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Lect. 13-14. Range-separated (RS) tensor format in many-particle modeling. Intergating

exhotic oscillators. Equations with highly oscillating coefficients in log-complexity:

alternative and generalization of geometric homogenization. IGA in tensor formats.

Outline of Lecture 13-14.

Fast QTT integration of exotic oscillators.

Discretization of PDEs with oscillating coefficients on fine spacial grid.
Preconditioning by homogenization scheme.

Preconditioned iteration in the QTT format: fast and robust in ¢.
Discussion of numerics. lllustrations for the logarithmic complexity.
Tensor methods in Iso-Geometric Analysis (IGA)

Novel range separated (RS) tensor format and its applications.
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Modern tensor numerical methods: main ingredients and challenging problems.
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QTT based quadratures in 1D and 2D combined with QT T-cross approximation

(1D) Left: f = Cysign(x) + Co + sin(wx), w = 20. Grid size N = 222, QT T-rank = 3.

(1D) Middle: Sharp Gaussian exp(—Ax?). Grid size N = 222, X\ = 100,
e =10"%(3.2),107% (3.5),1077 (3.7).

(2D) Right: 2D version of (A-1D). f = 5sign(x) + 6 + sin(wx + wy),
N x N grid: N=292210 ¢=10"%10"9,10"7, QTT-rank ~ 3.5.

QT T-cross approximation by O(r?log N) samples.

Numerics confirms the theoretical QT T-rank estimates.
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Twofold-QTT: fast quadratures for highly oscillating integrals + QTT in

Compute functions of w € [wWmin, wmax], and for various f(x), g(x), [BNK, Veit '14],

IRe(w, f) := /Q f(x)cos(wg(x))dx, Izm(w,f) = /Q f(x) sin(wg(x))dx,

Example. Exotic oscillators which are not of the form hy,(x) = e «w8(x):
» Levin-type methods for the case of the Bessel oscillator h,,(x) = J, (wx), [xiang, '08].
» Filon-type methods for oscillators of the form hy,(x) = v(sin(wB(x))), liserles, Levin, 11].

» For most other types of exotic oscillators such methods are not available so far.

» Our approach: Low rank QTT (cross) approx. of huge N-vectors for a function of w,

1
Ihw,k(w) ::/ Ti(x)h, (x)dx, w € [Wmin,wWmax], 1< k<M
—1

N [Wmin, Wmax]/hw(x) | J11(wx)  J2(wx?®)  cos(sin(wx) +1) T(0.5sin(wx) + 2)

240 [0, 500] 5.4 5.7 7.2 7.3
250 [0, 500] 4.9 5.2 6.5 6.5
260 [0, 500] 4.5 4.7 6.0 5.9

QT T-ranks of M-vectors related to the function Ihw 5(w) sampled on a uniform grid in [“min> @max]-
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QTT quadratures for highly oscillating d-dimensional integrals

e i) = || L 0n) Ly () cos(a ()

)

Using a tensorized version of the Gauss-Legendre quadrature.

g(x) = g(x) =
N [Wmin,wmax] X1 + X2 Sin(X]_)/\/X]_Xz +3
230 [0, 100] 5.2 4.4
240 [0, 100] 4.6 3.9
250 [0, 100] 4.2 3.5

Ta ble: Effective QT T-ranks of N-vectors related to the function /55 .(w, Ly 5) for d = 2 sampled on a uniform grid.
Re 2,5

N [womin, Wmax] g(x) = e =
min> x1 +x2 +x3  sin(x1x3)/v/x1x2 + 3
230 [0, 50] 6.1 4.3
240 [0, 50] 5.5 3.9
250 [0, 50] 5.3 3.7

Ta ble: QT T-ranks of N-vectors related to the function IRe(w, L27573) for d = 3 sampled on a uniform grid.
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Periodic (geometric) homogenization for PDEs with oscillating features

[BNK, Repin '15]

Traditional FEM-Galerkin p.w.l. approximation in Q = (0,1)¢:
Find ue € H}(Q): —div(acVue)=F inQ, fel?(Q), (1)
with oscillating or lattice-structured/replicated coefficients in Q = U;T¢,

X — Xj

ac(x) = A(

) in the scaled unit cell .
€

» Main computational problems: huge grids of size ~ (ng/¢)~, error control.
Example. d = 3, np = 100, € = 0.01, then for N x N stiffness matrix, N = 1012,

» Homogenization methods suggest asymptotically as ¢ — 0:
”Ue - uhomo” < C\/E J

Homogenization methods constructs the rough, strictly e-dependent approximation in the case of
perfect periodic coefficients, but “defected” boundary condit. (say, Dirichlet instead of periodic).

» In many applications the “defected” periodic coefficients arise (material science, lattice
structured systems, uncertainty, etc.).
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Examples of “defected” periodic coefficients: modulated functions

Principal questions:

— Defected periodic coefficients 7

— What if € is not too small ?

— How to obtain the high precision independently of € 7

— How to control the approximation error efficiently (adaptively) ?

— How to extend the homogenization approach to rather general class of (exotic) coefficients ?

Example.

ac(x) = C+ g(x)sin(wx™), m=1,2,3,..

For all examples above the QTT e-rank is of the order of O(1) uniformly in the grid size !
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QTT approximation of PDEs in periodic homogenization and beyond ...

Assume that (A) the solution of homogenized approximation, ag(x) = mean{ac(x)} + Co,
Aouo = f, (2)
is cheap and (B) for FEM-Galerkin approx. of (1), A¢, the spectral equivalence holds
MAg < Ac < A1Ag, Ao, A1 > 0.

» Basic idea [BNK, Repin '15]. Solve the FEM-Galerkin approximation of (1)

Acuc :f, A ERNdXNd, Ue,fERNd, N:2L (3)

by rank-truncated preconditioned iteration in quantized tensor space Qy:
(E+ BA;'Ac —E)u= (E+B)u=Bug, B>0,

assuming that for B = BASIAG —E,

IB|| = g < 1, and rankgtr(B) is small.

Given ug € QY) © Ugr1 = Tz (Bup —Bug), k=0,1,2,..

lug+ — ukll < g“luoll.

Lem. The condition number of the preconditioner Ag defined by ag(x) is bounded by

cond{Ag A} < Cmax

1+ q(x)
1—q(x)’

with  g(x) :=

at(x) —a (x) ‘
at(x)+a(x)
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Piece of theory: QTT-ranks of the 1D stiffness matrix on a fine grid

The stiffness matrix A[ac] reads

(Alac)); ;= (ae(x)V0i(x), Voo () aqys 7 = Loven s I,

ay + az —as
—ap as + az —asz
1
A[ae] = — ’
h . .
—aN—1 AaN-1TtaN TN
73,\/ ZaN
specified by the coefficient vector a = [a;] € RV, a; = ac(xji—1/2), i=1,...,N, N= 2L,

Thm. [Dolgov, Kazeev, BNK, '13] Assume that the coefficient vector a is given in a QTT form

rn,...;rn —1

P (ede) s ali) = >0 AP0 al) LG, withr, <R, p=1,...,L—1.
Yiy--0YL—1=1

Then
rQTT(A[ae]) S 7R.

v

Proof: Alac] = Sdiag(a) + diag(a + Sa) + diag(a)S ", where S € RV*N means the upper shift
1, "=i+1,
0, else,

Recent contributions: [Kazeev, Oseledets, Rakhuba, Schwab '16]

matrix S; jy = , for which we have ro7r7(S) = 2.
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Numerical examples for periodic and “defected” periodic coefficients: modulated functions

ac(x) = C+ g(x)sin(wx™), m=1,2,3,.., (4)
(left): C =1, g(x)=1, m=1.
(middle): C =1, g(x) = step function, m = 1.
(right): C=1,g(x)=1, m=3. w=2732, e=w 1.

1.4f
1.2¢
4t
0.8} }
o.e
0.4
0.2}
0 5000 10000 15000 0 5000 10000 15000 o 05 1 15 2 25 8 .
x 10
[ gridsize2l | 213 (i) | 2%, (i) | 218 (i | 210, (in | 227, (i) | r(ae) | r(ue) |
C + sin(wx) 0.97, (5) 1.2, (5) 1.3, (5) 2.0, (6) 2.1, (6) 2.67 3.7
4-steps coef. 3.4, (9) 4.3, (9) 4.5, (9) 6.7, (9) 14.3, (14) 2.9 4.96
C + sin(wx3) 5.3, (5) 10.0, (6) 9.95, (6) 11.98, (6) 16.2, (5) 7.53 8.24

CPU sec., iter. history, QT T-ranks with w = 1/¢ = 2764, EQTT = 107 lue —uell1 2 105 — 1076,
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QTT rank-truncated iter. of logarithmic cost, O(log N), vs. homogenization method

[BNK, Repin '14-'15].

— Uniform convergence rate of preconditioned iteration,
— approximation of order O(h?) uniformly in e,

— logarithmic complexity of order O(log n) = O(log %)

1 15 2 25 3 35 4 45 5

3

x10

- — 2
50 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Difference between exact and homogenized solutions (no convergence in gradients ).
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Low-rank reduction in homogenization: O(1/¢?) — O(d/e) — O(d|loge|)

Quasi-periodic coefficients ac(x) > 0, d > 1,
Aue = —div(ac(x)gradue) = f(x), x € Q=(0,1)9, Uejpq = 0, (5)
f(x1,...,xq) and ac(x) can be approximated with the low separation rank.

» Apply the Galerkin discretization of eqn. (5) by means of tensor-product pwl FEM
(0i(x) = () 0, (a)}s i = (inreeoria)y i€ {1, ong}, £=1,....d.

» The univariate grid size ny = O(1/¢) = the total problem size N = O(1/¢9).

R
b d=2 a(x,x) =Y al(x1)aP (x2) > 0. For R =1: a(x1,x) = a®(x1)a® (x2).
k=1

Example of a periodic oscillating coefficient (left) and the respective 1D factor, a()(-).
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Asymptotic homogenization: Galerkin matrix in Kronecker product form

» For the entries of the Galerkin stiffness matrix A = [a;] € RV*":

a; = (Api, oj) f aM(x1)a® (x2) Vi - Vipjdx

Iy (x1) O X
= [ a®M(x1) “Dat(ll) SDgx(ll)d [ a®(x2) i (x2) s (x2) dxa (6)
(0.1) (0.1)
Opi,(x2) O X;
+ [ aD0a)pa(a)en(a)d [ a®(xe) 552 2R d,,

(0.1) (0.1)
= [aj] = A1 ® Mz + M1 ® As.

Ai = [aij,] € R™*™ and As = [aj,),] € R™ ™™ — the univariate stiffness matrices,
My = [miyj,] € R™*™ and Mz = [mj,jo] € R™*™ — the weighted mass matrices,

0pi, v,
Aijy, = /a(l)(x) @a)fxl) sOéx(xl)dx Mij, = / a(l)(X1)<,0i1(X1)90j1(X1)dX1.

(0.1) (0.1)

» By lamping of the mass matrices

A—-A=A1Rb+ 1L KA.
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Asymptotic homogenization: rank analysis

R =1 = a prototype preconditioner for solving the linear system for R > 1

Re
Au=f with =Y fVof?, 9 ecRr™ (7)

k=1

In the general case d > 2 and R > 1: rankkon(A) = d R.
» The existence of the low rank solution to the eqn. (7) by the sinc-quadrature approx.
to the Laplace transform [Gavrilyuk, Hackbusch, BNK *05]

M M

—1 —tA —t A —t A —t A

A :/ e 'dt =~ By = E cke = g cke Krte K2,
R4

k=—M k=—M
Hint for proof: the matrices A; and A> commute with /; and l, respectively.
|A™Y — Bu|| < Ce™™4|A7Y|, Ra=(2M +1) = O(|loge|).

M Ry
u=Af~ Z Ck Z e_t"Alf,(nl) ® e_tkAzf,(,,z).

k=—M m=1
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Asymptotic homogenization: rank analysis of the solution

The rank behavior in the SVD decomposition of the solution in the case of 8 x 8
periodic coefficient [enk, repin '16].

——n=63

i

":,:o‘o\\\\ ‘;I\ \“ “‘f‘v \
\\‘ ; '"s:'o«\\\\\\“}tum&\%‘“::‘“. 8
o "‘\“‘\\\\\\\\\ \\\\\\\“}%%R
e

» The exponential decay of the approximation error in the rank parameter does
not depend on the L x L lattice size in the coef., i.e. on e =1/L.
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From geometric to stochastic homogenization ...

» Solution on 400 x 400-grid, f1(x1,x2) = sin(27x1) sin(27x2). [BNK, Repin '16].
The PCG solver for eqn. (7) demonstrates robust convergence rate g < 1 (6 iter. for § = 107°).
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Iso-Geometric Analysis (IGA): Matrix generation via low-rank approx.

[Mantzaflaris, Jiittler, BNK, Langer: '15 - '16]

» Low-rank IGA in 2D and 3D: elliptic PDEs on complicated geometry.
FEM-Galerkin approximation in Q € RY by a patch-wise mapping onto reference domain:

Find ue Hy(Q): —div(a(x)Vu)=f inQ, fecl?(Q).

Flgu re. The Jacobian determinant values of the selected patch (Fig. 2) on the domain (left). The graph and control net in
parameter domain (right).
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IGA: Multi-patch low-rank representation

Flgu re. The yeti footprint domain, parameterized by 21 quadratic B-spline patches. Patch segmentation (left), control grids
(middle) and the (absolute) Jacobian determinant are shown. On the left picture rank(det VG) and
m:;\x(ranl((qk’e)7 k, 2 € {1,2}) are given. € = 1010,
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The canonical (CP) tensor approximation of the Newton kerne

[Braess '95], [Stenger '93], [Gavrilyuk, Hackbusch, BNK '05], [Bertoglio, BNK '08]

i(x) :
“dx, wix) = [T, {ie}y, €=1,2,3.

— [p] € R™™", py =
e I

Use the Laplace-Gauss transform for the analytic function p(z) =1 = 1. = ——L_
P T VEE

Ve, k=—M

0 < h<|x|| £ A< oo: sinc-quadrature approximation converges exponentially in M

2 2 M 3 2 2
—t —t —t
2 it ~ E age il E ak I | e kXt
k=M  £=1

1
V4

gg —BVM  \ith some C,5>0,

Y

[l

where the quadrature points and weights are given by (a(tx) = %)
bv = Colog(M)/M, Co > 0.

te = kbm, ak = a(tk)bwm,

Tensor numerical methods 13-14
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Application to a general class of radial basis functions, Green’s kernels

RS-tensor approximation applies to a wide class of long-range RB funct. p(||x||) in R?

Slater function: p(||x||) = exp(=A||x|]), A >0,

Yukawa kernel:  p(||x]|) = %T'”XH), A >0,

12 6
Lennard-Jones potential:  p(||x||) = 4e <L> — (L> ,
] ]

The simplified version of the Lennard-Jones potential, the Buckingham function

6
Buckingham potential: p(||X||) = 4¢ [ex/ro _ (”z_H> ] .

The electrostatic dipole-dipole potential energy (Van der Waals forces)

Dipole-dipole interaction energy: p(||x||) = || ”3
X

Tensor numerical methods 13-14
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CP tensor approx. of the single Newton kernel p(||x||) = % on fine grid

[l

M 3 R
PxPr= > a@bOt)=> pY @p{? @p{) e R™"™" R <2M+1~ Clloge].
k=—M /=1 qg=1

001 /} &\ 5 0.005

20 -15 -10 -5 0 10 15 20 -4
x-axis (au)

grid size n3 81923 | 163843 | 327683 | 65536° | 1310723
Time (s) 6 16 61 241 1000
Canonical rank R 34 37 39 41 43
Compression rate | 2-10° 7-10° 2107 1-108 4.108

CPU times (Matlab) to compute canonical tensor Pg, tol. ¢ = 10~7.
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Range-separated (RS) tensor format for approximating funct. with multiple cusps

X:0.7617
Y:-0.3711
Z: 5.582e-09

N O

Flgu re: Villin protein (left). Short- and long-range parts of the reference Newton kernel 1/ | x||.
[Benner, Khoromskaia, BNK '16]

(RS-canonical tensors). The RS-canonical tensor format defines the class of d-tensors
A € RmXXnd represented as a sum of a rank-R CP tensor U and a cumulated CP tensor
generated by localized Ug, s.t. rank(U, ) = rank(Ug) < Ro, U, = Replica(Up),

R N,
A=Y Gude-ou®+3"" U, with diam(suppU,) < 27.
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RS canonical format: beneficial properties

» RS-canonical tensor A € R™*"XMd is uniquely defined by the following parametrization:
rank-R CP tensor U, the rank-Rg reference CP tensor Up with mode-size bounded by 2+, list J
of the coordinates and weights of Np particles in RY.

Theorem

[Benner, Khoromskaia, BNK '16] T he storage size for RS-canonical tensor is estimated by
stor(A) < dRn+ (d + 1)Np + dRo~.

Each entry of an RS-CP tensor can be calculated at O(dR + 2d-yRg) cost.
e-rank rq of the Tucker approximation to the long-range CP tensor U is bounded by

Iro| == rankruc(U) < C b log®/?(|log(e/No)|)-

The following operations on RS canonical/Tucker tensors can be realized efficiently:
(a) construction of functional interpolants in RY via radial basis functions.

(b) summation of many-particle interaction potentials meshed up on a fine grid in RY.
(c) computation of interaction energy, gradients and forces for many-particle system.
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Bounds on tensor rank in Theorem: analysis in the frequency domain

200 400 600 800 1000 s 200 400 600 800 1000

Flgu I€. Fourier coef. of the long- (left) and short-range (right) discrete Gaussians, n = 1024.

10°

0
10
—N=214
——N=405
s —N=754
1071 5L
10
1010} 10710+
10715+ 10715 1

. . . . . -20 . . . . .
200 400 600 800 1000 10 200 400 600 800 1000

singular values

10720

Flgu €. Mode-1 singular values of side matrices for the full sum and long-range part P, vs. Ng, Rj = 12.
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RS canonical format: how to split short and long range parts

|
[ ‘H 1 \
[ | | \

/ Ll 1] \ \
6/ . L L \ [ \
10 - -

ANGSTROEM

Flgu re. Effective supports of the CCT (left); short-range canonical vectors for k =1, . . ., 11 on log-scale.

» The classes of RS-Tucker and RS-TT tensors are defined completely similar.

No /Ry 8 9 10 11 12 13
200 10,10,11 | 13,12,12 | 18,15,16 | 23,19,21 | 32,24,27 | 42,30,34
400 11,10,11 | 14,13,14 | 19,16,20 | 26,21,26 | 35,27,36 | 47,34,47
782 11,11,12 | 15,14,15 | 20,18,20 | 28,26,27 | 39,35,37 | 52,46,50

Ta ble: Tucker ranks r = (ry, ra, r3) for the long-range part of Ng-nuclei electrostatic potential in a protein, ¢ = 1076,

Boris Khoromskij, Venera Khoromskaia Shanghe Tensor numerical methods 13-14

Initial applications of RS-tensors: Multi-dimensional data modeling

» Scattered data modeling: the approximation of multi-variate func. f : RY — R by
sampling at a finite set X = {x1,...,xnv} C R? of p.w. distinct points.

For f: the surface of a solid body, the solution of a PDE, many-body potential field, etc.

» Traditional ways of recovering f from a sampling vect. fix = (f(x1),..., f(xn)):
constructing a functional interpolant Py : RY — R s.t. Pyjx = fix = f € RY, i.e.

Pn(x) =f(x), Y1<j<N. (8)

Using radial basis (RB) functions: find interpolants Py in the form
N
Pn(x) = Z ¢ip(l|x — xi|]) + Q(x), Q@ is some smooth function, say Q =0,  (9)
j=1

p=p(r):[0,00) = R is a fixed RB function, r = || - || is the Euclidean norm on R?.

Examples: p=r", (1+r°)", (v €R), exp(—r’), r’log(r).

[Buhmann, 2003]
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RS tensor approach to multi-dimensional data modeling: general overview

[Benner, Khoromskaia, BNK '16]

(A) Fixed coefficient vector ¢ = (ci,...,cn)’ € RV:
efficiently representing the interpolant Py(x) on fine tensor grid in R? s.t.
(a) O(1)-fast point evaluation of Py in the computational volume €,
(b) computation of various integral-differential operations on that interpolant
(gradients, forces, scalar products, convolution integrals, etc.).

(B) Finding the coefficient vector c that solves the interpolation problem (8).

» Problem (A) exactly fits our RS tensor framework !

» Problem (B): Use favorable iteration for solving coeff. vector ¢ = (c1,...,cn)’,

Apxc=F, with A, x=A;x=[p(lx — x[)]1<ijen € R". (10)

I

Assume X = Qj, be the n®9-set of grid-points, i.e., N = n?.
The d-tuple multi-index i = (i1,...,/4), j= (j1,.-.,Jd4): reshape A, x into the tensor

. . . . d nxn
Ap7x — A= [a(ll,_[l,...,ld,_[d)] - ®£:1R x , A:ARS+AR/-
Ag, - diagonal, Ag, = S°F AM @ ... @ AY) = Storage: O(N + dRin), MVP is simple.
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The Poisson-Boltzmann eqn. for electrostatic potential of a protein

The linearized Poisson-Boltzmann (PB) equation [Hoist et al. ‘0]

N 0
— V- (eVu) + K’u=pr = Zkzlzké(ﬂx —x) in (11)

where u is the target electrostatic potential of a protein, pr is the scaled singular charge
distribution supported at points xx € Qn, K =0,e = 1 in Q.
The interface conditions on the interior boundary I' = 0Q,,: [u] =0, [e%} onl.

Q

S

&

aQ

Flgu €. Computational domain for PBE: Solute (molecule) region Q,, solvent Q.

Reduced basis method for PBE: [Kweyu, Hess, Feng, Stein, Benner: '16]

Boris Khoromskij, Venera Khoromskaia Shanghz Tensor numerical methods 13-14



New regularization scheme for the PB eqn.: the RS-tensor approach

The additive splitting in Q: v =u" 4+ u” s.t. v” =0 in Q.
For singular component: — ¢, Au” =pf in Qn v”=0 on T.

Facilitate solving of (12): use the free space singular potential in form of RS tensor
N
Po(x) = Zkzlzk/Hx — x| 1 emAPo=ps in R

let P° = P0|§m inQ,,; P°=0inQ., and set u” = P°* + u".
A harmonic function u" compensates the discontinuity of P* on I,

Au"=0 in Q. u"=-P° on T.

B [Benner, Khoromskaia, BNK '16] EQn. (11) is transformed to that for the regular potential u":
— V- (eVu)+Ku"'=0 in Q

no o], o
(=0 |G| =y

» Benefit: 0,u”|r depends only on the long-range part in Po(x) = low-rank tensor.
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Conclusions

Fast tensor numerical methods for multi-dimensional PDEs

@ Efficient multi-linear algebra of formatted tensors in CP, Tucker, TT formats (+).

@ Advanced O(dlog N) tensor formats: QCan, QTT, QTT-Tucker (+).

@ “Canonical” convolution of N®9 tensors in O(dN) op. (+).

@ Grid-based tensor factorization of the two-electron integrals (+).

@ Tensor solver for the Hartree-Fock equation (+).

@ Fast lattice summation of long-range potentials and the novel RS tensor format.
(*)

Fast integration of highly oscillating functions and efficient solvers for PDEs with
oscillating coefficients (+).

@ The Fokker-Planck and master equations (&4).
@ Stochastic/parametric PDEs (1).
Novel super-fast data transforms of logarithmic cost:
@ QTT convolution(d) in O(d log N) operations (+).
@ Super-fast QTT-FFT(d) (competing to sparse and quantum FFT) (+).

@ Fast wavelet transform in quantized space with logarithmic cost (+).

Thank you very much for your
interest !
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