Homework 7

Lei Zhang

April 15, 2014

Problem 1. Draw the butterfly diagram for FFT when $N=8$.
Problem 2. Use the implementation of the Fast Fourier Transform algorithm in http:
//www.codeproject.com/Articles/9388/How-to-implement-the-FFT-algorithm(which also appears in Numerical Recipe http://apps.nrbook.com/c/index.html, Chapter 12, page 507-508). Let $N=64, h=1 / 64$, and the sample points are $x_{j}=j h$, $j=0,1, \ldots, N-1$. Apply the FFT transform to the sampled data $\left\{g_{j}\right\}_{j=0}^{N-1}$ from the following functions g, where $g_{j}=g\left(x_{j}\right)$. Plot the Discrete Fourier coefficients with respect to frequency, explain what you obeserved (Note: in general, the Discrete Fourier transform of g_{j} are complex numbers, you can plot their real part and imaginary part separately, you can also plot their amplitude and phase separately).

- $g(x)=\cos (2 \pi x)$ and $g(x)=\cos (128 \pi x)$
- $g(x)=x^{2}$ and $g(x)=x^{10}$.
- $g(x)=\sin \left(x^{2}\right)$ and $g(x)=\sin \left(100 x^{2}\right)$

Problem 3. Verify the following perperty for the matrix S used in the Discrete Sine Transform, where $S_{j k}=\sin \left(\frac{j k \pi}{N+1}\right), j, k=1, \ldots, N$. Let S_{k} be the k-th column of S,
(a) S_{k} are orthognal to each other.
(b) $\left\|S_{k}\right\|=\sqrt{\frac{N+1}{2}}$.
(c) $S^{-1}=\frac{2}{N+1} S$.

