Homework 10

Lei Zhang

May 8, 2014

Problem 1. We will look at one example simply to give a flavor of the potential difficulties of IBVP. Suppose we use the leapfrog method to solve the IBVP for the advection equation $u_{t}+a u_{x}=0$. At the left (inflow) boundary we can use the given boundary condition, but at the right we will need a numerical boundary condition. Suppose we use the first order upwind method at this point,

$$
U_{m+1}^{n+1}=U_{m+1}^{n}-\frac{a k}{h}\left(U_{m+1}^{n}-U_{m}^{n}\right),
$$

which is also consistent with the advection equation. Compute the solution when the initial data is $u(x, 0)=\eta(x)=\exp \left(-5(x-2)^{2}\right)$ and the first two time levels for leapfrog are initialized based on the exact solution $u(x, t)=\eta(x-a t)$. We see that as the wave passes out the right boundary, a reflection is generated that moves to the left, back into the domain. Run the simulation until you see the generation and leftward propagation of a sawtooth mode.

Problem 2. Let $\Omega=\{(x, y): r<1 / 2\}, u=\ln |\ln r|$, where $r=\left(x^{2}+y^{2}\right)^{1 / 2}$. Prove that $u \in H^{1}(\Omega)$, but $u \notin C(\Omega)$.

Problem 3. Suppose that $\partial \Omega$ is piecewise smooth. Smooth surface S bisects Ω into two subdomains Ω_{1} and $\Omega_{2} . u \in H^{1}\left(\Omega_{1}\right)$ in Ω_{1}, and $u \in H^{1}\left(\Omega_{2}\right)$ in Ω_{2} separately. Prove that $u \in H^{1}(\Omega)$ iff the trace (boundary value) of u on S from Ω_{1} equals to the trace of u on S from Ω_{2}.

