Homework 4, due Apr 1, 2014

April 3, 2014

Problem 1. Let A be the tridiagonal matrix generated by either central difference or piecewise linear finite element in 1D. Namely, A is a $d \times d$ Toeplitz matrix, with $\tau_{0}=2$, $\tau_{1}=\tau_{-1}=-1, b=\mathbf{1} \in \mathbb{R}^{d}$.

Implement the following methods to solve the linear equation $A x=b$,
(a) LU factorization,
(b) Jacobi iteration,
(c) Gauss-Seidel iteration,
(d) Steepest decent,
(e) Conjugate gradient,

For the iterative methods (b)-(e), run each method for 1000 steps, record the error $\left(\left\|A x^{k}-b\right\|\right)$ at each step, and plot the error with respect to the number of steps. Explain your observation.

For convergence rate of Jacobi method and Gauss-Seidel method, read Iserles 266267.

For the algorithm of conjugate gradient method, read Iserles 316-317.
Note: You can use Matlab commmand toeplitz to generate the matrix A,

