HW1

1. (From Qingyang Li)

Suppose we have uniformly spaced grid points $\left\{x_{i}\right\}_{i=0}^{n} \subset[-4,4]$ such that $x_{0}=-4, x_{n}=4$. The function values of $y=e^{x}$ are given at these points. Define $h=8 / n$. For any given x, we use quadric interpolation to approximate $y=e^{x}$ on $[-4,4]$ using suitably chosen three points. Estimate how large n should be if we want the interpolation error to be no more than 10^{-5}.
2. (From Qingyang Li) Let $\ell_{n, j}(x)$ be the Lagrangian interpolation basis functions for grid points $\left\{x_{j}\right\}_{j=0}^{n}$. Use the uniqueness of interpolation polynomial to show that
-

$$
\sum_{j=0}^{n} x_{j}^{k} \ell_{j}(x) \equiv x^{k}, \forall k=0,1, \cdots n
$$

-

$$
\sum_{j=0}^{n}\left(x-x_{j}\right)^{k} \ell_{j}(x) \equiv 0, \forall k=1, \cdots n .
$$

3. (From Burden)

Construct the interpolating polynomial of degree four using the Newton's interpolatory divided-difference algorithm, for the data
$f(0)=-6, f(0.1)=-5.8948, f(0.3)=-5.65, f(0.6)=-5.178, f(1)=-4.28$.
Update the polynomial if we add the datum $f(1.1)=-3.996$ into the table.

For this problem, attach your code as appendix.
4. Please analyze the complexity of computing the interpolation basis functions if we have $n+1$ points in Lagrange interpolation. For Newton's interpolation, if we add one more point into the list, what is the complexity for the extra work?
5. (From Qingyang Li)

Let $f(x)=\frac{1}{1+x^{2}}, x \in[-5,5]$. Consider uniform grid on this interval with $n+1$ points (i.e., we have with $x_{0}=-5, x_{10}=5$ and $x_{j+1}-x_{j}=$ $\left.\frac{10}{n}\right)$.

- Compute and plot the Lagrange interpolation polynomials on this interval for $n=10$ and $n=20$. Explain what you see.
- If we use the piecewise linear function to interpolate, plot the interpolation function again for $n=10$ and $n=20$. Find an error bound for $n=20$.

6. (From Qingyang Li) Given the function values as follows

x	0.25	0.30	0.39	0.45	0.53
y	0.5	0.5477	0.6245	0.6708	0.7280

Write a short code to compute the cubic spline functions on [0.25, 0.53] given the conditions $S^{\prime \prime}(0.25)=S^{\prime \prime}(0.53)=0$. Plot the function $S(x)$.
You should explain how you construct $S(\cdot)$ in your homework and attach the code as appendix.

