Homework 2

March 12, 2014, due March 20

Problem 1. Find a, b, c, and d, such that the multistep scheme (1) has the highest possible order,

$$
\begin{equation*}
u_{n+1}+a u_{n}+b u_{n-1}=h\left(c f\left(t_{n}, u_{n}\right)+d f\left(t_{n-1}, u_{n-1}\right)\right) \tag{1}
\end{equation*}
$$

What is the leading order term for the truncation error?
Problem 2. (a) What does it mean to say that a linear multistep method is zerostable? Formulate an equivalent characterisation of zero-stability of a linear multistep method in terms of the roots of its first characteristic polynomial.
(b) Show that there is a value of the parameter b such that the linear multistep method defined by the formula

$$
\begin{equation*}
U_{n+3}+(2 b-3)\left(U_{n+2}-U_{n+1}\right)-U_{n}=b \Delta t\left(F_{n+2}+F_{n+1}\right) \tag{2}
\end{equation*}
$$

is fourth order accurate (with $F_{n}=f\left(t_{n}, U_{n}\right)$). Show further that the method is not zero-stable for this value of b.

Problem 3. (a) Impletment Runge's method (RK2),

$$
\left\{\begin{align*}
y_{n+1} & =y_{n}+h k_{2}, \tag{3}\\
k_{1} & =f\left(t_{n}, y_{n}\right), \\
k_{2} & =f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right) .
\end{align*}\right.
$$

Heun's method

$$
\left\{\begin{align*}
y_{n+1} & =y_{n}+h\left(\frac{1}{4} k_{1}+\frac{3}{4} k_{3}\right), \tag{4}\\
k_{1} & =f\left(t_{n}, y_{n}\right), \\
k_{2} & =f\left(t_{n}+\frac{1}{3} h, y_{n}+\frac{1}{3} h k_{1}\right), \\
k_{3} & =f\left(t_{n}+\frac{2}{3} h, y_{n}+\frac{2}{3} h k_{2}\right) .
\end{align*}\right.
$$

and classical 4th order Runge-Kutta method (RK4),

$$
\left\{\begin{align*}
y_{n+1} & =y_{n}+h\left(\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4}\right) \tag{5}\\
k_{1} & =f\left(t_{n}, y_{n}\right) \\
k_{2} & =f\left(t_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right) \\
k_{3} & =f\left(t_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{2}\right) \\
k_{4} & =f\left(t_{n}+h, y_{n}+k_{3}\right)
\end{align*}\right.
$$

Justify the rate of convergence numerically.
(b) Choose appropriate Runge-Kutta method to initialize Adams-Bashforth method of order 3,

$$
\begin{equation*}
y_{n+3}=y_{n+2}+h\left[\frac{23}{12} f\left(t_{n+2}, y_{n+2}\right)-\frac{4}{3} f\left(t_{n+1}, y_{n+1}\right)+\frac{5}{12} f\left(t_{n}, y_{n}\right)\right] . \tag{6}
\end{equation*}
$$

Justify the rate of convergence numerically.
Problem 4. Consider the Runge-Kutta method

$$
\begin{equation*}
\frac{U_{n+1}-U_{n}}{\Delta t}=\left(c_{1} k_{1}+c_{2} k_{2}\right), \tag{7}
\end{equation*}
$$

where

$$
k_{1}=f(t n, U n),
$$

and

$$
k_{2}=f\left(t_{n}+b_{2,1} \Delta t, U_{n}+b_{2,1} \Delta t k_{1}\right),
$$

and where $c_{1}, c_{2}, b_{2,1}$ are real parameters.
(a) Show that there is a choice of these parameters such that the truncation error of the method,

$$
\begin{equation*}
\frac{T_{n}}{\Delta t}=\frac{u_{n+1}-u_{n}}{\Delta t}-\left[c_{1} f\left(t_{n}, u_{n}\right)+c_{2} f\left(t_{n}+b_{2,1} \Delta t, u_{n}+b_{2,1} \Delta t f\left(t_{n}, u_{n}\right)\right)\right] \tag{8}
\end{equation*}
$$

is order 2 as $\Delta t \rightarrow 0$.
(b) Suppose that a second-order method of the above form is applied to the initial value problem $u^{\prime}=-\lambda u, u(0)=1$, where λ is a positive real number. Show that the sequence $\left\{U_{n}\right\}_{n \geq 0}$ is bounded if and only if $\Delta t \leq \frac{2}{\lambda}$ (interval of absolute stability). (Hard; not compulsory!): Show further that, for such λ,

$$
\begin{equation*}
\left|u_{n}-U_{n}\right| \leq \frac{1}{6} \lambda^{3} \Delta t^{2} t_{n}, \quad n \geq 0 . \tag{9}
\end{equation*}
$$

