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Abstract

Neural message passing is a basic feature extraction unit for graph-structured
data that takes account of the impact of neighboring node features in network
propagation from one layer to the next. We model such process by an interacting
particle system with attractive and repulsive forces and the Allen-Cahn force arising
in the modeling of phase transition. The system is a reaction-diffusion process
which can separate particles to different clusters. This induces an Allen-Cahn
message passing (ACMP) for graph neural networks where the numerical iteration
for the solution constitutes the message passing propagation and GNN prediction
that enables node classification due to the formation of multi-clusters, helped by the
phase transition of particles. ACMP can propel the network depth to hundreds of
layers with theoretically proven strictly positive lower bound of the Dirichlet energy
and the formation of multiple clusters. It thus provides a deep model of GNNs
which circumvents the common GNN problem of oversmoothing. Experiments for
various real node classification datasets, with possible high homophily difficulty,
show the GNNs with ACMP can achieve state of the art performance with no decay
of Dirichlet energy.

1 Introduction

Graph neural networks (GNNs) have gained a champion and received a great attention in the past five
years due to its powerful expressiveness and approximation capability for learning graph structured
data and broad applications [6, 8, 14, 15, 31, 68]. Neural message passing [33] has served as a
fundamental feature extraction unit for graph-structured data that aggregates the features of neighbors
in network propagation. Many graph message passing propagators suffer from oversmoothing when
node features are indistinguishable as network depth goes high. PDEs such as diffusion equations
[17] and coupled oscillator system [40] have been used to define graph convolution that enable to
avoid oversmoothing, where each iteration of the numerical solution to the differential equation is
regarded as a neural message passing update and the iteration number as the depth of network layers.
We develop a message passing propagator based on Allen-Cahn particle evolution in which phase
transition clusters particles into desired flocks. The proposed scheme preserves the Dirichlet energy
in network propagation and circumvents oversmoothing when the network depth is high.

The behavior of particle system based message passing is similar to that of collective behaviors
common in nature and human society [25, 11, 41, 65]. For example, insects form swarms to
work; birds forms flocks to immigrate; humans forms parties to express public opinions. Various
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Figure 1: The left figure shows the double-well potential field W (x) and particles {xi} according to
their position gains their own potential energy (with different colors). In the Allen-Cahn dynamics,
nodes with shallow blue or shallow red color have the tendency to move toward dark blue or dark
red particles. The right figure illustrates the one-step ACMP propagator. Isolated node H has no
interaction force on it, which then tends into dark red. The remaining nodes are influenced by both
the potential field and the interplay with their neighbors. Take node F for example. Suppose all the
interaction forces are attractive. The node F is driven by a strong ’red attraction’ from G and a weak
’purple attraction’, besides its own red traction. F will then turn into red in the next layer.

mathematical models have been proposed [3, 49, 16, 59, 24] deriving from statistical physics [2, 44],
sociometry [48, 47] to interpret these behaviors. Many of them are agent-based models that use
interacting particle systems. Such particle equations can be properly designed to allow the particle
evolution to form multi-clusters or consensus depending on the system’s intrinsic nature. Since many
common topological structures in graphs emerge from self-organization behaviors of multi-agents, a
graph has high similarity with a particle system [52]. This motivates us to design a particle system
based neural message passing propagator for graph neural networks, where nodes are particles and
edges represent the interactions of particles. Each node in the network interacts with their neighbors
and the whole network becomes a community to produce either one consensus or several main
clusters. The solution at a specific time t can serve as the message passing at layer t.

Our model is based on an interacting particle system with attractive/repulsive force and a force
induced by the Allen-Cahin phase transition model. It can be viewed as the graph version of the
bi-cluster Cucker-Smale swarming model introduced in [29]. This natrually induces a GNN model
to simulate the message passing dynamics. There are two major components in this model. First,
the co-existence of the attractive and repulsive forces allows particles to separate into two clusters.
The Allen-Cahn [4] or Rayleigh friction [61] term, used to describe phase transitions in physics,
prevents the Dirichlet energy in the evolution from becoming unbounded. More importantly, the
Allen-Cahn term forces most of particles to stay near its two stable yet distinct local equilibria (two
phases). These force terms provide the key mechanism to overcome the oversmoothing problem
of deep networks. Specifically we will prove that under suitable conditions in the parameters, the
dynamics of the particle system will time-asymptotically form two different clusters and the Dirichlet
energy has a strictly positive lower bound.

The proposed model which we call Allen-Cahn Message Passing (ACMP) is featured by three key
points: 1) it has the separation power for graph nodes due to the repulsive force; 2) the Dirichlet
energy of the GNNs with ACMP remains bounded, due to introducing the Allen-Cahn double-well
potential term in the particle equation; 3) the adaption of the proposed GNNs for homophilic and
heterogeneous node classification tasks can be adjusted flexibly by training. The model can then
reach an acceptable trade-off on self-features and neighbor effect.

2 The Allen-Cahn Particle System

Message Passing in Graph Neural Networks Graph neural networks are a kind of deep neural
network which takes graph data as input. Neural Message Passing (MP) [33, 9] is a most widely used
propagator for node feature update in GNNs, which takes the following form: with x

(k−1)
i ∈ Rd

denoting node features of node i in layer (k − 1) and aj,i ∈ RD edge features from node j to node i,

x
(k)
i = γ(k)

(
x
(k−1)
i ,□j∈Ni ϕ

(k)
(
x
(k−1)
i ,x

(k−1)
j , aj,i

))
,

where □ denotes a differentiable, (node) permutation invariant function, e.g., sum, mean or max, and
γ and ϕ denote differentiable functions such as MLPs (MultiLayer Perceptrons), and Ni is the set of
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one-hop neighbors of node i. The message passing updates the feature of each node by aggregating
the self-feature with neighbors’ features. Many GNN feature extraction modules such as GCN [39],
GAT [66] and GIN [70] can be written as message passing. For example, the MP of GCNs reads,
with learnable parameters Θ,

x′
i = Θ⊤

∑
j∈Ni∪{i}

aj,i√
d̂j d̂i

xj . (1)

Graph attention network (GAT) uses attention coefficients αi,j as similarity information between
nodes in the MP update

x′
i = αi,iΘxi +

∑
j∈Ni

αi,jΘxj , (2)

with

αi,j =
exp

(
LeakyReLU

(
a⊤[Θxi ∥Θxj ]

))∑
k∈Ni∪{i} exp (LeakyReLU (a⊤[Θxi ∥Θxk]))

. (3)

The MP framework was also developed as PDE solvers in [13] by embedding differential equations
as a parameter into message passing like [12]. This paper regards particle PDE evolution as message
passing propagation, and appropriate design of the particle system offers desired properties for the
resulting GNN.

Interacting particle systems The interior self-organized system can be viewed as a coarse message
passing network [33, 14]. Each particle moves/changes as a reaction of aggregated information from
its neighbours and itself. Such process becomes an analogy to the judgement process for certain
unknown signals in classification or prediction tasks. Oversmoothing is a critical difficulty the usual
GNN models, such as GCN [39] and GAT [66] cannot work well [54, 56] when features become
too smooth to be used for class identification and the Dirichlet energy has exponential decay. In the
context of particle systems, this means that all the particles (i.e. node features) reach a consensus or
produce a mono-cluster flocking asymptotically. By contrast, equilibria of multi-clusters give rise to
separable features naturally.

The Allen-Cahn equation for phase transitions To guarantee separated clusters in our model, we
add an extra potential to the dynamics inspired by the modelling of phase transition, which is one
of the most interesting aspects of many particle systems [67]. Phase transition is the transformation
of a substance from one state to another under certain conditions of temperature and pressure [1].
For example, imposing proper pressure on a bottle of nitrogen, some of the gas will change into
liquid. Ice melting to water, water boiling to steam, graphite transforming into diamond are all
common phase transforms in real world. For a ‘binary mixture’ of one material in two or more
phases, the proportion of the various phases will change in some velocity and finally achieve
the equilibria. The Allen-Cahn equation is a reaction-diffusion process including order-disorder
transitions: ut = µ2∆u+ u(1− u)(1 + u) for µ > 0, which, in long time, pushes any initial data to
two stable equilibria (phases) ±1.

2.1 The Allen-Cahn Energy

It is a natural extension of the continuous partial differential equation model to discrete graph model.
The variational principle governing many PDE models states that the equilibrium state is actually
the minimizer of one specific energy. The equilibrium state carries meaningful information and
can therefore be used as embedded features in the context of machine learning. We first introduce
the Dirichlet energy and show that GCNs can be characterized by looking into the corresponding
Euler-Lagrange equation of the Dirichlet energy. Based on this, we introduce the Allen-Cahn energy
and identify the Allen-Cahn Message Passing simultaneously.

Let G = (V, E) be an undirected graph with |V| = N nodes and |E| = E edges, and xi ∈ Rd denotes
the feature defined on the ith node and set x = ⊕xi. Let adjacent matrix A represent the undirected
connectivity between nodes xi and xj , with ai,j = 1 for (i, j) ∈ E and ai,j = 0 for (i, j) ̸∈ E . Let
Ni : {j ∈ N : ai,j ̸= 0} denote the index set of ith node’s neighbors.
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Figure 2: We compare the evolution of node features in GCN and ACMP. We show GCN in the
first row and ACMP in the second row. The initial position is represented by the 2-dimensional
position of the nodes, which is shown in the first column. The GCN aggregates all node features by
taking the weighted average of its neighbors’s features. With the propagated steps increasing, all the
nodes’ features shrink to a point, which gives rise to oversmoothing. When it comes to ACMP, nodes’
features are grouped by four attractors, which helps to circumvent oversmoothing.

The Dirichlet energy and its relation with GCNs The Dirichlet energy E in terms of G = (V, E)
and node features x ∈ RN×d takes the form

E(x) =
1

N

∑
i∈V

∑
j∈Ni

ai,j∥xi − xj∥2. (4)

Then, the graph neural diffusion scheme [17] can be characterized by considering the time-dependent
graph diffusion problem. By calculus of variation, we can formulate the particle equation

∂x

∂t
= −∇xE,

∂xi

∂t
= − ∂E

∂xi
=

2

N

∑
j∈Ni

ai,j(xj − xi). (5)

Here, the node features xi is a function of t, which is the continuous counterpart of the layers in
traditional GCN networks. On the RHS of (5), the summation takes over the one-hop neighbors Ni

of node i, which aggregates the impact from the neighboring nodes.

The graph Allen-Cahn equation Similarly, we define the Allen-Cahn energy on graph G denoted by
Φ : L2(V) → R, as a combination of the Dirichlet energy and double-well potential W : Rd → R+,
W (xi) = (δ/4)(1 − ∥xi∥2)2, Φ(x) = 1

2α
∑

i∈V
∑

j∈Ni
ai,j∥xi − xj∥2 +

∑
i∈V W (xi), with

parameters α, δ > 0 to balance two types of energy. Using this combined energy, we then write the
Allen-Cahn equation on the graph G as

∂x

∂t
= −∇xΦ,

∂xi

∂t
= − ∂Φ

∂xi
= α

∑
j∈Ni

ai,j(xj − xi) + δxi(1− ∥xi∥2). (6)

The Dirichlet energy acts as the source of attractive force (message passing in the context of GNN),
which smooths out the difference between connected node features xi over time since the particles
eventually reach consensus [35, 50]. This phenomenon has been frequently observed in GNN models.
The Allen-Cahn potential will push the particles toward the local equilibrium points of the double-well
potential. See the illustration in Figure 1. We use this properties of the equation in the design of our
message passing which we introduce now.

3 The Allen-Cahn Message Passing

In the context of message passing on graphs, we use the Allen-Cahn potential energy to balance the
node features and edge features in a systematic way as the Dirichlet energy encourages message
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passing and interplay between nodes while the Allen-Cahn potential energy function imposes the
features’ tendency of staying at the same potential well. The competition of these two types of energy
determine how node features x evolve collectively.

As shown in Figure 1, the xi is initialized at t = 0, and the Allen-Cahn potential encourages the node
feature xi to fall into the bottom of one well in the evolution. Meanwhile, xi is also attracted by other
xj via edge (i, j) ∈ E .

We propose the Allen-Cahn Message Passing (ACMP) neural network based on equation (6), which
learns the node features evolution. Besides the trainable filter kernel, rather than the original
deterministic equation, the ACMP assigns learnable coefficients to balance the Dirichlet energy and
Allen-Cahn potential.Specifically, the ACMP reads

∂

∂t
xi(t) = α⊙

∑
j∈Ni

a(xi(t),xj(t))(xj(t)− xi(t)) + δ ⊙ xi(t)⊙ (1− xi(t)⊙ xi(t)). (7)

Here α, δ ∈ Rd are learnable vectors of the same length as the node feature xi. All terms are channle-
wise operations for d channels, except a(xi(t),xj(t)), and ⊙ represents channel-wise multiplication
for d feature channels. We treat the Allen-Cahn potential channel-wisely. This would introduce
varying collective behaviors between channels, so that the Allen-Cahn process can be rich enough to
separate nodes, as illustrated by Figure 2.

Attractive and Repulsive Force Moreover, we can add learnable repel force on edges to enhance
the collective behavior of the ACMP propagation. A repel force is important for learning heterophilic
datasets, where the connected nodes are very likely to fall apart into different classes [29]. Our model
utilizes the learned repulsive force to make it possible for connected nodes to fall apart into different
wells. In section 4, we will also discuss repulsive force which plays an important role in easing the
oversmoothing problem on graph. The interplay between nodes i, j are determined by the learnable
function a(xi(t),xj(t)) ∈ R. We derive two different types of ACMP in terms of how to represent
attractive and repulsive forces based on (7).

ACMP-GCN:
∂

∂t
xi(t) = α⊙

∑
j∈Ni

(aGCN
i,j − β)(xj(t)− xi(t)) + δ ⊙ xi(t)⊙ (1− xi(t)⊙ xi(t)) , (8)

where aGCN
i,j is the normalized GCN adjacent matrix, which can be calculated by those used in

graph convolutions. For example, using coefficients in GCNs in (1), aGCN
i,j := ai,j/

√
d̂id̂j is the

normalized adjacent matrix Â with diag(d̂1, . . . , d̂N ) the degree matrix for Â;

ACMP-GAT: we can replace aGCN
i,j in (8) by the attention coefficients (3) of GAT, which contain

extra trainable parameters to measure the similarity information between two nodes.

Here, β ∈ R+ ∪ {0} in (8) is a hyperparameter allowing ith and jth nodes to repel each other when
aGCN
i,j − β < 0 or aattn(xi(t),xj(t))− β < 0 respectively. One can adjust β such that the attractive

force and repulsive force both present in the graph to enrich the message passing effect. To our best
knowledge, this is the first time to introduce a type of message passing to amplify the difference
between connected nodes by learnable repulsive force (message passing). Note that, if we choose β
such that the collective repulsive force exceeds a certain level, the node features x will blow up over
time. The Allen-Cahn potential offers a remedy by simply adjusting the weights parameters α and
δ. The stability of our model will be discussed in Section 4. Besides, if one chooses δ = 0, β = 0
in ACMP-GCN or ACMP-GAT in (8) in [17], our model is reduced to the graph neural diffusion
network (GRAND). In experiments, we would make significant use of nontrivial δ and β.
Do we need to mention βi,j?

Adding the repulsive force and the Allen-Cahn term in ACMP provides distinct features not shared
by previous model [17]. The repulsive forces help the particles to separate into different clusters.
The Allen-Cahn term helps the separated clusters to stay near its local equilibia ±1, rather than
be attracted to other clusters. These mechanisms thus help to prevent oversmoothing. Also, the
Allen-Cahn term only depends on the feature of the ith node itself. It then links with can be viewed
as a metamorphosis of the residual, which enables to enhance the representation of the node’s own
feature.
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4 The Dirichlet Energy and Phase Transition

In order to overcome the oversmoothing phenomenon [54, 56], one needs to study the emergent
behaviours of our model. The analysis of emergent behaviours of the neural ODEs for ACMP is
usually done through the estimate of the Dirichlet energy. Oversmoothing phenomenon means all
node features converge to the same constant – consensus forms – as the network deepens, thus the
Dirichlet energy will decay to zero time-asymptotically. Therefore, in principle, if only in one channel
the node feature fails to become identical to another one, the oversmmothing will not appear. Recall
the Dirichlet energy (4). It suffices to prove that the Dirichlet energy has a strictly positive lower
bound. In our model, the node features in each channel tend to evolve into two clusters departing
from each other under certain conditions, and the Dirichlet energy has a strictly positive lower bound,
as will be shown in this section.

Definition 1 (Oversmoothing) Let xl denotes the hidden features of the lth layer of an L-layer
GNN, with l = 0, . . . , L. oversmoothing is defined as the exponential convergence to zero of the
layer-wise Dirichlet energy as a function of l, i.e., E(xl) ≤ C1 exp(−C2l), with some constants
C1, C2 > 0.

If δ = 0, β = 0, there are only attractive forces in the system, or more generally in any particle
system {xi} satisfying ẋi =

∑
j ai,j(xj − xi) for ai,j ≥ 0. One can prove the convex hull of x(t)

will not dilate in time. The proof can be found in [50]. Under appropriate assumptions, (e.g. A
being positive), the convex hull readily shrinks into one point. In other words, all the features tend to
the same constant, causing the oversmoothing problem. We also include the evolution of the above
system in terms of Dirichlet energy here.

Propsition 1 Let D denote the degree matrix, i.e., D := diag(d1, · · · , dN ), where di =
∑

j ai,j ,
ai,j = aj,i ≥ 0. Then D −A is symmetric positive semi-definite with the eigenvalues 0 = λ0 ≤
λ1 ≤ · · · ≤ λmax < ∞. Let λmin > 0 be the smallest positive eigenvalue, then for all t ≥ 0, there
exits a constant c such that E(x(t)) ≤ c exp(−λ2

mint).

However, by adding β > 0 and the Allen-Cahn term, the attractive force between connected nodes is
no longer the only force affecting the system. The force turns to repulsive when aGCN

i,j or aattn(xi,xj)
is less than β. Depending on the relative strength between α and δ, one can achieve a trade-off in the
dynamics. Generally, the Dirichlet energy of (8) can be bounded in time thanks to the Allen-Cahn
term [34, 29]. Under proper initialization, one can expect separation phenomenon after sufficiently
long time. We provide some propositions here confirming this assertion, under certain conditions.
We put all the proofs and some supplementary related results in the Appendix.

Propsition 2 The node features xi in ACMP-GCN (8) or ACMP-GAT is bounded for all t > 0 if
δ > 0, i.e., there exists R > 0 such that ∥xi∥∞ ≤ R for each node i.

Propsition 3 If δ > 0, the node features xi in ACMP-GCN (8) or ACMP-GAT is bounded in terms of
∥ · ∥ and energy for all t > 0, i.e., E(x(t)) ≤ C, and ∥x∥ ≤ C, where the constant C only depends
on N and λmax.

The lower bound below shows that the Dirichlet energy will never decay to zero. We facilitate
the analysis by emergent behavior analysis like those done in [29] (see Appendix for details). In
the β = 0 case, then intuitively one can only expect one cluster since there is no repulsive force
between nodes pushing particles away from each other [34]. For a graph G with N nodes, its vertices
are said to form bi-cluster flocking if there exist two disjoint sets of vertex subsets {x(1)

i }N1
i=1 and

{x(2)
j }N2

j=1, and two cluster centers c1, c2, |c1 − c2| > c > 0 such that |x(1)
i − c1| < ϵ1 for any i

and |x(2)
j − c2| < ϵ2 for any j, and c > ϵ1 + ϵ2. We defined a different bi-cluster flocking in the

Appendix. c > ϵ1 + ϵ2 seems unnecessary for "energy lower bouned’.

We now show the long-time behaviour of model (8) following the analysis of [29] for strength
coupling (α, δ) that satisfies the following condition: there exists {βi,j} such that I := {1, . . . , N}
can be divided into two disjoint groups I1, I2 with N1 and N2 particles respectively:

0 < S ≤ ai,j with ai,j := ai,j − βi,j for i, j ∈ I1,

0 < S ≤ ai,j with ai,j := ai,j − βi,j for i, j ∈ I2,

0 ≤ ai,j ≤ D with ai,j := ai,j − βi,j otherwise,
(9)
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where S,D are independent of time t. In ACMP-GCN, (aGCN
i,j − βi,j) are parameters and we omit

the superscript GCN in ai,j(t). For time t ≥ 0, suppose x
(1)
c (t) and x

(2)
c (t) are the ‘feature centers’

of the two groups of the particles {x(1)
i (t)}N1

i=1 and {x(2)
j (t)}N2

j=1 which are partitioned as above from
the whole vertex set V , given by

x(1)
c (t) :=

1

N1

N1∑
i=1

x
(1)
i (t), x(2)

c (t) :=
1

N2

N2∑
i=1

x
(2)
i (t).

Suppose x(s)
c (t) has the d-dimensional feature, and let x(s)

c,k(t), k = 1, . . . , d, be the k-th (dimension)

component of the feature x
(s)
c (t), s = 1, 2.

Propsition 4 The system (8) has a bi-cluster flocking if for each k = 1, . . . , d, the initial |x(1)
c,k(0)−

x
(2)
c,k(0)| ≫ 1, and if there exists a positive constant η such that

α(S −D)min{N1, N2} ≥ δ + η.

The lowercase x means xk for some channel k. So the notation xc,k may be confusing.

Propsition 5 For system (8) with bi-cluster flocking, there exists a constant C > 0 and some time
T ∗ such that ∀t ≥ T ∗,

|x(1)
i (t)− x

(2)
j (t)| ≥ C > 0, ∀i, j.

Thus, if the non-zero ai,j are all positive, the Dirichlet energy for ACMP is lower bounded by a
positive constant.

5 Implementation and Model Variants

Architecture Suppose graph G = (V, E) has N nodes and d-dimensional node-wise features
represented by a matrix xin where row i represents feature of node i. Our scheme first embeds the
node feature x(0) = MLP(xin) by a simple multi-layer perceptron, which is treated as an input for
the ACMP propagation A : Rd → Rd, by x(0) 7→ x(T ), where

x(T ) = x(0) +

∫ T

0

∂x(t)

∂t
dt, x(0) = MLP

(
xin
)
,

where ∂X(t)
∂t is estimated by ACMP defined on G based on (6). The node features x(T ) at the ending

time are feed into an MLP based classifier.

Neural ODE Solver Our method uses an ODE integrator in the network for numerically
implementing the proposed ACMP. To obtain the node features x(T ), we need a stable numerical
integrator for solving the ODE efficiently and backpropagation of gradients. One could use explicit
and implicit numerical schemes such as explicit Euler, 4th order Runge-Kutta method, midpoint
method and Dormand-Prince5 method [19, 42, 53, 17]. Since our model is stable in terms of evolution
time and Allen-Cahn double-well potential is infinitely differentiable, most numerical schemes work
well for our models as long as the step size τ is small enough. Among these methods, we find that
Dormand-Prince5 is fast and stable. We leave the details about numerical solver to Appendix.

Computational Complexity The computational complexity of the one-step ACMP is O(NEdnt),
where nt, N , E and d are the number of time steps in time interval [0, T ], the number of nodes, the
number of edges and the number of feature dimension, respectively. Since our model only considers
nearest (one-hop) neighbors, E is significantly smaller than that of graph rewiring method [32, 5]
and multi-hop method [72].

More clusters We can simply replace the double well potential W by a multi-well potential to
generate more equilibria. We provide two alternatives here. One can use a higher-order polynomial to
construct additional wells. In general, a (2k+1)th order polynomial can produce k+1 stable equilibria
in a proper form, which gives rise to more stable clusters. One can also use sin(( 32 + l)πx+ π

2 ), l =
0, · · · , k, defined on the interval [−1, 1] as the multi-well potential, which has l + 2 stable equilibria.
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Stronger trapping force As the consensus state (i.e. xi = xj for all i, j) might not be a global
equilibrium of (8), particles could escape from one well of the potential of W to another well. We
can circumvent this instablility by enhancing the attraction of the wells, which can be achieved by
reducing the diffusion power around wells:

∂

∂t
xi(t) = α⊙

∑
j∈Ni

(aGNN(xi(t),xj(t))−β)(xj(t)−xi(t))
(
1− xi(t)

⊙2
)⊙2

+δ⊙xi(t)⊙
(
1− xi(t)

⊙2
)
.

(10)
where ‘GNN’ in aGNN can be GCN or attn, and z⊙2 is z ⊙ z. With this modification in (10), in any
channel k, if any particle x

(k)
i gets caught in one potential well, then it is not likily to escape:

Propsition 6 For (10), there exists a proper δ′ > 0 such that x(k)
i ∈ [−1,−1+ δ′)∪ (1− δ′, 1], then

particle x
(k)
i cannot transition into another well.

6 Experiments

6.1 The Dirichlet Energy

We first illustrate the evolution of the Dirichlet energy of ACMP by a undirected synthetic random
graph. The synthetic graph has 100 nodes with two classes and 2D feature which is sampled from the
normal distribution with the same standard deviation σ = 2 and two means µ1 = −0.5, µ2 = 0.5.
The nodes are connected randomly with probability p = 0.9 if they are in the same class, otherwise
nodes in different classes are connected with probability p = 0.1. We compare the performance
of GNN models with four message passing propagators: GCNs [39], GAT [66], GRAND [17] and
ACMP-GCN. In Figure 3, we show the Dirichlet energy of each layer’s output in logarithm scales. It
shows that traditional GNNs such as GCNs and GAT suffer oversmoothing as the Dirichlet energy
exponentially decays to zero in the first ten layers. Graph Neural Diffusion (GRAND) relieves this
problem by multiplying a small constant which can delay all nodes’ feature to collapse to the same
value. For ACMP, the energy stabilizes at the level that relies upon the roots of the Allen-Cahn
polynomial in (7) after slightly decaying in the first two layers.

Figure 3: Evolution of Dirichlet energy E(X
n
)

of layer-wise node features Xn propagated
through GCN, GAT, GRAND and ACMP-GCN.

Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

GPRGNN [20] 78.4± 4.4 82.9± 4.2 80.3± 8.1
H2GCN [72] 84.9± 7.2 87.7± 5.0 82.7± 5.3
GCNII [18] 77.6± 3.8 80.4± 3.4 77.9± 3.8
Geom-GCN [57] 66.8± 2.7 64.5± 3.7 60.5± 3.7
PairNorm [71] 60.3± 4.3 48.4± 6.1 58.9± 3.2
GraphSAGE [36] 82.4± 6.1 81.2± 5.6 76.0± 5.0
MLP 80.8± 4.8 85.3± 3.3 81.9± 6.4
GAT [66] 52.2± 6.6 49.4± 4.1 61.9± 5.1
GCN [39] 55.1± 5.2 51.8± 3.1 60.5± 5.3
GraphCON [40] 85.4± 4.2 87.8± 3.3 84.3± 4.8

ACMP-GCN (ours) 86.2± 0.3 86.1± 0.4 85.4± 0.7

Table 1: Node classification results on
heterophilic datasets. We use the 10 fixed split
train, validation and test from [57] and show the
mean and standard deviation of test accuracy. We
show the best three method in red (First), blue
(Second), and violet (Third).

6.2 Node Classification

We compare the performance of ACMP with several popular GNN model architectures on various
node classification benchmarks, containing both homophilic and heterophilic dataset. Graph data is
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considered as homophilic if its homophily level [57] is big. In this case, similar nodes in the graph
tend to connect together. Conversely, the graph data is said heterophilic if it has a small homophily
level, when most neighbors do not have the same label with source nodes. We aim to demonstrate
that ACMP is a flexible GNN model which can learn well both kinds of datasets by balancing the
diffusion and Allen-Cahn terms.

Homophilic datasets The results of our study are presented for the most widely used citation
networks: Cora [45], Citeseer [63] and Pubmed [51]. Additionally, we also evaluate our model on
the Amazon co-purchasing graphs Computer and Photo [51], and CoauthorCS [64]. We compare our
model with traditional GNN models: Graph Convolutional Network (GCN) [39], Graph Attention
Network (GAT) [66], Mixture Model Networks [46] and GraphSage [36]. We also compare our
results with recent ODE-based GNNs, Continuous Graph Neural Networks (CGNN) [69], Graph
Neural Ordinary Differential Equations (GDE) [58] and Graph Neural Diffusion (GRAND) [17]. To
address the limitations of this evaluation methodology proposed by [64], we report results for all
datasets using 100 random splits with 10 random initializations and show the node classification
result with mean and standard deviation in Table 2.

Random Split Cora CiteSeer PubMed Coauthor CS Computer Photo
Homophily level 0.83 0.71 0.79 0.80 0.77 0.83

GCN [39] 81.5± 1.3 71.9± 1.9 77.8± 2.9 91.1± 0.5 82.6± 2.4 91.2± 1.2
GAT [66] 81.8± 1.3 71.4± 1.9 78.7± 2.3 90.5± 0.6 78.0 85.7
GAT-ppr [66] 81.6± 0.3 68.5± 0.2 76.7± 0.3 91.3± 0.1 85.4± 0.1 90.9± 0.3
MoNet [46] 81.3± 1.3 71.2± 2.0 78.6± 2.3 90.8± 0.6 83.5± 2.2 91.2± 2.3
GraphSage-mean [36] 79.2± 7.7 71.6± 2.0 77.4± 2.2 91.3± 2.8 82.4± 1.8 91.4± 1.3
GraphSage-max [36] 76.6± 1.9 67.5± 2.3 76.1± 2.3 85.0± 1.1 N/A 90.4± 1.3
CGNN [69] 81.4± 1.6 66.9± 1.8 66.6± 4.4 92.3± 0.2 80.29± 2.0 91.39± 1.5
GDE [58] 78.7± 2.2 71.8± 1.1 73.9± 3.7 91.6± 0.1 81.9± 0.6 92.4± 2.0
GRAND-l [17] 83.6± 1.0 73.4± 0.5 78.8± 1.7 92.9± 0.4 83.7± 1.2 92.3± 0.9

ACMP-GCN (ours) 84.9± 0.6 75.0± 1.0 78.9± 1.0 93.0± 0.5 83.5± 1.4 91.8± 1.1
ACMP-GAT (ours) 82.3± 0.5 75.5± 1.0 79.4± 0.4 91.8± 0.1 84.4± 1.6 91.1± 0.7

Table 2: Test accuracy and std for 10 initialization and 100 random train-val-test splits on six
benchmark graph node classification tasks. We show the best three methods in red (First), blue
(Second), and violet (Third).

Heterophilic datasets We evaluate ACMP-GCN on the heterophilic graphs; Cornell, Texas and
Wisconsin from the WebKB dataset3. In this case, the assumption of common neighbors does not
hold. The poor performance of GCN and GAT models shown in Table 1 indicates that many GNN
models struggle in this setting. Introducing the Allen-Cahn term can improve the performance of
GNNs on heteroplilic datasets significantly. ACMP-GCN scores 30% higher than the original GCN
for the Texas dataset which has the smallest homophily level among the datasets in the table.

Attractive and Repulsive interpretation As shown in Table 1 and Table 2, ACMP-GCN and
ACMP-GAT achieve better performance than GCN and GAT on both homophilic and heterophilic
datasets. The majority of ai,j − β in the homophilic are positive, which means most nodes are
attracted to each other. Conversely, most ai,j − β for the heterophilic are negative, which means
that all the nodes are repelling their neighbors. Several GNNs exploiting multi-hop information can
achieve high performance in node classification [72, 43]. However, high-order neighbor information
will make the adjacency matrix dense and therefore can not be extended to large graphs. In our model,
we take only one-hop information into account and add repulsive force (β > 0) to message passing,
which has achieved the same or higher level of accuracy as multi-hop models in heterophilic dataset.

7 Related work

Neural Differential equations [38] provided an intimate survey on neural differential equations.
The topic of neural ODEs becomes an emerging field since E [27] and Chen et al.’s work [19], with

3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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many follow-up works. Augmented [26] and regularized [30] forms are explored to enhance network
expression power. Neural ODEs have been introduced into the GNN field: [7] used continuous
residual modules for graph kernels; [58] extended the framework of GNN to continuous time. [62]
applied Hamiltonian mechanics to graph networks to predict future states. For neural PDEs [60]
attempted to use deep learning to solve PDEs. [13] used message passing to solve PDEs numerically.
[10] developed a hybrid (graph) neural network embedded with PDE. GRAND [17] approached graph
deep learning as a continuous diffusion process and propagated GNN by graph diffusion equation.
[28] combined diffusion and wave PDEs for GNNs, and GCON [40] generalized this method. The
latter employed a second-order system to conquer oversmoothing.

Flocking and Consensus In the literature the microscopic (agent-based particle systems) modeling
of flocking and consensus has been extensively studied [22, 23, 21, 50, 16] with asymptotic estimates
[50, 29, 34, 35, 37]. The flocking problem is to some degree similar to the general consensus problem
[55] which studies the emergent behaviours for multi-agent systems. The Cucker-Smale model [22]
is a famous model in this field considering a second-order system adopting to classical dynamics.

8 Conclusion

We develop a new message passing method based on Allen-Cahn particle system evolution. The new
scheme treats the graph learning as particle evolution, and exploits the flexible design of particle
equations. The proposed ACMP inherits the merits of separability and boundedness of the particle
equation. The separability comes from introducing the attractive/repulsive force, with an Allen-Cahn
term of double-well potential that serves to bound the node feature in the evolution and keeps the
clusters near the local equilibria of the well thus prevents occurrence of oversmoothing. Experiments
show excellent performance of the model for real datasets with various homophilic difficulty.
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A The Gradient Flow Interpretation of Allen-Cahn

The Allen–Cahn equation (after John W. Cahn and Sam Allen [4]) is a phase transition model. It
describes a reaction-diffusion process including order-disorder transitions. Let Ω ⊆ RN of a "binary
mixture": Ice in solid phase (+1) and water in liquid phase (−1). The configuration of this mixture
in Ω can be described as a function

u∗(x) =

{
+1 in Λ

−1 otherwise,
(11)

where Λ is some open subset of Ω. We will say that u∗ is the phase function.

Set the double-well potential W (u) = 1
4 (1− u2)2. Define the energy potential Φ : L2(Ω) → R+

Φ(µ, u) =

∫
(µ2|∇u|2 +W (u)). (12)

Then, we can calculate the variation δΦ

− δΦ

δu
= −µ2∆u+W ′(u). (13)

To find a dynamic so that u can achieve some stable state u∗, one can choose the gradient direction of
the potential energy as the search direction. Note that ∇Φ = δΦ

δu in L2(Ω), then one can design such
gradient flow in L2(Ω) :

ut = −∇Φ = −δΦ

δu
= µ2∆u−W ′(u), (14)

which is the Allen-Cahn equation:

ut = µ2∆u+ u(1− u)(1 + u). (15)

B Proofs of Propositions in Section 4

We assume that ai,j is symmetric, and ai,j > 0 if ai,j ̸= 0. This condition means that graph is
undirected. Since we deal with each channel independently, we abuse the notation to let xi denote
one feature component of node xi to simplifying the notation in proofs.

B.1 The GRAND model

First, we consider the oversmoothing phenomenon if there is only the diffusion process with diffusion
coefficients independent of xi, which is a specific model of graph diffusion network (GRAND) [17],

ẋi = α
∑

j:(i,j)∈E

ai,j(xj − xi). (16)

Proposition 1 Let D denote the degree matrix, i.e., D := diag(d1, · · · , dN ), where di =
∑

j ai,j .
Then D−A is symmetric positive semi-definite with the eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λmax <
∞. Let λmin > 0 be the smallest positive eigenvalue, then for all t ≥ 0, there exists a constant C > 0
such that E(x(t)) ≤ C exp(−λ2

mint).

Proof. Let L := D−A, we have,
x(t) = x(0)e−L.

Using eigenvalue decomposition, the solution x(t) writes

x(t) = U⊤e−ΛtUx(0) (17)

Since the Dirichlet energy can also be written as

E(x(t)) = x(t)⊤Lx(t), (18)

Taking (17) to (18) gives

E(x(t)) = x(0)⊤U⊤e−ΛtΛe−ΛtUx(0). (19)

Therefore, E(x(t)) ≤ C exp(−λ2
mint) for some constant C > 0. ■
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Propsition 7 We also consider a more general case,

d

dt
xi(t) =

∑
j:(i,j)∈E

a(xi, xj)(xj − xi), (20)

with a(xi, xj) = a(xj , xi) ≥ amin > 0, for any xi, xj .

Let the mass center xc =
1
N

∑
i∈V xi. From the symmetry of a(xi, xj) and (20), we obtain dxc/dt =

0 for any t > 0. Without loss of generality, we may assume

xc(0) = 0, (21)

and graph G is connected, i.e., ∀(i, j) ∈ V × V , G contains a path from i to j. Then we have,
∥x(t)∥2 ≤ ∥x(0)∥2e−2aminλmint and E(x(t)) ≤ λmax∥x(0)∥2e−2aminλmint. Note that the above
estimates hold true for any initial condition xc(0) = c, since x satisfies the ODE system (20) up to
a constant. If xc(0) = c, xi will converge to c in time. If G is not connected, then we just need to
consider each connected sub-graph separately with the assumption xc′(0) =

1
N ′

∑
i∈V′ xi = c′ for

each sub-graph G′ = (V ′, E ′). x′
i in each sub-graph will converge to constant c′ independently.

Proof. We multiply xi on both sides of the equation (20) and sum over xi to obtain

xi
dxi

dt
=

∑
j∈N(j)

a (xi, xj) (xj − xi)xi (22)

⇒ d

dt
∥x∥2 = −2

∑
(i,j)∈E

a (xi, xj) (xj − xi)
2 (23)

⇒ d

dt
∥x∥2 ⩽ −2amin

∑
(i,j)∈E

(xj − xi)
2 (24)

The RHS in (24) can be written in matrix form with L := D−A,∑
(i,j)∈E

(xj − xi)
2
=

∑
(i,j)∈V×V

ai,j (xj − xi)
2
= x⊤Lx.

Since G is a connected graph, 1 is the only eigenvector consisting of the kernel space of L, therefore,
xTLx ≥ λmin∥x∥2 for any x satisfying

∑
i∈V xi = 0. Then, (24) leads to

d

dt
∥x∥2 ⩽ −2aminλmin∥x∥2. (25)

This yields the decay estimates for ∥x∥ and E(x(t)):

∥x(t)∥2 ≤ ∥x(0)∥2e−2aminλmint, E(x(t)) ≤ λmax∥x(0)∥2e−2aminλmint.

■

B.2 The model with the Allen-Cahn term

Next, we consider the case β = 0 but with the Allen-Cahn term:
d

dt
xi(t) = α

∑
j:(i,j)∈E

a(xi, xj)(xj − xi) + δxi

(
1− x2

i

)
,

a(xi, xj) = a(xj , xi) ≥ 0, ∀i, j ∈ V
∑
i

a(xi, xj) = 1, ∀j ∈ V.
(26)

For (26), we can assert that the stable equilibrium of any xi is limited in the interval [−1, 1].

Propsition 8 Suppose x∗ = (x∗
1, . . . , x

∗
N ) is a global equilibrium (or steady state solution) of (26)

on R and x, then x∗
i ∈ [−1, 1].
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Proof. Suppose x∗ achieves the equilibrium of (26), and x∗
k ≥ x∗

i ∀i. If x∗
k > 1, then

α
∑

j:(k,j)∈E
a(x∗

k, x
∗
j )(x

∗
j − x∗

k) ≤ 0 and x∗
k(1 − x∗2

k ) < 0, which contradicts with ∂
∂tx

∗
k = 0.

■

The emergence of clusters depends on the distribution of initial features. If all the initial features are
in only one potential well, then intuitively it is impossible to produce more than one cluster in the
dynamics (26). As a simple transference of Lemma 3.2 in [34], we can prove this. Set

xM (t) := max
i

xi(t), xm(t) := min
i

xi(t), (27)

where xi is still some component of node feature xi. Assume xm, xM are both Lipschitz continuous
and therefore they are almost differentiable everywhere in time t.

Propsition 9 Let {xi} be the solutions of (26), then the following holds.
(i) If xm(0) > 0, then xm(t) ≥ 0 for all t > 0.

(ii) If xM (0) < 0, then xM (t) ≤ 0 for all t > 0.

Proof. The proof was essentially given by [34]. For the sake of completeness, we give a proof here.
(i) If xm(0) > 0, we assert there exists a time sequence {tj}∞j=0 satisfying t0 = 0 < t1 < · · · <
tj < . . . , xm(t) is differentiable in each time interval (tj−1, tj) and xm

i ≥ 0 when t ∈ [0, t1]. By
induction, firstly we set

xm(t) ≥ 0, t ∈ [0, tl].

If xm becomes negative in the time interval (tl, tl+1) there exists t∗ ∈ (tl, tl+1) such that xm(t∗) = 0
by the continuity of xm(t). One can assume xm(t) ≡ xi(t) for some node xi in some time interval
subset to (tl, tl+1). At that moment,

dxi

dt
(t∗) = α

∑
j

a(xj , xi)(xj(t
∗)− xi(t

∗)) + δxi(t
∗)(1− x2

i (t
∗))

= α
∑
j

a(xj , xi)xj(t
∗)

≥ 0.

(28)

Hence the trajectory xm becomes non-decreasing at t = t∗. By induction, we derive (i).

(ii) can be proved by the same argument as those for (i). ■

Now we consider the second kinetic model (10). We can prove that if any particle xi gets caught in
one potential well, then it will not escape from that well.

Proof of Proposition 6. For the β = 0 case, assume xi = −1 + ϵ for ϵ ≤ δ′ < 1 at a certain time t0,
that is, xi ∈ [−1,−1 + δ′). We want to show dxi

dt

∣∣
t=t0

< 0, which means

α
∑
j∈Ni

ai,j(xj − xi)(1− x2
i )

2 < −δxi(1− x2
i ).

By
∑

j∈Ni
ai,j = 1 from (26), the above inequality is equivalent to∑

j∈Ni

ai,jxj <
δ

α

1− ϵ

2− ϵ

1

ϵ
+ ϵ− 1 ≤ δ

2α

1

ϵ
+ ϵ− 1 ≤ δ

2αϵ
. (29)

Since {xj}Nj=1 are bounded (See Proposition 2.), (29) is satisfied for a sufficiently small δ′. The other
case xi = 1− ϵ can be similarly proved.
For the β ̸= 0 case, we also assume xi = −1 + ϵ for ϵ ≤ δ′ < 1 at a certain time t0. Similarly with
(29), we have∑

j∈Ni

(ai,j − β)xj <
δ

α

1− ϵ

2− ϵ

1

ϵ
+ (1− diβ)(ϵ− 1) ≤ δ

2αϵ
+ diβ − 1 + ϵ(1− diβ).

By the boundedness of {xj}Nj=1, a properly small δ′ can be found. ■
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B.3 The Attractive-repulsive Model

We first show that the solution features of graph in the Allen-Cahn model below is bounded. For
simplicity of the proof, we rewrite (8) in component form where we let a(xi, xj) := ai,j − βi,j :

d

dt
xi(t) = α

∑
j:(i,j)∈E

a(xi, xj)(xj − xi) + δxi

(
1− x2

i

)
. (30)

Model (30) allows negative a(xi, xj) which is different from the condition in (26).

Proof of Proposition 2 and Proposition 3. We multiply xi on both sides of the following equation
and sum over xi to obtain

dxi

dt
=
∑
j∈Ni

a(xi, xj) (xj − xi)− x3
i + xi

⇒1

2

dx2
i

dt
=
∑
j∈Ni

a(xi, xj) (xj − xi)xi − x4
i + x2

i

⇒1

2

∑
i∈V

dx2
i

dt
= −

∑
i∈V

∑
j∈Ni

a(xi, xj) (xj − xi)xi − x4
i + x2

i

 .

(31)

By grouping a(xi, xj) (xj − xi)xi, then
1

2

d

dt
∥x∥2 = −1

2

∑
i∈V

∑
j∈Ni

a(xi, xj) (xj − xi)
2 −

∑
i∈V

x4
i + ∥x∥2. (32)

Note that a(xi, xj) are bounded for any (xi, xj). Let the |a(xi, xj)| < D1 for a constant D1

depending on hyper-parameters βi,j . By the Cauchy-Schwarz inequality,

|a(xi, xj)(xj − xi)
2| ≤ 2D1(x

2
i + x2

j ).

Hence
−
∑
i∈V

∑
j∈Ni

a(xi, xj) (xj − xi)
2 ≤ c4∥x∥2.

Also,
∑
i∈V

x4
i ≥ c3∥x∥4 for a constant c3 depending only on N . Taking the above estimates to (32)

gives
d

dt
∥x∥2 ≤ −2c3∥x∥4 + (c4 + 2)∥x∥2.

If ∥x∥ blows up for t > 0, the ∥x∥ → ∞ as time t increases, and d
dt∥x∥

2 > 0 for all t before the
blowing-up time Tend. However, one can find a t∗ < Tend such that ∥x(t∗)∥ is large enough and

−2c3∥x(t∗)∥4 + (c4 + 2)∥x(t∗)∥2 < 0,

which produces a contradiction. Thus, ∥x∥ ≤ c5 for a constant c5 only depending on N and D1 and

E(x) ≤ λmax∥x∥2 ≤ λmaxc5,

where λmax is the largest eigenvalue of L := D−A. Thus, we proved the assertion in Proposition 3.

■

For an attractive-repulsive system, we change β into βi,j . We here show the long-time behaviour of
the Cucker-Smale model [22] for strength coupling (α, δ) that satisfies the following condition: there
exists {βi,j} such that I := {1, . . . , N} can be divided into two disjoint groups I1, I2:

0 < S ≤ ai,j with ai,j := ai,j − βi,j for i, j ∈ I1,

0 < S ≤ ai,j with ai,j := ai,j − βi,j for i, j ∈ I2,

0 ≤ ai,j ≤ D with ai,j := ai,j − βi,j otherwise,

0 ≤ ai,j ≤ D with −ai,j := ai,j − βi,j otherwise,

(33)

where S,D are independent of time t. This system can be proved to produce bi-cluster stable
equilibria. In ACMP-GCN, aGCN

i,j := aGCN
i,j − βi,j are parameters and we omit the superscript GCN

in ai,j(t) in the following.
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Remark 1 For ACMP-GAT, (aattni,j − βi,j) may depend on time t. In this case, we need to assume
ai,j(t) always satisfies (33) for all t. The following proof still works.

Denote node features indexed by I1, I2 by x
(1)
i , x

(2)
i respectively. Then (30) can be rewritten as


d

dt
x
(1)
i = α

N1∑
k

ak,i(x
(1)
k − x

(1)
i )− α

N2∑
k

ak,i(x
(2)
k − x

(1)
i ) + δx

(1)
i (1− (x

(1)
i )2), i = 1, . . . , N1

d

dt
x
(2)
j = α

N2∑
k

ak,j(x
(1)
k − x

(1)
i )− α

N1∑
k

ak,j(x
(2)
k − x

(1)
j ) + δx

(2)
j (1− (x

(2)
j )2), j = 1, . . . , N2.

(34)

For the attractive-repulsive model (34), we can refer to the results in [29] and obtain the following
proposition by following the proof of its Theorem 5.1.

Definition 2 Let {xi}Ni=1 = {x(1)
i ∪ x

(2)
j } be a solution to system (30). Then, the solution tends to

the bi-cluster flocking if

(i) sup
0≤t<∞

max
1≤i,j∈N1

|x(1)
i (t)− x

(1)
j (t)| < ∞, sup

0≤t<∞
max

1≤i,j∈N2

|x(2)
i (t)− x

(2)
j (t)| < ∞;

(ii) ∃ C, T ∗∗ > 0 min
i∈I1,j∈I2

{|x(1)
i (t)− x

(2)
j (t)|} ≥ C, ∀t > T ∗∗.

(35)

We define the following notations for further proof:

V := {nodes indexed by I1}, W := {nodes indexed by I2},
N1 := |V |, N2 := |W |,

x̂(1) := x
(1)
i − x(1)

c , x̂(2) := x
(2)
i − x(2)

c ,

x(1)
c :=

1

N1

N1∑
i=1

x
(1)
i , x(2)

c :=
1

N2

N2∑
i=1

x
(2)
i ,

M2(V ) :=
1

N1

N1∑
i=1

(x
(1)
i )2, M2(W ) :=

1

N2

N2∑
i=1

(x
(2)
i )2,

M2 := M2(V ) +M2(W ),

M̂2 := M2(V̂ ) +M2(Ŵ ).

Propsition 10 Let ai,j be given by (33). Suppose that α, δ > 0, the initial centers of two groups are
separated enough and the intra-interaction outweighs the inter-interaction, namely

∥x(1)
c (0)− x(2)

c (0)∥ ≫ 1, (δ + αDmax{N1, N2} − αSmin{N1, N2}) ≤ −η, (36)

Then, the system has a bi-cluster flocking.

Remark 2 (36) indicates that the repulsive force between the particles should be stronger than the
attractive (S > D).

To prove Proposition 10, we need the following two lemmas, which we would postpone to prove.
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Lemma 1 Let {xi} be a solution to (34). Then M̂2 satisfies

d

dt
M2 =− α

N1

N1∑
i,k

ak,i(x
(1)
k − x

(1)
i )2 − 2α

N1

N2∑
k

N1∑
i

ai,k(x
(2)
k − x

(1)
i )x

(1)
i

+
2δ

N1

N1∑
i

(x
(1)
i )2(1− (x

(1)
i )2)

− α

N2

N2∑
j,k

ak,j(x
(2)
k − x

(2)
j )2 − 2α

N2

N2∑
j

N2∑
i

aj,k(x
(1)
k − x

(2)
j )x

(2)
j

+
2δ

N2

N2∑
i

(x
(2)
j )2(1− (x

(2)
j )2).

(37)

Suppose that the system parameters satisfy

S ≥ 0, D > 0, δ > 0,

then there exists a positive constant M∞
2 such that

sup
0≤t<∞

M2(t) ≤ M∞
2 < ∞. (38)

Lemma 2 Let {xi} be a solution to (34) with δ > 0. Then M̂2 satisfies

d

dt
M̂2 ≤ −2ηM̂2 + 2αDζ|x(1)

c − x(2)
c |
√
M̂2, (39)

where ζ = max{N1, N2}.

Proof of Proposition 10.
(a) (Uniform upper bound of |x(1)

c − x
(2)
c |) By Cauchy’s inequality and Lemma 1,

|x(1)
c − x(2)

c | =

∣∣∣∣∣ 1

N1

N1∑
i=1

x
(1)
i − 1

N2

N2∑
i=1

x
(2)
i

∣∣∣∣∣
≤ 1

N1

N1∑
i=1

|x(1)
i |+ 1

N2

N2∑
i=1

|x(2)
i |

≤ 2

√√√√ 1

N1

N1∑
i=1

(x
(1)
i )2 +

1

N2

N2∑
i=1

(x
(2)
i )2

= 2
√
M2(t) ≤ 2

√
M∞

2 .

(40)

(b) (Uniform boundedness of M̂2) By Lemma 2 and (40),

d

dt

√
M̂2 ≤ −η

√
M̂2 + αDζ|x(1)

c − x(2)
c |

≤ −η

√
M̂2 + 2Dαζ

√
M∞

2 .

(41)

Use Gronwall’s lemma to obtain√
M̂2(t) ≤

√
M̂2(0)e

−ηt +
2Dαζ

√
M∞

2

η
(1− e−ηt)

≤ max

{√
M̂2(0),

2Dαζ
√

M∞
2

η

}
:= C3.

(42)
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(c) (Separation of the particles) By a similar estimate with Lemma 2, we have

d

dt
|x(1)

c − x(2)
c |2 =2(x(1)

c − x(2)
c )

α

N1

N2∑
k

N1∑
i

ak,i(x̂
(2)
k + x(2)

c − x̂
(1)
i − x(1)

c )

− 2(x(1)
c − x(2)

c )
α

N2

N2∑
k

N1∑
i

ak,i(x̂
(2)
k + x(2)

c − x̂
(1)
i − x(1)

c )

− 2δ

N1

N1∑
i

(x
(1)
i )3(x(1)

c − x(2)
c ) +

2δ

N2

N2∑
i

(x
(2)
i )3(x(1)

c − x(2)
c )

≥2α

(
1

N1
+

1

N2

) N1∑
i

N2∑
j

ai,j(x
(1)
c − x(2)

c )2 + Ic1 + Ic2.

(43)

By the Cauchy-Schwarz inequality,

|Ic1| = −2α

(
1

N1
+

1

N2

) N1∑
i

N2∑
j

ai,j(x̂
(2)
j − x̂

(1)
i )(x(1)

c − x(2)
c )

≤ 2α

(
1

N1
+

1

N2

)
D
√

N1N2|x(1)
c − x(2)

c |

√√√√N1,N2∑
i,j

(x̂
(2)
j − x̂

(1)
i )2

= 2α

(
1

N1
+

1

N2

)
DN1N2|x(1)

c − x(2)
c |M̂2.

(44)

For Ic2 := 2δ
N1

N1∑
i

(x
(1)
i )3(x

(1)
c − x

(2)
c ) + 2δ

N2

N2∑
i

(x
(2)
i )3(x

(1)
c − x

(2)
c ), note that∣∣∣∣∣ 2δN1

N1∑
i

(x
(1)
i )3

∣∣∣∣∣ ≤ δ|x(1)
i |M2(V ) ≤ δ

√
N1M2(V )

3
2 ,∣∣∣∣∣ 2δN2

N2∑
i

(x
(2)
i )3

∣∣∣∣∣ ≤ δ|x(2)
i |M2(V ) ≤ δ

√
N1M2(W )

3
2 .

Then, one gets

Ic2 ≥ −2
∣∣∣x(1)

c − x(2)
c

∣∣∣ ∣∣∣∣∣ δ

N1

N1∑
i

(x
(1)
i )3 +

δ

N2

N2∑
i

(x
(2)
i )3

∣∣∣∣∣
≥ −2

∣∣∣x(1)
c − x(2)

c

∣∣∣ δ√max{N1, N2}M2(t)
3
2 .

(45)

Hence,

d

dt
|x(1)

c − x(2)
c |2 ≥

2α(
1

N1
+

1

N2
)

N1∑
i=1

N2∑
j=1

ai,j

+ δ

 |x(1)
c − x(2)

c |2

− αD(N1 +N2)

√
M̂2 − δ

√
max{N1, N2}M

3
2
2 .

(46)

Combining with Lemma 1 and (42), one obtains the estimate

d

dt
|x(1)

c − x(2)
c | ≥

2α

(
1

N1
+

1

N2

) N1∑
i

N2∑
j

ai,j + δ

 |x(1)
c − x(2)

c |

−αD(N1 +N2)C3 − δ
√
max{N1, N2}(M∞

2 )
3
2 .

(47)

By Gronwall’s lemma, if the initial data satisfy:

|x(1)
c (0)− x(2)

c (0)| ≥
αD(N1 +N2)C3 + δ

√
max{N1, N2}(M∞

2 )
3
2

δ
:=

C4

δ
, (48)

21



then,

|x(1)
c (t)− x(2)

c (t)| ≥ C4

δ
+ (|vc(0)− wc(0)| −

C4

δ
)eδt ≥ C4

δ
. (49)

(d) For any i = 1, . . . N1, j = 1, . . . , N2,

|x(1)
i (t)− x

(1)
j (t)| ≥ |x(1)

c (t)− x(2)
c (t)| − |x̂(1)

i(t)− x̂(2)
j(t)|

≥ C4

δ
−
√
2max{N1, N2}M̂2

≥ C4

δ
+

(
|x(1)

c (0)− x(2)
c (0)| − C4

δ

)
eδt

−
√
2max{N1, N2}

(√
M̂2(0)e

−ηt +

√
M∞

2

η
(1− e−ηt)

)
.

Then, there exists some time T ∗ such that ∀t ≥ T ∗,

|x(1)
i (t)− x

(2)
j (t)| ≥ C > 0, ∀i, j. (50)

Combing with Proposition 2, we finish the proof. ■

Remark 3 The proof of Proposition 5 is included in part (d) of proof of Proposition 4.

Now suppose η2 :=
∑

i∈I1,j∈I2

ai,j > 0 in some channel, then the Dirichlet energy in this channel has

a lower bound:

E(x) =
1

N

∑
i,j

ai,j(xi − xj)
2

=
1

N

 ∑
i,j∈I1

ai,j(x
(1)
i − x

(1)
j )2 +

∑
i,j∈I2

ai,j(x
(2)
i − x

(2)
j )2 +

∑
i∈I1,j∈I2

ai,j(x
(1)
i − x

(2)
j )2


≥ 1

N

∑
i∈I1,j∈I2

ai,j(x
(1)
i − x

(2)
j )2

≥ C2η2
N

.

(51)

Proof of Lemma 1.

d

dt
M2(V ) =

2

N1

N1∑
i=1

x
(1)
i

˙
x
(1)
i

= − α

N1

N1∑
i,k

ak,i(x
(1)
k − x

(1)
i )2 − 2α

N1

N2∑
k

N1∑
i

ai,k(x
(2)
k − x

(1)
i )x

(1)
i

+
2δ

N1

N1∑
i

(x
(1)
i )2(1− (x

(1)
i )2).

(52)

Similarly,

d

dt
M2(W ) =

2

N2

N2∑
i=1

x
(2)
i

˙
x
(2)
i

= − α

N2

N2∑
j,k

ak,j(x
(2)
k − x

(2)
j )2 − 2α

N2

N2∑
j

N2∑
i

aj,k(x
(1)
k − x

(2)
j )x

(2)
j

+
2δ

N2

N2∑
i

(x
(2)
j )2(1− (x

(2)
j )2).

(53)
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Sum the M2(V ) and M2(W ). Note that aij = aji. Then

d

dt
M2 ≤Dα

N1

N2∑
k=1

N1∑
i=1

(
(x

(2)
k − x

(1)
i )2 + (x

(1)
i )2

)
+

Dα

N2

N1∑
k=1

N2∑
j=1

(
(x

(1)
k − x

(2)
j )2 + (x

(2)
j )2

)

+
2δ

N1

N1∑
i=1

(x
(1)
i )2(1− (x

(1)
i )2) +

2δ

N2

N2∑
i=1

(x
(2)
i )2(1− (x

(2)
i )2).

(54)
By the Cauchy-Schwarz inequality,(

N1∑
i=1

(x
(1)
i )2

)2

≤ N1

N1∑
i=1

(x
(1)
i )4,

(
N1∑
i=1

(x
(1)
i )2

)2

≤ N2

N2∑
i=1

(x
(2)
i )4,

(x
(1)
i − x

(2)
j )2 ≤ 2((x

(1)
i )2 + (x

(2)
j )2).

These relations and (54) yield a Riccati-type differential inequality:

d

dt
M2 ≤ 2DαN2M2(W ) + 3DαN2M2(V ) + 2DαN1M2(V ) + 3DαN2M2(W ) + 2δM2 − δ(M2)

2

≤ (αCm + 2δ)M2 − δ(M2)
2.

(55)
Let y be a solution of the following ODE:

y′ = αCmy − δy2. (56)

Then, the solution y(t) to equation 56 satisfies

M2(t) ≤ y(t) ≤ max

{
αCm

δ
+ 2,M2(0)

}
=: M∞

2 . (57)

■

Proof of Lemma 2. By computation,

˙
x
(1)
c =

1

N1

N1∑
i=1

˙
x
(1)
i

=
α

N1

N1∑
i,k=1

ak,i(x
(1)
k − x

(1)
i )− α

N1

N2∑
k=1

N1∑
i=1

ak,i(x
(2)
k − x

(1)
i ) +

δ

N1

N1∑
i=1

x
(1)
i (1− (x

(1)
i )2)

= − α

N1

N2∑
k=1

N1∑
i=1

ak,i(x
(2)
k − x

(1)
i ) +

δ

N1

N1∑
i=1

x
(1)
i (1− (x

(1)
i )2).

Note that
˙̂

x
(1)
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c . Take the inner product 2x̂(1)
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Similarly,

d
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Combine the two equations,

d
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Using x
(1)
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(60)

The last inequality is based on
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Similarly on I6, one has I6 ≤ 2δM2(Ŵ ). Thus, I5 + I6 ≤ 2δM̂2. ■

C Experiments

The code for the experiments is available at:

https://anonymous.4open.science/r/ACMP-092A

We will replace this anonymous link with a non-anonymous GitHub link after the acceptance. We
implement all experiments in Python 3.8.13 with PyTorch Geometric on one NVIDIA ® Tesla A100
GPU with 6,912 CUDA cores and 80GB HBM2 mounted on an HPC cluster.

In addition, we take the official implementation of the Graph Neural Diffusion (GRAND) as diffusion
term in (7) from the repository: https://github.com/twitter-research/graph-neural-pde

C.1 Details for Experiments

Datasets We consider two types of datasets: Homophilic and Heterophilic. They are differentiated
by the homophily level of a graph [57]:

H =
1

|V |
∑
v∈V

Number of v’s neighbors who have the same label as v
Number of v’s neighbors

.

In the experiments, we have used six homophilic datasets, including Cora [45], Citeseer [63] and
Pubmed [51], Computer and Photo [51], and CoauthorCS [64], and three heterophilic datasets:
Cornell, Texas and Wisconsin from the WebKB dataset4. For completeness, we list the numbers of

4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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classes, features, nodes and edges of each dataset, and their homophily level in Table 3. The low
homophily level means that the dataset is more heterophilic when most of neighbours are not in the
same class, and the high homophily level indicates that the dataset close to homophilic when similar
nodes tent to be connected. The datasets we used in Table 3 covers various homophily levels.

Figure 4: Significance plot for β in terms of test accuracy on Cora (orange) and Texas (blue) with 10
fixed random splits. Cora and Texas belong to homophilic and heterophilic respectively.

Table 3: Information for Graph Datasets Used in Experiments

Dataset Classes Features #Nodes Edges Homophily level

Cora 7 1433 2485 5069 0.83
CiteSeer 6 3703 2120 3679 0.71
PubMed 3 500 19717 44324 0.79

CoauthorCS 15 6805 18333 81894 0.80
Computer 10 767 13381 245778 0.77

Photo 8 745 7487 119043 0.83
Texas 5 1703 183 309 0.11

Wisconsin 5 1703 183 499 0.21
Cornell 5 1703 183 499 0.30

Experiment setup For homophilic datasets, we use 10 random weight initializations and 100
random splits, which contains 1,000 tests. Each combination randomly select 20 numbers for each
class. For heterophilic data, we use the original fixed 10 split datasets. We fine-tune our model within
hyper-parameter search space, as detailed in Table 4. We use the Dormand–Prince adaptive step size
scheme (DOPRI5) as the neural ODE solver for all datasets. Hyperparameter search used Ray Tune
with a hundred trials using an asynchronous hyperband scheduler with a grace period of 50 epochs.
All the details to reproduce our results have been included in the submission and will be publicly
available after publication.

C.2 Performance of ACMP to hyperparameter β

Hyperparameter β is the key to introduce the repulsive force in GNN, meaning that when aij − β is
negative, the two nodes repel one another. To illustrate β’s impact on different datasets, we use GCN
as a diffusion term as aij do not change during the ODE process and all the changes are related to β.
As shown by Figure 4, ACMP performs best in Cora (orange curve) when all nodes are attracted to
one another i.e. all aij − β is positive. As the beta increases, the performance of the model degrades.
In contrast, for the Texas dataset, when all force is attractive, ACMP achieves only 70% accuracy
(blue curve). As β increases, most aij −β is negative, and the model’s performance gets better. When
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Table 4: Hyperparameter Search Space

Hyperparameters Search Space Distribution

learning rate [10−6, 10−1] log-uniform
weight decay [10−3, 10−1] log-uniform
dropout rate [0.1, 0.8] uniform
hidden dim {64, 128, 256} categorical
time (T) [2, 25] uniform
β [0, 1] uniform

all the force is repulsive, ACMP achieves highest accuracy on Texas datasets, which is in accordance
with our claim that repulsive force is important for heterophilic datasets.

Figure 5: Example of how adding Allen-Cahn terms can prevent the nodes feature from becoming
infinite. We choose the first channel in the node’s feature of dimension 150. In the first row, the
repulsive force is added to message passing without the Allen-Cahn term, and in the second row, the
Allen-Cahn term is added to message passing. The first, second and third columns show the neural
ODE’s initial state, and the states when T = 10 and T = 30.

C.3 Ablation study for ACMP

Message Passing Performance vs Depths We compare ACMP with various GNN models such as
GRAND, GCN, GAT, and GraphSage with different depths on the planetoid datasets. Table 5 lists the
nodes classification accuracy on Cora, Citeseer and Pubmed. We observe that ACMP can maintain
its model performance as the network deepens and achieve top test accuracy among all listed models
using the same depth. ACMP can thus overcome the oversmoothing.

The Allen-Cahn term We now show in Figure 5 how the Allen-Cahn term can stabilize training
and prevent node features from blowing up. The first row is the evolution of the diffusion equation
without Allen-Cahn term while the second row has the Allen-Cahn term added. We can observe that
introducing the repulsive term is essential for bounding GNN outputs, particularly when learning
heterophilic datasets. However, naively adding β to message passing will result in all node’s features
becoming infinite. In the first row of Figure 5 when the Allen-Cahn term is not incorporated, the
node’s features have increased to 3 × 103 when T = 10, from 0.1 when T = 1. By the time T
equals 30, the node’s largest feature becomes 1× 1020, which the neural ODE solver and message
passing can hardly handle numerically corrected. When we introduce the Allen-Cahn term, the
system contains two strong attractors of ±1, and the nodes are attracted to the two ends of 1 and −1
by their own features.
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Table 5: Test Accuracy of Models with Different Depth

Model depth Cora CiteSeer PubMed

4 82.80± 1.62 73.87± 2.12 78.71± 1.19
GRAND-1 16 82.75± 1.17 72.61± 2.42 78.79± 0.93

32 82.19± 1.73 72.65± 3.15 78.70± 1.08

4 81.35± 1.27 70.54± 6.61 77.15± 3.00
GCN 16 19.70± 7.06 24.78± 1.45 41.36± 1.77

32 21.86± 6.09 24.23± 1.65 40.66± 1.86

4 80.95± 2.28 72.31± 2.82 77.37± 1.32
GAT 16 29.14± 1.02 24.84± 1.45 39.21± 0.43

32 29.75± 1.57 24.83± 1.45 39.02± 0.12

4 79.83± 2.43 50.00± 14.27 76.01± 2.35
GraphSage 16 25.52± 6.45 24.84± 1.45 37.55± 3.92

32 29.14± 1.02 28.38± 2.54 39.21± 4.39

4 83.87± 0.5 74.61± 1.04 79.74± 0.24
ACMP (ours) 16 83.19± 0.6 73.13± 0.85 79.16± 0.36

32 83.11± 0.81 72.76± 1.05 79.81± 1.61
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