Homework 5

Lei Zhang

April 3, 2014

Problem 1. Given 1-d finite element mesh in Figure $1 x_{i}-x_{i-1}=h_{i}, h_{i}$'s are not

\[

\]

Figure 1: Discretization of $(0,1)$
necessarily equal, formulate the Galerkin finite element method for

$$
\begin{cases}-u_{x x}=f, & x \in(0,1) \tag{1}\\ u=0, & x=0,1\end{cases}
$$

Calculate $A_{h}=\left\{a\left(\phi_{i}, \phi_{j}\right)\right\}$ in terms of h_{i}.
Problem 2. Consider Poisson's equation

$$
\begin{cases}-\Delta u=f, & x \in \Omega \tag{2}\\ u=0, & x \in \partial \Omega\end{cases}
$$

We have the following regular triangulation in Figure 2, if we index the nodes as shown in the Figure $2(\mathrm{a})$, compute the entries $a\left(\phi_{1}, \phi_{i}\right)$ for $i=1,2, \ldots, 7$, and the entries $m\left(\phi_{1}, \phi_{i}\right)=\int \phi_{1} \phi_{i} \mathrm{dx} . \phi_{i}$ is the piecewise linear nodal basis at node x_{i}. Compare with 5 -point finite difference metohd. Furthermore, calculate $a\left(\phi_{1}, \phi_{i}\right)$ in (b).

Problem 3. For a banded sparse $n \times n$ matrix A with band width s, prove that the cost for LU decomposition of A is $O\left(s^{2} n\right)$.

Problem 4. Let A be the tridiagonal matrix generated by either central difference or piecewise linear finite element in 1D. Namely, A is a $d \times d$ Toeplitz matrix, with $\tau_{0}=2$, $\tau_{1}=\tau_{-1}=-1, b=\mathbf{1} \in \mathbb{R}^{d}$.

Implement the following methods to solve the linear equation $A x=b$,

Figure 2: Triangulation in 2D
(a) LU factorization,
(b) Jacobi iteration,
(c) Gauss-Seidel iteration,

For the iterative methods (b)-(c), run each method for 1000 steps, record the error $\left(\left\|A x^{k}-b\right\|\right)$ at each step, and plot the error with respect to the number of steps. Explain your observation.

For convergence rate of Jacobi method and Gauss-Seidel method, read Iserles 266267.

Note: You can use Matlab commmand toeplitz to generate the matrix A,

