HW6

1. Consider the Conjugate Gradient algorithm in class. The search directions are obtained as follows

$$
p^{(0)}=r^{(0)}=b-A x^{(0)} .
$$

For later directions, one construct

$$
p^{(k+1)}=r^{(k+1)}+s_{k} p^{(k)}
$$

One chooses s_{k} such that $p^{(k+1)}$ is A-orthogonal to $p^{(k)}$. Fill in the details (and repeat) in the proof in lecture notes to

- Show that p^{i},s are A-orthogonal search directions.
- Show that the formula for s can be simplified to the following.

$$
s_{k}=\frac{\left|r^{(k+1)}\right|^{2}}{\left|r^{(k)}\right|^{2}}
$$

Find the lecture notes for the proof.
2. Find the singular value decomposition of

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

3. Prove the following using singular value decomposition

- Show that the 2-norm of A is the largest singular value and the Frobenius norm is the square root of the sum of sqaures of all singular values.
Consider the SVD:

$$
A=U \Sigma V^{T}
$$

where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix, and $\Sigma_{i j}=\sigma_{i} \delta_{i j}$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{\min (m, n)} \geq 0$.
Let $D=\Sigma^{T} \Sigma=\left(\sigma_{i}^{2} \delta_{i j}\right)_{n \times n}$ and it is thus an $n \times n$ square matrix. We have assumed $\sigma_{i}=0$ for $i \geq \min (m, n)$. The 2-norm is given by

$$
\begin{aligned}
\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}=\sqrt{\rho\left(V \Sigma^{T} U^{T} U \Sigma V^{T}\right)}= & \sqrt{\rho\left(V D V^{T}\right)} \\
& =\sqrt{\rho(D)}=\sigma_{1} .
\end{aligned}
$$

Above, we have used the fact $\lambda\left(V D V^{T}\right)=\lambda(D)$.
For the Frobenius norm, we have

$$
\begin{aligned}
&\|A\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}=\sqrt{\operatorname{tr}\left(V D V^{T}\right)} \\
&=\sqrt{\operatorname{tr}\left(D V^{T} V\right)}=\sqrt{\operatorname{tr}(D)}=\sqrt{\sum_{i} \sigma_{i}^{2}}
\end{aligned}
$$

- Show that $A A^{T}$ and $A^{T} A$ have the same 2 norm.

Note that $A A^{T}$ is not the transpose of $A^{T} A$!
Using the same SVD as above, we have

$$
A A^{T}=U \Sigma \Sigma^{T} U^{T}, \quad A^{T} A=V D V^{T}
$$

Since $A A^{T}$ is real symmetric, the 2-norms is the largest eigenvalue, or the spectral radius, given by $\rho\left(\Sigma \Sigma^{T}\right)=\sigma_{1}^{2}$. Similarly, $\left\|A^{T} A\right\|_{2}=\rho(D)=\sigma_{1}^{2}$.
4. Write a code for power method and apply it to the following matrix to find the leading eigen-pair:

$$
\left(\begin{array}{ccc}
-4 & 14 & 0 \\
-5 & 13 & 0 \\
-1 & 0 & 2
\end{array}\right)
$$

5. Suppose matrix A is a real matrix with eigenvalues $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq$ $\left|\lambda_{n}\right|$. Show that the power method still works even if the matrix A does not have n eigenvectors (you may consider the Jordan canonical form).

According to power method,

$$
x^{(k)}=\frac{1}{\mu_{k}} A^{k} x_{0}
$$

where μ_{k} is some scalar to make the $\|\cdot\|_{\infty}$ norm to be 1 . Clearly, the point is to check how $A^{k} x_{0}$ behaves. We want to say that the component corresponding ot λ_{1} dominates.

We use the Jordan canonical form:

$$
A=P J P^{-1}
$$

According to the assumption, we know

$$
J=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& J_{\mu_{2}} & & \\
& & \ldots & \\
& & & J_{\mu_{m}}
\end{array}\right)
$$

where $J_{\mu_{k}}$ are some Jordan blocks. Hence, the first column of P is the eigenvector corresponding to λ_{1}. Though there are no enough eigenvectors, we use the columns of $P,\left\{v_{1}, \cdots, v_{n}\right\}$, as the basis (the generalization of eigenvectors):

$$
A^{k} x_{0}=P J^{k} P^{-1}\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)
$$

Since $I=P^{-1} P=P^{-1}\left[v_{1}, \cdots, v_{n}\right]$, we find $P^{-1} v_{i}=e_{i}$ (the vector with i th component being 1 and others being zero.) Hence,

$$
A^{k} x_{0}=\sum_{i=1}^{n} \alpha_{i}\left(P J^{k}\right)_{i}=\alpha_{1} \lambda_{1}^{k} v_{1}+\sum_{i=2}^{n} \alpha_{i} w_{i, k}
$$

where B_{i} means the i th column of B, and $w_{i, k}=\left(P J^{k}\right)_{i}=P\left(J^{k}\right)_{i}$. The i th column of J^{k} corresponds to one Jordan block: $J_{\mu_{\ell}}^{k}$ for some ℓ. Direct computation shows

$$
J_{\mu_{\ell}}^{k}=\left(\mu_{\ell} I+F\right)^{k}=\sum_{j=0}^{\min (n, k)} C_{k}^{j} \mu_{\ell}^{k-j} F^{j}
$$

This shows that

$$
\left|w_{i k}\right| \leq C \sum_{j=0}^{n}|k|^{j}\left|\mu_{\ell}\right|^{k-j} \ll\left|\lambda_{1}\right|^{k}
$$

Note that μ_{ℓ} is λ_{i}. In other words,

$$
\frac{\left|A^{k} x_{0}-\alpha_{1} \lambda_{1}^{k} v_{1}\right|}{\left|\lambda_{1}\right|^{k}} \rightarrow 0
$$

The eigenvector then converges. Hence, the power method works.
6. This is about Householder transform
(a) The Householder transform

$$
P=I-2 w^{T} w
$$

is the identity matrix perturbed a rank 1 matrix. Show that $n-1$ eigenvalues are unchanged while one eigenvalue is changed to be -1 . (Hint: use the geometric meaning of the transform. Try to identify the eigenvectors using the geometric meaning directly)
For identity matrix, all eigenvalues are 1 . With the rank 1 perturbation $-2 w w^{T}$, one eigenvalue is changed. To figure out how this is changed, we check the geometric meaning.
According to the geometric meaning, w is an eigenvector with egienvalue -1 , while all the nonzero vectors perpendicular to w are eigenvectors with eigenvalue 1 . Since the space perpendicular to w has dimension $n-1$, we thus can find $n-1$ independent such eigenvectors. Hence, all the n eigenvectors are found.
(b) Let H_{1} be a Householder transform in \mathbb{R}^{n-1}. Show that transform

$$
Q_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & H_{1}
\end{array}\right)
$$

is also a Householder transform.
Let $H_{1}=I_{n-1}-2 w_{1} w_{1}^{T}$ for some $w_{1} \in \mathbb{R}^{n-1}$ with $\left|w_{1}\right|=1$. According to the formula, the matrix Q_{1} is doing the following: the first component of x is unchanged, while for the other $n-1$ components, it is doing the reflection by H_{1}. Geometrically, it should be a refection in \mathbb{R}^{n} as well. This motivates us to consider

$$
w=\binom{0}{w_{1}} .
$$

Hence, we guess:

$$
Q_{1}=I_{n}-2 w w^{T} .
$$

In fact, one can check this easily:

$$
I_{n}-2 w w^{T}=\left(\begin{array}{cc}
1 & 0 \\
0 & I_{n-1}
\end{array}\right)-2\left(\begin{array}{cc}
0 & 0 \\
0 & w_{1} w_{1}^{T}
\end{array}\right)=Q_{1} .
$$

Lastly, it is easy to see $|w|=\left|w_{1}\right|=1$. The claim is then proved.
7. Give a 2×2 matrix such that the diagonal elements of A_{k} in the QR algorithm do not converge to the eigenvalues.
You can construct a matrix with complex eigenvalues. Other examples are also possible, for example, many of you constructed $A=[0,1 ; 1,0]$
8. Apply QR algorithm (you may code) to find all eigenvalues of the following matrix (with accuracy 10^{-4})

$$
\left(\begin{array}{lll}
3 & 1 & 0 \\
1 & 4 & 2 \\
0 & 2 & 3
\end{array}\right)
$$

