Homework 1

March 5, 2014, due Mar 13

Problem 1. Given Newton's equation

$$
\left\{\begin{array}{l}
y^{\prime}=1-3 x+y+x^{2}+x y \tag{1}\\
y(0)=0
\end{array}\right.
$$

(a) Compute its power series solution up to order 6 .
(b) Let P_{n} denote power series solution up to order n, plot all the P_{n} in the interval $[0,2]$ for $n=1 \cdots 6$.
(c) Use Euler method to calculate the solution of equation (1). By the convergence Theorem, when we choose h small enough, Euler's method approximates true solution very well. Take $h=1 e-4$, and let u_{h} as the 'approximate' true solution. Compare it with $u_{0.1}, u_{0.01}$ and the power series solutions P_{n} for $n=1 \cdots 6$.

Problem 2. Van der Pols equation

$$
\begin{equation*}
u^{\prime \prime}-\varepsilon\left(1-u^{2}\right) u^{\prime}+u=0 \tag{2}
\end{equation*}
$$

subject to the initial conditions $u(0)=A_{1}$ and $u^{\prime}(0)=A_{2}$, where A_{1} and A_{2} are given real numbers, and $\varepsilon>0$ a parameter, models electrical circuits connected with electronic oscillators. Rewrite the equation as a coupled system of two first-order differential equations with appropriate initial conditions. Formulate Euler's method for this system, when $\varepsilon=1, A_{1}=1 / 2$ and $A_{2}=1 / 2$, on the interval $[0,1]$ using points with uniform spacing Δt. Compute the Euler approximations to $u(t)$ and $u^{\prime}(t)$ at point $t=\Delta t$. (hint: higher order ODEs can be written as a system of first order ODEs).
Problem 3. Consider the initial value problem

$$
\begin{equation*}
u^{\prime}=\log \log \left(4+u^{2}\right), \quad t \in[0,1], \quad u(0)=1, \tag{3}
\end{equation*}
$$

and the sequence $\left(U_{n}\right)_{n=0}^{N}, N \geq 1$, generated by the explicit Euler method

$$
\begin{equation*}
\frac{U_{n+1}-U_{n}}{\Delta t}=\log \log \left(4+U_{n}^{2}\right), \quad n=0, \ldots, N-1, \quad U_{0}=1 \tag{4}
\end{equation*}
$$

using the time points $t_{n}=n \Delta t, n=0, \ldots, N$, with spacing $\Delta t=1 / N$. Here log denotes the logarithm with base e.
(a) Let T_{n} denote the truncation error of Euler's method at $t=t_{n}$ for this initial value problem. Show that $\left|T_{n}\right| \leq \Delta t /(4 e)$.
(b) Verify that

$$
\left|u_{n+1}-U_{n+1}\right| \leq(1+\Delta t L)\left|u_{n}-U_{n}\right|+\Delta t\left|T_{n}\right|, n=0, \ldots, N-1,
$$

where $L=1 /(2 \log 4)$.
(c) Find a positive integer N_{0}, as small as possible, such that

$$
\max _{0 \leq n \leq N}\left|u_{n}-U_{n}\right| \leq 10^{-4}
$$

whenever $N \geq N_{0}$.
Problem 4. Use Lagrange interpolation polynomial to contruct 3-step Adams-Bashforth method, namely, calculate all the coefficients b_{i} for the multistep scheme

$$
\begin{equation*}
y_{n+3}=y_{n+2}+h\left[b_{2} f\left(t_{n+2}, y_{n+2}\right)+b_{1} f\left(t_{n+1}, y_{n+1}\right)+b_{0} f\left(t_{n}, y_{n}\right)\right] \tag{5}
\end{equation*}
$$

