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Abstract

Hyperbolic and kinetic equations often possess small spatial and temporal scales that

lead to various asymptotic limits. Numerical approximation of these equations is chal-

lenging due to presence of stiff source, collision, forcing terms, or when different scales

co-exist. Asymptotic-preserving (AP) schemes are numerical methods that are efficient in

these asymptotic regimes. They are designed to capture the asymptotic limit at the discrete

level without resolving small scales. This paper aims to review the current status of AP

schemes for a large class of hyperbolic and kinetic equations. We will first use simple models

to illustrate the basic design principles, and then describe several generic AP strategies for

handling general equations. Various aspects of the AP schemes for different asymptotic

regimes, including some recent development, will be discussed as well.

Key words. Asymptotic-preserving, hyperbolic equations, kinetic equations, multi-scale, stiff re-

laxations.
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1 Introduction

Hyperbolic and kinetic equations usually possess multiple or small spatial and temporal scales

that pose tremendous numerical challenges. These scales arise very often from (possibly stiff)

source terms, collision terms, strong forcing, etc., and a naive numerical discretization of these

equations requires the mesh sizes and time steps smaller than the smallest scales of the problem

which is often prohibitively expensive.

Typically, to efficiently compute problems with multiple scales one often couples a macro-

scopic model with a microscopic one through coupling conditions. One classical example is the

coupling of the (microscopic) Boltzmann equation with the (macroscopic) fluid dynamic equa-

tions [5, 86, 30]. Such technique requires an interface or connection condition which transfers
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data between the macroscopic and the microscopic ones. This can be very difficult and is often

ad-hoc. Another paradigm that has been very popular in the last two decades is the so-called

Asymptotic-Preserving (AP) schemes [48] that bridge the two different scales in a seamless way:

the transition between the two scales is realized automatically, in that a micro solver becomes

a macro solver automatically if the numerical discretizations do not resolve the physically small

scales. A requirement for AP schemes is to preserve the asymptotic transition from the micro

models to the macro ones at the discrete level, which can be best illustrated in Figure 1. Such an

AP property often leads to a uniform convergence in the scaling parameter [35, 49]. This article

aims at introducing this framework and reviewing the current status of AP schemes for a large

class of hyperbolic and kinetic equations, in various asymptotic regimes. Interested readers may

also consult earlier reviews in this subject [49, 20, 21].
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Figure 1: Illustration of AP schemes. Pε is a microscopic equation that depends on the small

scale ε (e.g., the Boltzmann equation with the small Knudsen number (ratio of the mean free

path over the characteristic length)), and P0 is its macroscopic limit as ε → 0 (e.g., the Euler

equations). Denote the numerical approximation of Pε by Pεh, where h is the discretization

parameter such as the time step or mesh size. The asymptotic limit of Pεh as ε → 0 (with h

fixed), if exists, is denoted by P0
h. If P0

h is a good (consistent and stable) approximation of P0,

then the scheme Pεh is called AP.

The rest of this paper is organized as follows. We will first use two simple models to illustrate

the basic design principles of AP schemes in Section 2. Then in Section 3, using the nonlinear

Boltzmann equation as an example, we discuss several generic AP strategies for handling general

kinetic and hyperbolic equations. Section 4 summarizes some other asymptotic limits and the

corresponding AP schemes. The paper is concluded in Section 5.

2 Basic design principles of AP schemes — two illustrative

examples

While earlier attempts of AP schemes aim at stationary neutron transport in the diffusive

regime [67, 66], the major challenges – and the most recent developments – in the design of AP

schemes come from time discretizations [47, 8] or reformulation to a system that is insensitive

to the specific spatial discretizations. As described in [48], a scheme is AP if

• it is a good discretization of the microscopic model; when the scaling parameter approaches

zero, with numerical parameters fixed, it becomes a good macroscopic solver;
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• an implicit discretization, which is necessary for uniform stability, can be implemented

either explicitly or at least very efficiently (avoiding difficult nonlinear iterative algebraic

solvers for instance).

We will first use two simple examples to illustrate the basic design principles of AP schemes.

The first one is the Jin-Xin hyperbolic relaxation system proposed initially to solve the systems

of conservation laws [59]. The second one is the Bhatnagar-Gross-Krook (BGK) model which is

a kinetic equation introduced to simplify the complicated Boltzmann collision integral in rarefied

gas dynamics [4].

2.1 The Jin-Xin relaxation model

The Jin-Xin semi-linear hyperbolic relaxation model in one spatial dimension reads as
∂tu+ ∂xv = 0 ,

∂tv + a∂xu =
1

ε
(f(u)− v) ,

(2.1)

where a is a constant, f(u) is a nonlinear function of u, and ε is the relaxation time. As ε→ 0,

the second equation above yields the local equilibrium v = f(u), which, upon substitution to

the first equation, gives the zero relaxation limit:

∂tu+ ∂xf(u) = 0 . (2.2)

When ε is small but not zero, numerically approximating the system (2.1) presents a challenge

due to the stiff relaxation term. A naive explicit scheme would require the time step to resolve

ε: ∆t = O(ε), which can be very time-consuming. A natural way is to treat this term implicitly

which allows ∆t � ε. The convection term, on the other hand, can be treated explicitly as

it is not stiff. Leaving aside the spatial discretization, one can employ the following first-order

time-splitting framework to solve (2.1):
u∗ − un

∆t
= 0 ,

v∗ − vn
∆t

=
1

ε
(f(u∗)− v∗) ,

(relaxation step) (2.3)


un+1 − u∗

∆t
+ ∂xv

∗ = 0 ,

vn+1 − v∗
∆t

+ a∂xu
∗ = 0 .

(convection step) (2.4)

The second equation in (2.3) appears implicit at first sight, but note that from the first equation

u∗ = un, so the nonlinear term f(u∗) is indeed explicit thus requires no Newton-type iterations.

Therefore, although implicit, the whole scheme can be implemented explicitly — an important

feature of AP schemes. For the spatial derivative in (2.4), one can apply the usual finite dif-

ference/volume schemes. For example, a first-order upwind scheme (applied to the Riemann

invariants u± 1√
a
v) results in

un+1
j − u∗j

∆t
+
v∗j+1 − v∗j−1

2∆x
=

√
a∆x

2

u∗j+1 − 2u∗j + u∗j−1

(∆x)2
,

vn+1
j − v∗j

∆t
+ a

u∗j+1 − u∗j−1

2∆x
=

√
a∆x

2

v∗j+1 − 2v∗j + v∗j−1

(∆x)2
.

(2.5)

3



Now let us check the AP property of the above scheme. We will keep ∆t, ∆x fixed, and send

ε→ 0. Then the relaxation step (2.3) (with the spatial index j added on) insures

u∗j = unj , v∗j = f(u∗j ) = f(unj ) ,

which, when substituted to the first equation of (2.5), yields

un+1
j − unj

∆t
+
f(unj+1)− f(unj−1)

2∆x
=

√
a∆x

2

unj+1 − 2unj + unj−1

(∆x)2
. (2.6)

The scheme (2.6) is nothing but the Lax-Friedrichs or Rusanov scheme applied to the limiting

equation (2.2). Hence the scheme (2.3) (2.4) is AP, in both time and space.

2.2 The BGK model

The BGK model widely used in kinetic theory takes the following form:

∂tf + v · ∇xf =
1

ε
(M− f) , (2.7)

where f = f(t, x, v) is a probability distribution function of particles at time t, position x ∈ Ω ⊂
Rd and velocity v ∈ Rd. ε is the Knudsen number defined as the ratio of the mean free path

over the characteristic length. M is the local equilibrium or Maxwellian defined through the

moments of f :

M(v) =
ρ

(2πT )d/2
exp

(
−|v − u|

2

2T

)
, (2.8)

where ρ, u, T are, respectively, the density, bulk velocity, and temperature:

ρ =

∫
Rd

f dv , u =
1

ρ

∫
Rd

vf dv , T =
1

dρ

∫
Rd

|v − u|2f dv .

It is important to note that M so defined shares the same first d+ 2 moments with f :

U := (ρ, ρu,E)T =

∫
Rd

fφ(v) dv =

∫
Rd

Mφ(v) dv , φ(v) = (1, v, |v|2/2)T , (2.9)

where E = 1
2ρ(|u|2 + dT ) is the total energy. Therefore, if one multiplies equation (2.7) by φ(v)

and integrates over v, the right hand side will vanish and one obtains
∂tρ+∇x · (ρu) = 0 ,

∂t(ρu) +∇x · (ρu⊗ u+ P) = 0 ,

∂tE +∇x · (Eu+ Pu+ q) = 0 ,

(2.10)

where P and q are the stress tensor and heat flux defined by

P =

∫
Rd

(v − u)⊗ (v − u)f dv , q =
1

2

∫
Rd

(v − u)|v − u|2f dv .

The system (2.10) is the local conservation law which is not closed. However, when ε→ 0, (2.7)

implies f = M. This, substituted into (2.10), yields a closed system (the compressible Euler
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equations): 
∂tρ+∇x · (ρu) = 0 ,

∂t(ρu) +∇x · (ρu⊗ u+ pI) = 0 ,

∂tE +∇x · ((E + p)u) = 0 ,

(2.11)

where p = ρT is the pressure and I is the identity matrix.

Our goal here is to design a numerical scheme for the BGK model (2.7) that is efficient when

ε is small and can capture the asymptotic Euler limit (2.11) at the discrete level. Similarly as the

Jin-Xin model, we adopt the time-splitting strategy and treat the stiff collision part implicitly

and the non-stiff convection part explicitly ([16]):

f∗ − fn
∆t

=
1

ε
(M∗ − f∗) , (collision step) (2.12)

fn+1 − f∗
∆t

+ v · ∇xf∗ = 0 . (convection step) (2.13)

Although the collision step appears implicit (M∗ is defined through f∗ in a nonlinear way), it can

be implemented explicitly. Indeed, taking the moments
∫
Rd ·φ(v) dv on both sides of (2.12) gives

U∗ = Un due to property (2.9), that is, the macroscopic quantities ρ, u, and T are conserved in

this step, so is the MaxwellianM∗ =Mn. Therefore, one does not need any iterative solver for

the collision step. For the spatial discretization in the convection step, one can still apply the

upwind scheme (assume x and v are one-dimensional for simplicity):

fn+1
j − f∗j

∆t
+

v+|v|
2 (f∗j − f∗j−1) + v−|v|

2 (f∗j+1 − f∗j )

∆x
= 0 . (2.14)

Let us verify the AP property of the proposed scheme. Keeping ∆t, ∆x fixed, and sending

ε→ 0 in (2.12) implies

f∗ =M∗ =Mn . (2.15)

Now replacing f∗ with Mn in (2.14), and taking the moments
∫
R ·φ(v) dv, one gets

Un+1
j − Unj

∆t
+
Fn
j+ 1

2

− Fn
j− 1

2

∆x
= 0 , (2.16)

where the flux Fj+ 1
2

is defined as

Fj+ 1
2

= F+
j + F−j+1 with F±j =

∫
R1

v ± |v|
2
Mjφ(v) dv . (2.17)

Thanks to the special form of the Maxwellian, F±j can be represented in closed form in terms of

the error function as

F±j =

 ρjujA
±
j ± ρjBj(

ρjTj + ρju
2
j

)
A±j ± ρjujBj(

3
2ρjTjuj + 1

2ρju
3
j

)
A±j ±

(
1
2ρju

2
j + ρjTj

)
Bj

 (2.18)

with

A±j =
1

2
(1± erf(sj)) , Bj = e−s

2
j

√
Tj
2π

, sj =
uj√
2Tj

.
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(2.16)–(2.18) is just the kinetic flux vector splitting (KFVS) scheme [83, 26] for the limiting

compressible Euler equations (2.11). Hence the scheme (2.12) (2.13) is AP, in both time and

space.

The above scheme is not necessarily the only AP scheme. Two variants are immediate.

1) Instead of applying the backward Euler scheme in (2.12), one can solve this step exactly

f∗ = e−
∆t
ε fn +

(
1− e−∆t

ε

)
Mn ,

where we again used the fact thatMn does not change over the collision step. This method

is also AP since as ε→ 0, we still have (2.15).

2) Instead of time splitting, one can apply an implicit-explicit (IMEX) type scheme to the

original equation (2.7):

fn+1 − fn
∆t

+ v · ∇xfn =
1

ε
(Mn+1 − fn+1) . (2.19)

This scheme can still be solved in an explicit manner albeitMn+1 is implicit. Specifically,

taking the moments
∫
Rd ·φ(v) dv on both sides of (2.19) and using the property (2.9), one

has
Un+1 − Un

∆t
+∇x ·

∫
Rd

vφ(v) fn dv = 0 . (2.20)

From (2.20), one can solve for Un+1, which consequently defines Mn+1. Thus fn+1 can

be obtained from (2.19) explicitly. To see the AP property, as ε → 0, (2.19) implies

fn = Mn for any n. Replacing fn with Mn, (2.20) is clearly a consistent discretization

of the compressible Euler system (2.11).

Remark 2.1. The numerical schemes presented in this section are all first-order accurate in

both space and time. To achieve higher order in space, standard high-order spatial discretizations

(e.g., weighted essentially non-oscillatory (WENO), discontinuous Galerkin (DG) schemes) can

be used. The situation for time is, however, different. It is worthwhile to mention that standard

high-order time-splitting methods such as the Strang splitting will suffer from order reduction

when ε→ 0 [47]. Rather, one can use the Runge-Kutta splitting schemes [8] or the more general

IMEX methods in the non-splitting framework [81, 84].

In the above two examples, in spite of the nonlinear stiff terms which are treated implicitly,

one can implement the schemes explicitly, thanks to the special structure of the relaxation terms.

This will not be true for more general source or collision terms. In the next section we will see

how these two special examples can be utilized to develop AP schemes for general hyperbolic

and kinetic equations in which the nonlinear stiff terms can be implemented explicitly.

3 AP schemes for general hyperbolic and kinetic equations

In this section we discuss several generic AP strategies including the penalization, exponential

reformulation, and micro-macro decomposition. Since the classical Boltzmann equation [10]

constitutes the central model in kinetic theory, it will be used throughout to illustrate the ideas
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of the three techniques. Application of each strategy to other equations will be mentioned at

the end of each subsection.

We first briefly review the Boltzmann equation and its properties. The equation reads as

∂tf + v · ∇xf =
1

ε
Q(f) , (3.1)

where, compared with the BGK model (2.7), the only difference lies in the collision term Q(f)

— a nonlinear integral operator modeling the binary interaction among particles:

Q(f)(v) =

∫
Rd

∫
Sd−1

B(v − v∗, σ) [f(v′)f(v′∗)− f(v)f(v∗)] dσ dv∗ .

Here (v, v∗) and (v′, v′∗) are the velocity pairs before and after a collision, during which the

momentum and energy are conserved; hence (v′, v′∗) can be represented in terms of (v, v∗) as
v′ =

v + v∗
2

+
|v − v∗|

2
σ ,

v′∗ =
v + v∗

2
− |v − v∗|

2
σ ,

with the parameter σ varying in the unit sphere Sd−1. The collision kernel B(v − v∗, σ) is a

non-negative function depending only on |v − v∗| and cosine of the deviation angle σ·(v−v∗)
|v−v∗| .

The collision operator Q(f) conserves mass, momentum, and energy:∫
Rd

Q(f)φ(v) dv = 0 , φ(v) = (1, v, |v|2/2)T . (3.2)

It satisfies the celebrated Boltzmann’s H-theorem:

−
∫
Rd

Q(f) ln f dv ≥ 0 .

Moreover, ∫
Rd

Q(f) ln f dv = 0⇐⇒ Q(f) = 0⇐⇒ f =M , (3.3)

where M is given by (2.8). This means the entropy is maximized if and only if f reaches the

local equilibrium.

As for the BGK model, if ε → 0, the macroscopic limit of the Boltzmann equation is also

the compressible Euler system (2.11) (which can be easily seen using (3.2) and (3.3)). Via the

Chapman-Enskog expansion [13], one can derive from the Boltzmann equation the Navier-Stokes

limit while retaining O(ε) terms:
∂tρ+∇x · (ρu) = 0 ,

∂t(ρu) +∇x · (ρu⊗ u+ pI) = ε∇x · (µσ(u)) ,

∂tE +∇x · ((E + p)u) = ε∇x · (µσ(u)u+ κ∇xT ) ,

(3.4)

where σ(u) = ∇xu+∇xuT− 2
d∇x·uI. µ and κ are the viscosity and heat conductivity, determined

through the linearized Boltzmann collision operator [1].

The construction of AP schemes for the Boltzmann equation (3.1) is by no means trivial.

Due to its complicated form, the implicit discretization of the collision operator will be difficult.
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3.1 AP schemes based on penalization

The penalization method, introduced by Filbet and Jin [32], was the first AP scheme for the

nonlinear Boltzmann equation. The idea is to penalize Q(f) by the BGK operator:

∂tf + v · ∇xf =
Q(f)− β(M− f)

ε︸ ︷︷ ︸
less stiff, explicit

+
β(M− f)

ε︸ ︷︷ ︸
stiff, implicit

,

where β is some constant chosen properly to approximate the Frechet derivative of Q(f) around

M. After penalization, terms in the first brace become less stiff or non-stiff and can be treated

explicitly. The other part has to be done implicitly but it is a BGK operator thus many techniques

introduced in the previous section can be applied here.

A first-order IMEX discretization of (3.1) can thus be written as follows:

fn+1 − fn
∆t

+ v · ∇xfn =
Q(fn)− β(Mn − fn)

ε
+
β(Mn+1 − fn+1)

ε
. (3.5)

This is an implicit scheme but can be solved explicitly similarly as in (2.19). Indeed, taking the

moments
∫
Rd ·φ(v) dv on both sides of (3.5) and using the properties (2.9) and (3.2), we still

have (2.20), from which one can solve for Un+1, henceMn+1. Then fn+1 can be obtained from

(3.5) explicitly. In practice, β can be roughly estimated as

β = sup
v
|Q−(f)| ,

where Q− is the loss part of the collision operator defined such that Q(f) = Q+(f)− fQ−(f).

β can also be made time and spatially dependent for better numerical accuracy.

Concerning the AP property, the following results were established in [32].

Proposition 3.1. Let fn be the numerical solution given by the scheme (3.5).

i) If ε→ 0 and fn =Mn +O(ε), then fn+1 =Mn+1 +O(ε).

ii) Assume ε� 1 and fn =Mn +O(ε). If there exists a constant C > 0 such that∥∥∥∥fn+1 − fn
∆t

∥∥∥∥+

∥∥∥∥Un+1 − Un
∆t

∥∥∥∥ ≤ C ,
then the scheme (3.5) asymptotically becomes a first order in time approximation of the

compressible Navier-Stokes equations (3.4).

The property i) above is a weaker version of AP property since one requires the solution to

be close to the equilibrium initially. Although hard to prove theoretically, extensive numerical

results in [32] illustrate that the penalization scheme can achieve the following stronger AP

property: regardless of the initial condition f0, there exists an integer N > 0 such that

fn =Mn +O(ε) , for any n ≥ N. (3.6)

Substituting (3.6) into (3.5) and taking the moments, one has

Un+1 − Un
∆t

+∇x ·
∫
Rd

vφ(v)Mn dv +O(ε) = 0 , for any n ≥ N,

which is a consistent discretization to the limiting Euler system (2.11). This means the scheme

is AP after an initial transient time.
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Remark 3.2. A possible way to remove the initial layer hence achieve AP in one time step was

suggested in [91], where the idea is to perform the penalization in two successive steps:
f∗ − fn

∆t
+ v · ∇xfn =

Q(fn)− β(Mn − fn)

ε
+
β(M∗ − f∗)

2ε
,

fn+1 − f∗
∆t

=
β(Mn+1 − fn+1)

2ε
.

The penalization method was also applied to the nonlinear hyperbolic system with stiff

relaxation in [32]: 
∂tu+ ∂xg(u, v) = 0 ,

∂tv + ∂xh(u, v) =
1

ε
R(u, v) ,

(3.7)

where the term R is dissipative: ∂vR ≤ 0 and possesses a unique local equilibrium: R(u, v) = 0

implies v = f(u). Then when ε→ 0, one has the macroscopic limit

∂tu+ ∂xg(u, f(u)) = 0 . (3.8)

Here inverting an implicit R is not as simple as that in the Jin-Xin model (2.1). Using the

penalization, this term can be treated as follows:
un+1 − un

∆t
+ ∂xg(un, vn) = 0 ,

vn+1 − vn
∆t

+ ∂xh(un, vn) =
1

ε
[R(un, vn) + β(vn − f(un))]− β

ε
[vn+1 − f(un+1)] .

(3.9)

For this scheme, one can actually prove a similar AP property (3.6): for any initial condition v0,

u0, as long as β > 1
2 sup |∂vR|, there exists an integer N > 0 such that

vn = f(un) +O(ε), for any n ≥ N. (3.10)

Plugging (3.10) into the first equation of (3.9), we see that the scheme is AP beyond an initial

layer.

Remark 3.3. Numerical methods for nonlinear hyperbolic systems with stiff relaxation/source

terms were among the earliest AP schemes for time-dependent problems. The limit (3.8) is

an analogy of the Euler limit of the Boltzmann equation. If one uses the Chapman-Enskog

expansion to O(ε) term, then (3.7) can be approximated by a parabolic equation, an analogy of

the Navier-Stokes limit to the Boltzmann equation. Numerical study of system of the type (3.7)

begun in the works [47, 50], where the AP principle was applied to design numerical schemes

to handle the stiff relaxation term. While an IMEX type Runge-Kutta method was used in [47]

to capture the solution of (3.8), to capture the diffusion limit is much more difficult, since the

numerical viscosity of O(∆x) in shock capturing methods easily dominates the physical viscosity

term of O(ε), unless special flux is used that builds in the limit (see [50] and its further study

and extension to unstructured meshes in [7, 3]). For AP schemes for gas dynamics with external

force and frictions, see [12]. In principle one cannot expect to take ∆x,∆t � O(ε) and still

capture the solution of the diffusion limit (likewise, the compressible Navier-stokes solution in

a Boltzmann solver), unless special numerical viscosity can be chosen so it does not pollute the
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physical viscosity. For smooth solutions this should not be a problem. However, for shocks and

boundary layers, which have thickness depending on ε, one cannot obtain reliable solution to the

diffusion or compressible Navier-Stokes equations with mesh size much larger than ε.

The idea of using a linear/simpler operator to penalize the nonlinear/complicated operator

turns out to be a generic approach. For specific problems, one needs to seek appropriate penal-

ization operator that serves the purpose, and this usually relies on the knowledge of the original

operator. For example, consider the nonlinear Fokker-Planck-Landau equation whose collision

operator is given by

Q(f)(v) = ∇v ·
∫
Rd

A(v − v∗) [f(v∗)∇vf(v)− f(v)∇v∗f(v∗)] dv∗ ,

where A is a semi-positive definite matrix. This equation is relevant in the study of Coulomb

interaction [87]. The diffusive nature of the collision operator introduces more stiffness. An

explicit scheme would require ∆t = O(ε(∆v)2) which is more restrictive than the Boltzmann

case. It was shown in [61] that the BGK operator is no longer suitable and the following Fokker-

Planck operator was proposed as a penalization:

PFP = ∇v ·
(
M∇v

(
f

M

))
.

Similar approaches, with variant penalties, have been proposed for the quantum Boltzmann

equation [31], the quantum Fokker-Planck-Landau equation [42], the multi-species Boltzmann

equation [51], and the two-scale collisions for semiconductor equations [44, 41].

Another AP scheme, developed later in [72], relies on the integral representation of the

BGK equation. The final form of the scheme also ends up with a linear combination – with

slightly different coefficients – of the Boltzmann collision operator and the BGK operator. The

coefficients are discontinuous so one turns off the Boltzmann operator and the solver becomes a

pure BGK solver when the mean free path is small.

3.2 AP schemes based on exponential reformulation

Another class of AP schemes is the exponential method. Unlike the penalization idea, this

method does not directly look for numerical schemes for the original equation, but instead

reformulates the equation into an exponential form, with the equilibrium function embedded in,

before applying the standard explicit Runge-Kutta method. Because the new formulation has

the Maxwellian function embedded, it is easier to capture the asymptotic limit: in fact a large

class of standard numerical methods achieves AP properties automatically if applied to the new

equation. Such flexibility allows one to seek for more properties that are hard to obtain with

the original form, including the high order of accuracy in both time and space, the strong-AP

property, positivity and many others.

Early studies on the homogeneous Boltzmann equation trace back to the Wild sum ap-

proach [33]. It was further elaborated in the IMEX Runge-Kutta framework in [29] for homoge-

neous case and extended to treat the nonhomogenous case in [69].

Consider the space homogeneous Boltzmann equation:

∂tf =
1

ε
Q(f) . (3.11)
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Dimarco and Pareschi in [29] introduced the following reformulation:

∂t

[
(f −M)eβt/ε

]
= ∂tfe

βt/ε +
β(f −M)

ε
eβt/ε =

Q− β(M− f)

ε
eβt/ε . (3.12)

Here β is an auxiliary parameter and as in the penalization method, β(M − f) is used to

approximate the Frechet derivative of Q. Numerically β could be any O(1) number, but one

chooses the smallest value that preserves the positivity of f .

Equation (3.12) is fully equivalent to the original problem (3.11), but since the scheme is

essentially applied to update the difference between the distribution function and the Maxwellian,

it removes the stiffness and forces the convergence of f toM numerically, thus easily guarantees

the AP property. It can be shown that all explicit Runge-Kutta methods, when applied, not

only achieve the high order convergence, but also obtains AP property automatically.

For the nonhomogenous case, the equilibrium is convecting, making it difficult to extend the

scheme. To overcome that, in [69], Li and Pareschi explored the possibility of using an evolving

Maxwellian function within each time step. The Boltzmann equation is reformulated as:

∂t

[
(f −M)eβt/ε

]
=

(P − βM
ε

− v · ∇xf − ∂tM
)
eβt/ε ,

where P = Q + βf . Meanwhile the moment equations are obtained by taking the moments of

the original Boltzmann equation (3.1):

∂tU +

∫
φ(v) v · ∇xf dv = 0 . (3.13)

To compute ∂tM, note that

∂tM = ∂ρM∂tρ+∇uM · ∂tu+ ∂TM∂tT ,

where ∂ρM, ∇uM and ∂TM can all be expressed explicitly, and the time derivatives of the

other three macroscopic quantities ρ, u, T can be obtained from (3.13).

Using the Runge-Kutta method on this formulation, one obtains the following scheme:

• Step i
(
f (i) −M(i)

)
eciλ = (fn −Mn) +

∑i−1
j=1 aij

h
ε

[
P(j) − βM(j) − εv · ∇xf (j) − ε∂tM(j)

]
ecjλ∫

φf (i)dv =
∫
φfndv +

∑i−1
j=1 aij

(
−h
∫
φv · ∇xf (j)dv

) ;

• Final step
(
fn+1 −Mn+1

)
eλ = (fn −Mn) +

∑ν
i=1 bi

h
ε

[
P(i) − βM(i) − εv · ∇xf (i) − ε∂tM(i)

]
eciλ∫

φfn+1dv =
∫
φfndv +

∑ν
i=1 bi

(
−h
∫
φv · ∇xf (i)dv

) ,

in which we denote λ = β∆t/ε and use the coefficients from the following Butcher tableaux:

c1

c2 a21

...
. . .

. . .

cν aν,1 aν,2 · · ·
b1 b2 · · · · · ·
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This method preserves positivity, high order accuracy, and the strong AP properties can

also be proved (i.e., f is driven to M in one time step). It has been successfully extended to

treat the quantum Boltzmann equation [43], the multi-species Boltzmann equation [71] and the

Fokker-Planck-Landau equation [27].

3.3 AP schemes based on micro-macro decomposition

Another framework of AP schemes for the Boltzmann-like equations is termed the “micro-

macro” decomposition, in which one decomposes the distribution function into the local Maxwellian,

plus the deviation. It was used by Liu and Yu in [74] for analyzing the shock propagation of

the Euler equations in passing the fluid limit of the Boltzmann equation. One early attempt of

using such a decomposition to design an AP scheme was considered by Klar and Schmeiser for

the radiative heat transfer equations [64]. Its application to the nonlinear Boltzmann equation

started with the work of Bennoune-Lemou-Mieussens in [2].

The main idea begins with decomposing f into the Maxwellian and the remainder:

f =M+ εg , with

∫
φ(v)g dv = 0 .

Since the collision operator Q(f) := Q[f, f ] is bilinear, the linearized collision operator, which

depends on M, reads as:

LMg = Q[M, g] +Q[g,M] .

With several lines of calculation, one gets
∂tg + (I−ΠM)(v · ∇xg)−Q[g, g] =

1

ε
[LMg − (I−ΠM)(v · ∇xM)] ,

∂t

∫
φM dv +

∫
φ v · ∇xMdv + ε∇x · 〈vφg〉 = 0 .

(3.14)

Here ΠM is a projection operator that maps arbitrary M-weighted L2 function into the null

space of LM, namely, for any ψ ∈ L2(M−1dv):

〈ΠM(ψ) , φ〉 = 〈ψ , φM〉 , with ΠM(ψ) ∈ Null(LM) = Span{M, vM, |v|2M} .

For the Boltzmann equation one can write down the projection operator explicitly:

ΠM(ψ) =
1

ρ

[
〈ψ〉+

(v − u) · 〈(v − u)ψ〉
T

+

( |v − u|2
2T

− d

2

)
2

d
〈
( |v − u|2

2T
− d

2

)
ψ〉
]
M .

Unlike the original Boltzmann equation with stiff term Q[f, f ], the two stiff terms here are

both linear thus their implicit discretization can be inverted easily.

In [2], the following discretization is taken:
gn+1 − gn

∆t
+ (I−ΠMn) (v · ∇xgn)−Q[gn, gn] =

1

ε

[
LMngn+1 − (I−ΠMn) (v · ∇xMn)

]
,∫

φMn+1 dv + ∆tε

∫
φ v · ∇xgn+1 dv =

∫
φMn dv −∆t

∫
φ v · ∇xMn dv .

(3.15)

Obviously the only term that needs to be inverted is I − ∆t
ε LM in the first equation. It is a

linear operator, and the negative spectrum guarantees the invertibility. The quadratic operator

Q[f, f ] is no longer stiff and is treated explicitly.

We list the AP property proved in [2]:
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Proposition 3.4. The scheme is AP, more specifically:

i) The time discretization (3.15) of the system (3.14) gives in the limit ε → 0 a scheme

consistent to the compressible Euler equations (2.11).

ii) For small ε, the scheme (3.15) is asymptotically equivalent, up to O(ε2), to an explicit

time discretization of the Navier-Stokes equations (3.4).

Although LM is a linear operator, the computation, however, is far from being satisfactory. In

fact many techniques, including the Carleman representation, used to speed up the computation

of the Boltzmann collision operator [78], cannot be applied for the linear operator. It is perhaps

for this reason, so far this method has only been applied to the BGK model, as was done in [2]

(see an extension to the multi-species BGK model in [56]). Higher order schemes can be achieved

by combining IMEX scheme in time and DG discretization in space [88].

4 Other asymptotic limits and AP schemes

In this section, we briefly describe several other asymptotic limits and the construction of

corresponding AP schemes.

4.1 Diffusion limit of linear transport equation

In many applications, such as neutron transport and radiative transfer, the collision operator

is linear. The interesting scaling is the diffusive scaling. A typical such equation has the form of

ε ∂tf + v · ∇xf =
1

ε

∫
Rd

σ(v, w)[M(v)f(w)−M(w)f(v)] dw , (4.1)

where M is the normalized Maxwellian

M(v) =
1

πd/2
exp(−|v|2) .

The anisotropic scattering kernel σ is rotationally invariant and satisfies

σ(v, w) = σ(w, v) > 0 .

Define the collision frequency λ as

λ(v) =

∫
Rd

σ(v, w)M(w) dw ≤ µ .

One can show that as ε→ 0, f → ρ(t, x)M(v) in (4.1), where ρ(t, x) =
∫
f(v) dv satisfies the

diffusion equation [82, 76]:

∂tρ = ∇x · (D∇xρ) ,

with the diffusion coefficient matrix

D =

∫
M(v)

λ(v)
v ⊗ v dv .

Developing numerical schemes for such equations that are efficient in diffusive regimes con-

stitutes the earliest works in AP schemes. It was carried out first in [67, 66] for stationary
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transport equation in which some spatial discretizations were studied. As mentioned earlier, the

most challenging issue for AP schemes is the time discretization, or rather, a reformulation of

the equation so that it becomes suitable for most spatial or velocity discretizations. It begins

independently with the work of Jin-Pareschi-Toscani [54, 55] and Klar [63]. The idea in [55]

was to use an even and odd-decomposition to write f as a linear combination of its even and

odd parts (in velocity) satisfying a hyperbolic system with stiff relaxation which can be solved

using the ideas developed earlier [47, 59, 8]. In [68], the micro-macro decomposition approach

was used (see also related works [64, 9]). A uniform in ε stability for this method was proved

in [73]. A high-order DG-IMEX scheme based on micro-macro decomposition was proposed in

[46], and the uniform stability was also established [45]. Most of the schemes designed, though

successfully relaxed the ε dependence, still suffer from the parabolic scaling ∆t = O(∆x2), and

it was solved in [70], where fully implicit scheme is used. Another interesting approach using

well-balanced scheme based on non-conservative product was given by Gosse and Toscani [36],

although the idea has been developed only for one space dimension.

4.2 High-field limit

In kinetic equations, often there is a strong external field, such as the electric or magnetic

field, that balances the collision term, leading to the so-called high field limit [11]. Consider for

example the interaction between the electrons and a surrounding bath through Coulomb force in

electrostatic plasma, where the electron distribution f(t, x, v) is governed by the Vlasov-Poisson-

Fokker-Planck system:

∂tf + v · ∇xf −
1

ε
∇xφ · ∇vf =

1

ε
∇v · (vf +∇vf) , (4.2)

−∆xφ = ρ− h , (4.3)

where ε =
(
le
Λ

)2
is the ratio between the mean free path and the Debye length. Let ε → 0 in

(4.2), one obtains the high-field limit [79, 38]:

∂tρ−∇x · (ρ∇xφ) = 0 ,

−∆xφ = ρ− h .

One can combine the force term with the Fokker-Planck term in (4.2) as

∂tf + v · ∇xf =
1

ε
∇v · [M∇v(Mf)] ,

where M := e−|v+∇xφ|2/2. This is the starting point of two exisiting AP schemes [57, 19], based

on which other well-developed AP frameworks can be used. For more general collision operator,

for example, the semiconductor Boltzmann collision operator, this trick does not apply and one

needs other ideas [58]. So far there have not been many AP schemes for this limit and there

remain many interesting open questions [37].
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4.3 Quasi-neutral limit in plasmas

Consider the one-species recaled Euler-Poisson equations for charged particles:

∂tn+∇x · q = 0 , (4.4)

∂tq +∇x ·
(
q ⊗ q
n

)
+∇xp = n∇xφ , (4.5)

ε2∆xφ = n− 1 , (4.6)

where n is the particle number density, q is the momentum, p = nγ is the pressure law with

γ ≥ 1, and φ is the electric potential. Here the negatively charged electrons with scaled charge

equal to −1 is considered, with a uniform ion background density set to 1. The dimensionless

parameter ε = λD/L is the scaled Debye length, i.e., the ratio of the actual Debye length λD to

the macroscopic length scale L. In many applications, ε� 1. This is the so-called quasi-neutral

regime. When ε→ 0 in (4.6), one has n = 1, and the following quasi-neutral limiting equations

arise [6]:

∇x · q = 0 , (4.7)

∂tq +∇x · (q ⊗ q) = ∇xφ , (4.8)

which is the incompressible Euler equations.

Since the Poisson equation (4.6) becomes degenerate when ε → 0, a direct discretization of

the Euler-Poisson system performs poorly in the quasi-neutral regime. A key idea introduced by

Degond et al. in [17] is to reformulate the system to a new one that remains uniformly elliptic.

Notice that when taking the limit ε→ 0, the electric potential φ undergoes drastic changes from

the Poisson equation (4.6) into

∆xφ = ∇2
x : (q ⊗ q) , (4.9)

where ∇2
x denotes the Hessian and “:” the contracted product of rank two tensors. (4.9) is

obtained by taking the divergence of (4.8). A uniformly stable scheme should have a formulation

that is consistent to (4.9) when ε → 0. To achieve this, one can take ∂t on (4.4), ∇x· on (4.5)

and ∂tt on (4.6) to get

∂ttn+∇x · ∂tq = 0 , (4.10)

∇x · ∂tq +∇2
x :

(
q ⊗ q
n

+ pI

)
= ∇x · (n∇xφ) , (4.11)

ε2∆x∂ttφ = ∂ttn . (4.12)

Eliminating ∇x · ∂tq by combining (4.10) and (4.11) and using (4.12), one obtains

−∇x · [(n+ ε2∂tt)∇xφ] +∇2
x :

[
q ⊗ q
n

+ pI

]
= 0 . (4.13)

Note now the equation (4.13) is uniformly elliptic and does not degenerate, and in fact approaches

to (4.9) as ε → 0. Thus, one can expect the asymptotic stability with respect to ε if a suitable

time discretization is used.

This approach has also been generalized to two-fluid model [18], Particle-in-Cell method for

Vlasov-Poisson system [22], Euler-Maxwell system [23], among other plasma models. For more

details, see recent comprehensive reviews [20, 21].
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4.4 Low Mach number limit of compressible flows

Recently there has been increasing research activities in developing Mach number uniform

fluid solvers. Consider the case of isentropic Navier-Stokes equations:

∂tρ+∇x · (ρu) = 0 , (4.14)

∂t(ρu) +∇x · (ρu⊗ u) +
1

ε2
∇xp =

1

Re
∆xu , (4.15)

where ρ is the density, u is the velocity, p = ργ is the pressure, ε is the Mach number and Re the

Reynolds number. When ε � 1, one seeks for asymptotic expansions: ρ = ρ(0) + ε2ρ(2) + · · · ,
u = u(0) + ε2u(2) + · · · and p = p(0) + ε2p(2) + · · · which then yield [62]:

∇x · u(0) = 0 ,

∂tu
(0) +

(
u(0) · ∇x

)
u(0) +

1

ρ(0)
∇xp(2) =

1

ρ(0)Re
∆xu

(0) .

The standard explicit numerical method, when applied to the compressible equations (4.14)

(4.15), requires ∆t = O(ε∆x) for stability and ∆x = o(ε) to reduce numerical dissipation [39, 25].

This imposes tremendous computational cost in the low Mach number or incompressible regime.

In developing a numerical scheme that is efficient for all Mach numbers, one needs to efficiently

handle the fast moving acoustic waves that travel with speed O(1/ε) such that one can use mesh

size and time step independent of ε. This is usually achieved by splitting the flux into fast

moving (corresponding to the acoustic waves) and a slowly moving one. One such approach

was introduced in [40] (see a related method in [24] and its extension to the full Euler and

Navier-Stokes systems [15]), which takes the following splitting:
∂tρ+ α∇x · (ρu) + (1− α)∇x · (ρu) = 0 ,

∂t(ρu) +∇x · (ρu⊗ u) +∇x
(
p(ρ)− a(t)ρ

ε2

)
+
a(t)

ε2
∇xρ =

1

Re
∆xu ,

where α and a(t) are artificial parameters. By choosing a(t) well approximates p′(ρ), the third

term in the second equation is non-stiff, and will be treated explicitly. The term ∇xρ calls for

implicit treatment, but it could be done easily due to the linearity, so only Poisson solvers are

needed like in a projection method for incompressible Navier-Stokes equations [14, 85]. The

scheme is shock-capturing in the high Mach number regime, and reduces to a projection method

when ε→ 0.

This is a direction being rapidly developed. One can find other techniques such as splitting

by Klein [65, 80], Lagrange-projection scheme [92], a modification of the Roe solver [77] with

applications to astrophysics problems, careful choice of numerical viscosity [28], etc.

4.5 Stochastic AP schemes

Our discussion so far has been retained exclusively to deterministic equations. In practical

applications, kinetic and hyperbolic problems almost always contain parameters that are uncer-

tain, due to modeling and/or measurement errors. Initiated by the work [60], there has been

increasing interest recently in the development of AP schemes for quantifying uncertainties in
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kinetic equations. We take the following Goldstein-Taylor model as an example:
∂tu+ ∂xv = 0 ,

∂tv +
1

ε
a(x, z)∂xu = −1

ε
v ,

(4.16)

where a(x, z) is a random wave speed with z ∈ Iz ⊂ Rd, a set of random variables equipped

with probability density function π(z). These random variables characterize the random inputs

in the system. In the diffusion limit ε → 0, one has v = −a(x, z)∂xu from the second equation

above, which, upon substitution to the first equation, gives a heat equation with random diffusion

coefficient:

∂tu = ∂x(a(x, z)∂xu) . (4.17)

To deal with the random parameters, a popular approach is the stochastic Galerkin method

based on generalized polynomial chaos expansion (gPC-sG) [90], which has been successfully ap-

plied to many physical and engineering problems [34, 89, 75]. The gPC-sG is essentially a spectral

method in the random domain with the expansion basis chosen as orthogonal polynomials with

weight being the probability density π(z).

Now to solve the system (4.16) under both uncertainty and diffusive scaling, a natural way

would be to combine the gPC-sG with the deterministic AP scheme properly. According to

the definition in [60], a scheme is stochastic AP if a gPC-sG method for the equation (4.16)

becomes a gPC-sG approximation for the limiting equation (4.17) as ε→ 0, with the gPC order

(the highest degree of polynomials used to discretize z), ∆t and ∆x fixed. Under the gPC-sG

approximation, the discrete system is a deterministic set of equations, thus often allows straight-

forward extension of the well-developed deterministic AP schemes. For recent development of

uncertainty quantification for kinetic equations, see [60, 52, 53].

5 Conclusion

In this paper, we have reviewed the basic design principles and several generic strategies

of the construction of AP schemes for multi-scale hyperbolic and kinetic equations. To handle

multiple temporal or spatial scales, unlike a typical multi-scale and multi-physical approach that

requires the coupling of microscopic and macroscopic solvers, the AP schemes solve exclusively

the microscopic equations. They allow the discretization parameters free of the small scale

constraints, while capture the coarse scale structure when the small physical scale parameter

approaches zero. This is usually achieved by some implicit treatment or reformulation of the

original equations, guided by the underlying asymptotic limit. Although the classical Boltzmann

equation was mainly used to illustrate the ideas, the techniques presented can be applied to a

large class of kinetic and hyperbolic equations. Other asymptotic limits and AP schemes were

discussed as well.
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