HW7

1. Apply forward Euler's method, the midpoint point method (a RK2 method), and a second order Admas-Bashforth method to solve

$$
u^{\prime}(t)=t^{2}+t-u, \quad u(0)=0 .
$$

Pick $h=0.1$ and compare your numerical values to the exact solution. (You can code.)
2. Repeat the proof in class and show that the forward Euler's method converges for the following problem

$$
u^{\prime}(t)=\arctan (u), \quad u(0)=1,
$$

if we aim to compute $u(1)$.
3. Consider the following scheme

$$
y_{n+1}=\frac{1}{2}\left(y_{n}+y_{n-1}\right)+\frac{h}{4}\left(4 y_{n+1}^{2}-y_{n}^{2}+3 y_{n-1}^{2}\right) .
$$

- Try to find the ODE $y^{\prime}=f(t, y)$ that this scheme is approximating.
- Compute the local truncation error and find the order of convergence.

Comment: This is a linear multistep method.
4. Try to find the stability region of the trapezoidal method (the implicit method, not the explicit RK-2 method).
5. Use forward Euler, backward Euler and Runga-Kutta 4 method to solve the following ODE (you can code)

$$
y^{\prime}=1-100(y-t), \quad y(0)=0.5 .
$$

Discuss and compare the methods.
Comment: This is a typical so-called stiff problem
6. We solve the following equation

$$
u_{t}=u_{x}, \quad u_{0}(x)=e^{\sin (x)}, u(0, t)=u(2 \pi, t),
$$

for $x \in[0,2 \pi)$. To solve this, we pick a spatial step $h=\frac{2 \pi}{N}$ and set $x_{j}=j h$. We then get the following ODE system

$$
\frac{d}{d t} u_{j}(t)=\frac{1}{2 h}\left(u_{j+1}-u_{j-1}\right), \quad j=0,1, \cdots, N-1 .
$$

Note that we regard $u_{N}=u_{0}$ and $u_{-1}=u_{N-1}$. This can be formulated into the matrix form as

$$
\frac{d}{d t} u=A u
$$

where

$$
A=\frac{1}{2 h}\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & -1 \\
-1 & 0 & 1 & \cdots & 0 & 0 \\
0 & -1 & 0 & \cdots & & 0 \\
\cdots & & & & \cdots & \\
0 & 0 & & -1 & 0 & 1 \\
1 & 0 & & & -1 & 0
\end{array}\right)
$$

Our aim is to solve this ODE system. Take

$$
h=\frac{2 \pi}{2^{6}} .
$$

Apply the forward Euler, RK2 and RK3 to solve this system, with various step sizes. Discuss your numerical results.
Comment: You may find that the methods with stability regions containing some part of imagainary axis may behave better.

