Homework 9

Lei Zhang

April 30, 2014

Problem 1. Consider the Jacobi iteration for the linear system Au = f arising from a centered difference approximation of the boundary value problem $u_{xx}(x) = f(x)$. Show that this iteration can be interpreted as forward Euler time stepping applied to the MOL equations arising from a centered difference discretization of the heat equation $u_t(x,t) = u_{xx}(x,t) - f(x)$ with time step $k = \frac{1}{2}h^2$.

Note that if the boundary conditions are held constant then the solution to this heat equation decays to the steady state solution that solves the boundary value problem. Marching to steady state with an explicit method is one way to solve the boundary value problem, though this is a very inefficient way to compute the steady state.

Problem 2. Consider the PDE

$$u_t = \kappa u_{xx} - \gamma u, \tag{1}$$

which models a diffusion with decay provided $\kappa > 0$ and $\gamma > 0$. Consider methods of the form

$$U_{j}^{n+1} = U_{j}^{n} + \frac{k}{2h^{2}} [U_{j-1}^{n} - 2U_{j}^{n} + U_{j+1}^{n} + U_{j-1}^{n+1} - 2U_{j}^{n+1} + U_{j+1}^{n+1}] - k\gamma[(1-\theta)U_{j}^{n} + \theta U_{j}^{n+1}]$$
(2)

where θ is a parameter. In particular, if $\theta = 1/2$ then the decay term is modeled with the same centered-in-time approach as the diffusion term and the method can be obtained by applying the Trapezoidal method to the MOL formulation of the PDE. If $\theta = 0$ then the decay term is handled explicitly. For more general reaction-diffusion equations it may be advantageous to handle the reaction terms explicitly since these terms are generally nonlinear, so making them implicit would require solving nonlinear systems in each time step (whereas handling the diffusion term implicitly only gives a linear system to solve in each time step).

- (a) By computing the local truncation error, show that this method is $O(k^p + h^2)$ accurate, where p = 2 if $\theta = 1/2$ and p = 1 otherwise.
- (b) Using von Neumann analysis, show that this method is unconditionally stable if $\theta \ge 1/2$.
- (c) Show that if $\theta = 0$ then the method is stable provided $k \leq 2/\gamma$, independent of h.

Problem 3. Email your midterm project report to me by May 8. Late report will get 1 point per day deducted from your score.