HW1

1. (From Qingyang Li)

Suppose we have uniformly spaced grid points $\{x_i\}_{i=0}^n \subset [-4, 4]$ such that $x_0 = -4, x_n = 4$. The function values of $y = e^x$ are given at these points. Define h = 8/n. For any given x, we use quadric interpolation to approximate $y = e^x$ on [-4, 4] using suitably chosen three points. Estimate how large n should be if we want the interpolation error to be no more than 10^{-5} .

2. (From Qingyang Li) Let $\ell_{n,j}(x)$ be the Lagrangian interpolation basis functions for grid points $\{x_j\}_{j=0}^n$. Use the uniqueness of interpolation polynomial to show that

•
$$\sum_{j=0}^{n} x_j^k \ell_j(x) \equiv x^k, \ \forall k = 0, 1, \cdots n.$$
•
$$\sum_{j=0}^{n} (x - x_j)^k \ell_j(x) \equiv 0, \ \forall k = 1, \cdots n.$$

3. (From Burden)

Construct the interpolating polynomial of degree four using the Newton's interpolatory divided-difference algorithm, for the data

f(0) = -6, f(0.1) = -5.8948, f(0.3) = -5.65, f(0.6) = -5.178, f(1) = -4.28.

Update the polynomial if we add the datum f(1.1) = -3.996 into the table.

For this problem, attach your code as appendix.

- 4. Please analyze the complexity of computing the interpolation basis functions if we have n + 1 points in Lagrange interpolation. For Newton's interpolation, if we add one more point into the list, what is the complexity for the extra work?
- 5. (From Qingyang Li)

Let $f(x) = \frac{1}{1+x^2}$, $x \in [-5, 5]$. Consider uniform grid on this interval with n+1 points (i.e., we have with $x_0 = -5$, $x_{10} = 5$ and $x_{j+1} - x_j = \frac{10}{n}$).

- Compute and plot the Lagrange interpolation polynomials on this interval for n = 10 and n = 20. Explain what you see.
- If we use the piecewise linear function to interpolate, plot the interpolation function again for n = 10 and n = 20. Find an error bound for n = 20.
- 6. (From Qingyang Li) Given the function values as follows

x	0.25	0.30	0.39	0.45	0.53
y	0.5	0.5477	0.6245	0.6708	0.7280

Write a short code to compute the cubic spline functions on [0.25, 0.53] given the conditions S''(0.25) = S''(0.53) = 0. Plot the function S(x).

You should explain how you construct $S(\cdot)$ in your homework and attach the code as appendix.