
Computational methods-Lecture 8

Error analysis for solving linear systems; condition
number

1 LU decomposition for special types of matrices

1.1 Positive definite matrices and Cholesky

For positive definite matrices, all the pivot elements will be positive in
GEM. Hence, we will have

A = LU.

One again, one can rewrite
U = DU1,

where U1 is upper triangular with diagonal elements to be 1. Hence,

A = LDU1.

By symmetry
LDU1 = UT1 DL

T .

Due to the uniqueness of LU decomposition, L = UT1 . Hence,

A = LDLT .

Moreover, if we define
L1 = L

√
D,

then L1 is also lower triangular, thus leading to the Cholesky decompo-
sition

Theorem 1. If A is positive definite, there is a unique L which lower tri-
angular, with positive diagonal entries, such that

A = LLT .

Both the LDLT and Cholesky decomposition can be done in a similar
fashion as in the Doolittle’s or Crout’s method. For example, the Cholesky
can be done as

For j = 1 : n

1. ljj =
√
ajj −

∑j−1
k=1 l

2
jk

2. lij = (aij −
∑j−1

k=1 likljk)/ljj , i ≥ j + 1.
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1.2 Diagonally dominant

The Gauss elimination can be performed for diagonally dominant ma-
trices without row interchanges. In fact, in the Gauss elimination, the sub-
matrices are preserved to be diagonally dominant.

To prove this, by induction, one only needs to show that A(2) is diago-
nally dominant. In fact,

a
(2)
ij = a

(1)
ij −

a
(1)
1j a

(1)
i1

a
(1)
11

, i ≥ 2, j ≥ 2.

Then,

n∑
j=2,j 6=i

|a(1)ij −
a
(1)
1j a

(1)
i1

a
(1)
11

| ≤
n∑

j=2,j 6=i
|a(1)ij |+

n∑
j=2,j 6=i

|a(1)1j ||a
(1)
i1 |

|a(1)11 |

≤ |a(1)ii | − |a
(1)
i1 |+

|a(1)i1 |
|a(1)11 |

n∑
j=2,j 6=i

|a(1)1j |

≤ |a(1)ii | − |a
(1)
i1 |+

|a(1)i1 |
|a(1)11 |

(|a(1)11 | − |a
(1)
1i |)

= |a(1)ii | −
|a(1)i1 ||a

(1)
1i |

|a(1)11 |
≤ |a(2)ii |

1.3 Tridiagonal matrices

For tridiagonal matrices, the Doolitle’s method or Crout’s method can
be done in O(n) time. Let us consider the Crout’s decomposition briefly.

Clearly, in LU decomposition, the nonzeros of L and U matrices will
again be in the three diagonals. Direct computation shows that

ai,i−1 = `i,i−1, i = 2, 3, · · · , n.

aii = `i,i−1ui−1,i + `ii, i = 1, · · · , n
here if i = 1, a11 = `11.

Lastly,
ai,i+1 = `iiui,i+1.

We fist use the first relation to find all `i,i−1 elements. Then, use the
second equation to find `11, which gives u12. Using u12 and the second, we
find `22, which together with the third gives u23, and so on.
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Alternatively,

ui,i+1 =
ai,i+1

`ii
=

ai,i+1

aii − ai,i−1ui−1,i
As soon as we have the LU decomposition, the solution can be solved

easily in linear time.

Theorem 2. If |a11| > |a12| > 0, |aii| ≥ |ai,i−1| + |ai,i+1|, and |ann| >
|an,n−1| > 0, then |ui,i+1| ∈ (0, 1), and |aii| − |ai,i−1| < |`ii| < |aii|+ |ai,i−1|.

2 Norms of vectors and matrices

2.1 Norms of vectors

Suppose the vectors x in Rd (Cd) are equipped with some norm ‖ · ‖,
which satisfies three properties:

• ‖x‖ ≥ 0 and the equality holds if and only if x = 0

• ‖αx‖ = |α|‖x‖, α ∈ R (C),

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Corollary:
|‖x‖ − ‖y‖| ≤ ‖x− y‖

The most common norm is the Euclidean norm, induced by the inner
product:

〈x, y〉 =

d∑
i=1

xiȳi.

This is also called the 2-norm

‖x‖2 :=
√
〈x, x〉 = (

n∑
i=1

|xi|2)1/2.

This inner product is special in the sense that the Cauchy-Schwartz inequal-
ity holds

|〈x, y〉| ≤ ‖x‖2‖y‖2.
The reason that the above is called 2-norm is that one can define the

general p-norm for p ≥ 1:

‖x‖p := (
d∑
i=1

|xi|p)1/p.
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This is a norm because of the Minkowski inequality.
Taking p→∞, one can have the following ∞-norm (exercise):

‖x‖∞ = max
1≤i≤d

|xi|.

Claim 1 Every norm can induce a distance, called the metric, defined
by

d(x, y) := ‖x− y‖.

Claim 2 For finite dimensional space, all norms are equivalent. That
means for any two norms ‖ · ‖ and ‖ · ‖′, there exists two constants C1 >
0, C2 > 0 such that

C1‖x‖′ ≤ ‖x‖ ≤ C2‖x‖′,

where C1, C2 could depend on the dimension d.
Read the proof in the reference book. For example,

‖x‖∞ ≤ ‖x‖2 ≤
√
d‖x‖∞.

2.2 Norms of matrices

A norm for matrices satisfy the following

• ‖A‖ ≥ 0 and the equality holds if and only if A = 0

• ‖αA‖ = |α|‖A‖

• ‖A+B‖ ≤ ‖A‖+ ‖B‖.

• ‖AB‖ ≤ ‖A‖‖B‖

Compared with the norms for vectors, the norms for matrices have one more
requirement: it is consistent with matrices multiplication. This is because
the set of matrices forms the so-called algebra.

One typical example is the Frobenius norm:

‖A‖F =

√∑
i,j

|aij |2.

This is in fact the 2-norm by regarding the matrix as a vector in Rn2
. Of

course, you need to verify that the extra requirement is satisfied.

Proposition 1. If for some norm ‖ · ‖, one has ‖B‖ < 1, then

‖(I −B)−1‖ ≤ 1

1− ‖B‖
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Proof. In fact, if ‖B‖ < 1, one can show that the following series converges:

I +B +B2 + · · · = C.

Moreover, it is easy to verify

‖(I −B)(I +
N∑
n=1

Bn)− I‖ → 0.

By the continuity of norms, the inside of the left hand side converges to
(I −B)C − I and 0. Hence, I −B is invertible and

(I −B)−1 = I +
∞∑
n=1

Bn.

Thus,

‖(I −B)−1‖ ≤ 1 +
∞∑
n=1

‖B‖n =
1

1− ‖B‖
.

The above proof works for any matrix norm.
Among the norms for matrices, there is a class of norms that are very

important, namely those induced by vector norms, or the operator norms:

‖A‖v := sup
x 6=0

‖Ax‖v
‖x‖v

.

In previous homework, we have seen that

Lemma 1. if ‖ · ‖ is some operator norm for the matrix A consistent with
some norm for vectors, then

ρ(A) ≤ ‖A‖,

where ρ(A) = maxi |λi| is the largest absolute value of eigenvalues, called the
spectral radius of A.

Note that if we consider other norms of matrices that cannot be induced
by vectors, then this may not be true.

The verification that this is a matrix norm is left as an exercise. There
are some important such norms:
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Theorem 3. Denote ‖A‖p be the matrix norms induced by ‖ · ‖p norms for
vectors. Let A be a real matrix of size m× n. Then,

(a) ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij |.

(b) ‖A‖1 = max1≤j≤n
∑n

i=1 |aij |

(c) ‖A‖2 =
√
ρ(ATA) =

√
ρ(AAT ). Hence, A and AT have the same 2-

norm.

Proof. Here, we prove the third as an example. You may read the book for
the other two.

First of all
〈Ax,Ax〉 = 〈ATAx, x〉.

Since ATA is real symmetric and positive semi-definite, it has n real eigen-
values:

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Moreover, its n eigenvectors are perpendicular to each other. Hence, we can
make them orthonormal. We write

x =
n∑
i=1

civi.

〈ATAx, x〉 = 〈
n∑
i=1

λicivi,

n∑
i=1

civi〉 =

n∑
i=1

λic
2
i ≤ λ1

n∑
i=1

c2i = λ1‖x‖22.

Hence,
‖A‖22 ≤ λ1.

However, if we choose x = v1, the equality can be achieved. This means
that we in fact have

‖A‖2 =
√
λ1.

Note that AAT and ATA can have different sizes. However, the claim
is that their eigenvalue sets are the same (though multiplicity may be dif-
ferent). This will be clearer after we know singular value decomposition
(SVD). At this point, you may show that

det(λI −AAT ) = det(λI −ATA)

for invertible matrices (this will be left as an exercise).

Remark 1. As another comment, the first two seems interersting: ‖AT ‖1 =
‖A‖∞. This is by no means an coincidence. In fact, AT can be viewed as
the dual operator for A. The `∞ is the dual of `1.
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3 Error analysis for linear systems: condition num-
ber

In this section, all norms for the matrices will be operator norms.

3.1 Error bound by condition number

Consider the linear system Ax = b. Let x̃ be some approximation solu-
tion and the residue vector is

r = b−Ax̃.

One question is: whether the smallness of r will imply the smallness of the
error x− x̃?

Look at the example

A =

(
1 2

1.0001 2

)
.

Consider

b =

(
3

3.0001

)
.

The solution is x =

(
1
1

)
. However, if we insert x̃ =

(
3
0

)
, the residue

vector is still very small. The reason is that A is near singular: if 1.0001 is
1, the matrix is not invertible. In other words, A−1 could be very large in
norms.

To describe this more accurately, let us first prove the following result.

Theorem 4. Suppose Ax = b, b 6= 0 has an approximation solution x̃, then

‖x− x̃‖
‖x‖

≤ ‖A‖‖A−1‖‖r‖
‖b‖

,

where
r = b−Ax̃ = b− b̃ = δb.

Proof. Since
Ax−Ax̃ = b−Ax̃ = r,

one has
x− x̃ = A−1r ⇒ ‖x− x̃‖ ≤ ‖A−1‖‖r‖.
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However,

b = Ax⇒ ‖b‖ ≤ ‖A‖‖x‖ ⇒ 1

‖x‖
≤ ‖A‖ 1

‖b‖
.

Hence, the claim
‖x− x̃‖
‖x‖

≤ ‖A‖‖A−1‖‖r‖
‖b‖

,

follows.

Note that this error estimate is again in the form of posterior type, i.e.,
we use computed values to control the error for the solutions. The bound
tells us that the relative error in b is amplied to the relative error in x by a
factor

κ(A) := ‖A‖‖A−1‖.

This number measures whether the matrix A is near singular or not. The
bigger it is, the more the matrix is close to being singular. This number is
called the condition number.

Some properties of the condition number:

(a) For any nonsingular matrix A:

κ(A) ≥ ‖A−1A‖ = 1.

(b) For any constant
κ(cA) = κ(A)

(c) If the norm is chosen as the spectrum norm: ‖ · ‖ = ‖ · ‖2, then

κ(A) = ‖A‖2‖A−1‖2 =

√
λmax(ATA)

λmin(ATA)

These properties are very easy to verify.
If κ(A) ≈ 1, then the matrix is away from being singular, and the system

is said to be well-conditioned. Otherwise if κ(A)� 1, the system is said to
be ill-conditioned.
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3.2 Perturbation in b and A

In practice, there are always errors in determining A and b. We would
like to know how these errors affect the computed solutions.

Theorem 5. If ‖δA‖ < 1
‖A−1‖ , then

‖δx‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖/‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
Proof. We have

(A+ δA)(x+ δx) = b+ δb.

Using Ax = b, one has

(A+ δA)δx = δb− δAx.

Hence,

‖δx‖ ≤ ‖A−1(I +A−1δA)−1(δb− δAx)‖
≤ ‖A−1‖‖(I +A−1δA)−1‖(‖δb‖+ ‖δA‖‖x‖)

≤ ‖A−1‖
1− ‖A−1δA‖

(‖δb‖+ ‖δA‖‖x‖)

Hence,
‖δx‖
‖x‖

≤ ‖A−1‖
1− ‖A−1‖‖δA‖

(
‖δb‖
‖x‖

+ ‖δA‖
)

Moreover, since
1

‖x‖
≤ ‖A‖ 1

‖b‖
,

one has

‖δx‖
‖x‖

≤ ‖A−1‖
1− ‖A−1‖‖δA‖

(
‖A‖‖δb‖
‖b‖

+ ‖δA‖
)

=
κ

1− κ‖δA‖/‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)

If δA = 0, this reduces to what we have seen κ‖δb‖‖b‖ . From this bound,
it is clear that if the condition number is big, the error bound is big and
potentially, the relative error can be very large.

Example Consider the Hilbert matrix we have seen in the least square
chapter.
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4 Iterative refinement*(Not required. This is left
as free reading)
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