Homework 5

Lei Zhang

April 3, 2014

Problem 1. Let $U=\left[U_{0}, U_{1}, \ldots, U_{m}\right]^{T}$ be a vector of function values at equally spaced points on the interval $0 \leq x \leq 1$, and suppose the underlying function is periodic and smooth. Then we can approximate the first derivative u_{x} at all of these points by $D U$, where D is circulant matrix such as

$$
D_{-}=\frac{1}{h}\left[\begin{array}{rrrrr}
1 & & & & -1 \tag{1}\\
-1 & 1 & & & \\
& -1 & 1 & & \\
& & -1 & 1 & \\
& & & -1 & 1
\end{array}\right], \quad D_{+}=\frac{1}{h}\left[\begin{array}{rrrrr}
-1 & 1 & & & \\
& -1 & 1 & & \\
& & -1 & 1 & \\
& & & -1 & 1 \\
1 & & & & -1
\end{array}\right]
$$

for first-order accurate one-sided approximations or

$$
D_{0}=\frac{1}{2 h}\left[\begin{array}{rrrrr}
0 & 1 & & & -1 \tag{2}\\
-1 & 0 & 1 & & \\
& -1 & 0 & 1 & \\
& & -1 & 0 & 1 \\
1 & & & -1 & 0
\end{array}\right]
$$

for a second-order accurate centered approximation. (These are illustrated for a grid with $m+1=5$ unknowns and $h=1 / 5$.)

The advection equation $u_{t}+a u_{x}=0$ on the interval $0 \leq x \leq 1$ with periodic boundary conditions gives rise to the MOL discretization $U^{\prime}(t)=-a D U(t)$ where D is one of the matrices above.
(a) Discretizing $U^{\prime}=-a D _U$ by forward Euler gives the first order upwind method

$$
\begin{equation*}
U_{j}^{n+1}=U_{j}^{n}-\frac{a k}{h}\left(U_{j}^{n}-U_{j-1}^{n}\right), \tag{3}
\end{equation*}
$$

where the index i runs from 0 to m with addition of indices performed $\bmod m+1$ to incorporate the periodic boundary conditions.
Suppose instead we discretize the MOL equation by the second-order Taylor series method,

$$
\begin{equation*}
U^{n+1}=U^{n}-a k D_{-} U^{n}+\frac{1}{2}(a k)^{2} D_{-}^{2} U^{n} . \tag{4}
\end{equation*}
$$

Compute D_{-}^{2} and also write out the formula for U_{j}^{n} that results from this method.
(b) What are the orders of the methods (3) and (4) derived in part (a)?
(c) Suppose we make the method (3) more symmetric:

$$
\begin{equation*}
U^{n+1}=U^{n}-\frac{a k}{2}\left(D_{+}+D_{-}\right) U^{n}+\frac{1}{2}(a k)^{2} D_{+} D_{-} U^{n} . \tag{5}
\end{equation*}
$$

Write out the formula for U_{j}^{n} that results from this method.
(d) Use the numerical methods in (3), (4) and (5) to solve the equation $u_{t}+u_{x}=0$ on $[0,1] \times[0,1]$, with periodic boundary condition and initial value $u(x, 0)=\sin (2 \pi x)$. Draw the L^{2} error with respect to exact solution for $h=1 / 8,1 / 16,1 / 32,1 / 64,1 / 128,1 / 256$, and $k=1 / 8,1 / 16,1 / 32,1 / 64,1 / 128,1 / 256$ (You need to run 108 simulations for all the combinations of h and k for 3 methods). Verify the order of convergence for each method.

