Homework 4

March 27, 2014

Problem 1. Please implement the trapezoidal rule

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{2} h\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right] \tag{1}
\end{equation*}
$$

Justify numerically the convergence rate for the trapezoidal rule is 2nd order.
Problem 2. To solve the boundary value problem

$$
\begin{equation*}
-u_{x x}(x)=f(x), \quad x \in(0,1) . \tag{2}
\end{equation*}
$$

with boundary condition $u(0)=u(1)=0, f \in C^{0}$, we subdivide interval $[0,1]$ into n equal subintervals with $h=1 / n$. Let $x_{j}=j h, j=0, \ldots, n$, we are looking for u_{j}, the approximations to the exact solution $u\left(x_{j}\right)$ at x_{j}.
(a) (Formulation) If we use central differences to approximate $u_{x x}$,

$$
\begin{equation*}
u_{x x}\left(x_{i}\right) \simeq \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}} \tag{3}
\end{equation*}
$$

write down the resulting finite difference scheme (including boundary condition), and the associated linear system $A u=F$ for the unknowns, specify A, u and F.
(b) (Existence and Uniqueness) Prove that A is nonsingular, therefore the finite difference scheme has a unique solution. hint: there are many ways to do this, one way is to show that $v^{T} A v>0$ for any $v \neq 0$, namely, A is symmetrically positive definite.
(c) (Matlab) A is a tri-diagonal matrix, $A u=F$ can be efficiently solved by Gaussian elimination method which will be introduced later. In this homework, suppose that $f=\left(3 x+x^{2}\right) e^{x}$, implement the numerical scheme in Matlab. Take $n=4$, plot the solution you obtain.
(d) (Maximum Principle) For $v \in \mathbb{R}^{m}$, we say that $v \geq 0$ if $v_{i} \geq 0$ for $1 \leq i \leq m$. Show that if $A w=v$ and $v \geq 0$, then $w \geq 0$. Furthermore, this implies that $\alpha_{i j} \geq 0$, where $\alpha_{i j}$ are the entries of A^{-1}. Use this property to show that if $f \geq 0$, then $u_{j} \geq 0$, for $j=0, \ldots, n$.
(e) (Discrete Stability) The function $v(x)=\frac{x(1-x)}{2}$ satisfies

$$
\begin{equation*}
-\frac{v\left(x_{j+1}\right)-2 v\left(x_{j}\right)+v\left(x_{j-1}\right)}{h^{2}}=1 . \tag{4}
\end{equation*}
$$

Use this to show that the entries $\alpha_{i j}$ of A^{-1} satisfies

$$
\begin{equation*}
0 \leq \sum_{j=1}^{n-1} \alpha_{i j} \leq \frac{1}{8} \tag{5}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\max _{1 \leq i \leq n-1}\left|u_{i}\right| \leq \frac{1}{8} \max _{1 \leq i \leq n-1}\left|f\left(x_{i}\right)\right| \tag{6}
\end{equation*}
$$

(f) (Truncation Error) Like ODE, we can define truncation error,

$$
\begin{equation*}
T_{j}=-\frac{u\left(x_{j+1}\right)-2 u\left(x_{j}\right)+u\left(x_{j-1}\right)}{h^{2}}-f\left(x_{j}\right) \tag{7}
\end{equation*}
$$

Calculate the leading order term of T_{j}.
(g) (Error Equation) Let $e_{j}=u\left(x_{j}\right)-u_{j}$ be the discretization error. Show that e_{j} satisfies the equation $A e=T$, where $e=\left(e_{1}, \ldots, e_{n-1}\right)^{T}$ and $T=\left(T_{1}, \ldots, T_{n-1}\right)^{T}$. Using (??) to prove the convergence result

$$
\begin{equation*}
\max _{1 \leq i \leq n-1}\left|u\left(x_{i}\right)-u_{i}\right| \leq \frac{h^{2}}{96} \max _{0 \leq x \leq 1}\left|u^{(4)}(x)\right| . \tag{8}
\end{equation*}
$$

(h) (Justification) When $f=\left(3 x+x^{2}\right) e^{x}$, the exact solution is $u(x)=x(1-x) e^{x}$. Take $n=4,8,16,32,64,128,256$, and compute numerical solutions u^{n} with Matlab. Calculate $\left\|u-u^{n}\right\|_{\infty}:=\max _{1 \leq i \leq n-1}\left|u\left(x_{i}\right)-u_{i}^{n}\right|$, plot (log-log) the convergence with resepct to n. Numeically estimate the prefactor in the estimate $\left\|u-u^{n}\right\|_{\infty} \simeq C h^{\alpha}$, compare it with the result in (??)

