Homework 5

Lei Zhang

April 3, 2014

Problem 1. Given 1-d finite element mesh in Figure 1 $x_i - x_{i-1} = h_i$, h_i 's are not

Figure 1: Discretization of (0, 1)

necessarily equal, formulate the Galerkin finite element method for

$$\begin{cases}
-u_{xx} = f, & x \in (0, 1) \\
u = 0, & x = 0, 1
\end{cases}$$
(1)

Calculate $A_h = \{a(\phi_i, \phi_j)\}$ in terms of h_i .

Problem 2. Consider Poisson's equation

$$\begin{cases} -\Delta u = f, & x \in \Omega\\ u = 0, & x \in \partial \Omega \end{cases}$$
(2)

We have the following regular triangulation in Figure 2, if we index the nodes as shown in the Figure 2 (a), compute the entries $a(\phi_1, \phi_i)$ for i = 1, 2, ..., 7, and the entries $m(\phi_1, \phi_i) = \int \phi_1 \phi_i dx$. ϕ_i is the piecewise linear nodal basis at node x_i . Compare with 5-point finite difference metohd. Furthermore, calculate $a(\phi_1, \phi_i)$ in (b).

Problem 3. For a banded sparse $n \times n$ matrix A with band width s, prove that the cost for LU decomposition of A is $O(s^2n)$.

Problem 4. Let A be the tridiagonal matrix generated by either central difference or piecewise linear finite element in 1D. Namely, A is a $d \times d$ Toeplitz matrix, with $\tau_0 = 2$, $\tau_1 = \tau_{-1} = -1$, $b = \mathbf{1} \in \mathbb{R}^d$.

Implement the following methods to solve the linear equation Ax = b,

Figure 2: Triangulation in 2D

- (a) LU factorization,
- (b) Jacobi iteration,
- (c) Gauss-Seidel iteration,

For the iterative methods (b)-(c), run each method for 1000 steps, record the error $(||Ax^k - b||)$ at each step, and plot the error with respect to the number of steps. Explain your observation.

For convergence rate of Jacobi method and Gauss-Seidel method, read Iserles 266-267.

Note: You can use Matlab command *toeplitz* to generate the matrix A,