 + am2x2 + · · ·+ amnxn = bn

can be written into the matrix form

Ax = b,

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
. . . . . . . . .
am1 am2 · · · amn

 .

There are several special types of matrices that are important in numer-
ical linear algebra.

1.1 Positive definite matrices

Definition 1. A real matrix A is positive definite if it is symmetric such
that xTAx > 0 for all x ∈ Rn, x 6= 0.

Proposition 1. If A is of size n× n and is positive definite, then

• A is nonsingular (invertible)

• aii > 0

• maxi,j |aij | = maxi |aii|

• a2ij < aiiajj for i 6= j
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The first is obvious since Ax = 0 only has x = 0 solution. The second is
true by taking x = ei. The fourth holds by taking x = αei + ej , and for all
α ∈ R. The fourth then implies the third.

The leading principal submatrix for k ≤ n is deifned by

Ak =


a11 a12 · · · a1k
a21 a22 · · · a2k
. . . . . . . . .
ak1 ak2 · · · akk

 .

The following is a characterization of the PD matrices

Theorem 1. A symmetric matrix A is positive definite if and only if each
of its leading principal submatrices has a positive determinant (leading prin-
cipal minors are positive).

There are other charaterizations

Theorem 2. A symmetric matrix is positive definite if and only if all the
eigenvalues are positve, if and only if it can be written as LLT for some
invertible lower triangular matrix L

1.2 Strictly diagonally dominant matrices

Definition 2. The n×n matrix A is said to be strictly diagonally dominant
if

|aii| >
n∑

j=1,j 6=i

|aij |

for all i = 1, 2, · · ·n.

We first introduce the Gershgorin Circle Theorem about the distribution
of eigenvalues, to conclude that A is nonsingular. Other properties about
strictly diagonally dominant matrices will be discussed after talking about
Gauss elimination.

Theorem 3. Suppose A is any complex n×n matrix. Let P be any invertible
matrix. Consider

PAP−1 = D + F,

where D is a diagonal matrix and F is a matrix with zero diagonals, then
the eigenvalues are contained in

∪iDi = ∪i
{
z : |z − di| ≤

∑
j:j 6=i

|fij |
}
.
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Hence, the eigenvalues must be in

⋂
P

⋃
i

{
z : |z − di| ≤

∑
j:j 6=i

|fij |
}

Using this, it is easy to see that the strictly diagonally dominant matrices
are invertible.

1.3 Band matrices

A matrix is called a band matrix if there exist p, q with 1 < p, q < n,
such that aij = 0 for i+ p ≤ j or j+ q ≤ i. The bandwidth is w = p+ q− 1.
If p = q = 2, the matrix is called tridiagonal.

We will come back this this matrix later.

1.4 Sparse matrices

A sparse matrix is a matrix in which most of the elements are zero.
Usually, the term “sparse” makes sense when the size of A is big.

2 Gauss elimination

2.1 The algorithm

We start with an example.

x1 +x2 +3x4 = 4,
2x1 +x2 −x3 +x4 = 1,
3x1 −x2 −x3 +2x4 = −3
−x1 +2x2 +3x3 −x4 = 4.

For a linear system, the following operators will not change the set of
solutions

• Mulitplying an equation with a nonzero constant.

• Add one equation into another one.

• Interchange the order of two equations.
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We will then use these three operations to change the system into another
one that is easier to solve. We multiply the first equation with −2 and add
it to the second equation; multiply the first equation with −3 and add to
the third equation, etc:

x1 +x2 +3x4 = 4,
−x2 −x3 −5x4 = −7,
−4x2 −x3 −7x4 = −15
3x2 +3x3 +2x4 = 8.

Now, we focus on the last three equations. We do the same trick: multiply
the second equation in the new system with suitable constants to kill other
x2’s below it:

x1 +x2 +3x4 = 4,
−x2 −x3 −5x4 = −7,

3x3 +13x4 = 13
−13x4 = −13.

Clearly, using this form, we can solve x4 = 1 out and then substitute
this back to the third equation and solve x3. Then, solve x2 and lastly x1.

This process can be performed in the form of a matrix. Let us construct
the so-called augmented matrix:

1 1 0 3 4
2 1 −1 1 1
3 −1 −1 2 −3
−1 2 3 −1 4


Hence, the above algorithm is to use the nonzero entries to make the entries
below them zeros.

1 1 0 3 4
0 −1 −1 −5 −7
0 −4 −1 −7 −15
0 3 3 2 8

⇒


1 1 0 3 4
0 −1 −1 −5 −7
0 0 3 13 13
0 0 0 −13 −13


The above method is called Gauss Elimination with Backward Substitu-

tion.
Gauss elimination
Given a matrix A of size m× n. Let s = min(m− 1, n).
For i = 1, · · · , s do the following:

(1) If aii = 0, stop, and output error message.
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(2) For k = i+ 1, · · · ,m do

(a) mki = aki/aii

(b) akj ← akj −mkiaij for j = i+ 1, · · · , n

Note that in the above code, we should have aki is equal to zero for k > i.
However, in practice, one often stores the mki at the place of aki. Hence, we
do aki ← aki/aii. This is not only for convenience, but also has a practical
significance in the LU decomposition as we shall soon.

Backward substitution
Consider A1 = [A|b] to be the augmented matrix after the Gauss elim-

ination has been performed. Suppose A is of size n × n. Then, [A|b] is a
upper triangular system.

For i = n, ·, 1 do the following

1. xi ← [bi −
∑n

j=i+1 aijxj ]/aii.

If i equals n, the summation over empty set is assumed to be zero. This
algorithm clearly applies to any upper triangular system.

2.2 The complexity

In the ith iteration, we need to perform (m− i) divisionss for step 2(a)
and (n − i) ∗ (m − i) multiplications (note that for akj with j = i, the
multiplication is not done since it is guaranteed to result in zero for aki, and
the place is reserved for mki). The total number of divisions/multiplications
is

s∑
i=1

(m− i)(n− i+ 1) ∼ 1

3
s2 − 1

2
s2(m+ n) +mns

When m = n, the total number to the leading order is like 1
3n

3.
The number of additions/subtractions can be similarly estimated. It

is still O(n3). However, each addition/subtraction is much cheaper than
division/multiplication.

3 Gauss elimination with partial pivoting

Let the element a
(i)
`k be the elements in the ith step. Clearly, the elements

a
(i)
ii ’s are most important, since we use them to divide the numbers below

it. These are called the pivot elements.

If a
(i)
ii = 0, then the above Gauss elimination fails. The following theorem

guarantess when these are nonzero
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Theorem 4. The pivot elements are nonzero if and only if all the leading
principal minors are nonzero.

The proof relies on one fact: multiplying a row with a constant and
adding to another row will not change the determinants. Here, we do not
care this much, so we skip the details.

If we have a
(i)
ii = 0, we cannot continue Gauss elimination, but this does

not mean the original system does not have solutions. One typical example
is

x2 = 1,

x1 = 3

Even if a
(i)
ii is not zero, but it can be small. This then will result in large

roundoff errors in computing mki’s and back substitutions. Hence, we desire
row interchanges to reduce errors. Often, we choose the maximal column
pivoting, i.e., using the one with largest absolute value in the corresponding

column below (and including) a
(i)
ii for the pivot element. This is also called

partial pivoting.
If we use the partial pivoting, as soon as the matrix is invertible, the

Gauss elmination can be performed to the end.
Example

0.001x1 +2x2 +3x3 = 1,
−x1 +3.712x2 +4.623x3 = 2,
−2x1 +1.072x2 +5.643x3 = 3

We write out the augmented matrix 0.001 2 3 1
−1 3.712 4.623 2
−2 1.072 5.643 3

⇒
 −2 1.072 5.643 3
−1 3.712 4.623 2

0.001 2 3 1


Then, we get −2 1.072 5.643 3

0 3.176 1.801 0.5
0 2.001 3.003 1.002

⇒
 −2 1.072 5.643 3

0 3.176 1.801 0.5
0 0 1.868 0.687


The final answer is (−0.49,−0.05113, 0.3678).

Remark 1. Sometimes, the partial pivoting is not also quite good enough.
People then want to combine it with scalings. This will result in Gauss
elimination with scaled partial pivoting.
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