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1. Introduction

This goal of this article is to give an overview of the currently available nu-
merical methods used in the study of highly oscillatory partial differential
equations (PDEs) of Schrödinger type. This type of equation forms a canon-
ical class of (nonlinear) dispersive PDEs, i.e., equations in which waves of
different frequency travel with different speed. The accurate and efficient
numerical computation of such equations usually requires a lot of analytical
insight, and this applies in particular to the regime of high frequencies.
The following equation can be seen as a paradigm for the PDEs under

consideration:

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε, uε(0, x) = uεin(x), (1.1)

for (t, x) ∈ R× R
d, with d ∈ N denoting the space dimension. In addition,

ε ∈ (0, 1] denotes the small semiclassical parameter (the scaled Planck’s con-
stant), describing the microscopic/macroscopic scale ratio. Here, we have
already rescaled all physical parameters, such that only one dimensionless
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parameter ε � 1 remains. The unknown uε = uε(t, x) ∈ C is the quantum
mechanical wave function whose dynamics is governed by a static potential
function V = V (x) ∈ R (time-dependent potentials V (t, x) can usually also
be taken into account without requiring too much extra work, but for the
sake of simplicity we shall not do so here). In this article, several different
classes of potentials, e.g., smooth, discontinuous, periodic, random, will be
discussed, each of which requires a different numerical strategy. In addi-
tion, possible nonlinear effects can be taken into account (as we shall do in
Section 15) by considering nonlinear potentials V = f(|uε|2).

In the absence of V (x) a particular solution to the Schrödinger equation
is given by a single plane wave,

uε(t, x) = exp

(
i

ε

(
ξ · x− t

2
|ξ|2
))

,

for any given wave vector ξ ∈ R
d. We see that uε features oscillations with

frequency 1/ε in space and time, which inhibit strong convergence of the
wave function in the classical limit ε → 0+. In addition, these oscillations
pose a huge challenge for numerical computations of (2.1); in particular,
they strain computational resources when run-of-the-mill numerical tech-
niques are applied in order to numerically solve (1.1) in the semiclassical
regime ε � 1. For the linear Schrödinger equation, classical numerical
analysis methods (such as the stability–consistency concept) are sufficient
to derive meshing strategies for discretizations (say, of finite difference, fi-
nite element or even time-splitting spectral type) which guarantee (locally)
strong convergence of the discrete wave functions when the semiclassical pa-
rameter ε is fixed: see Chan, Lee and Shen (1986), Chan and Shen (1987),
Wu (1996) and Dörfler (1998); extensions to nonlinear Schrödinger equa-
tions can be found in, e.g., Delfour, Fortin and Payre (1981), Taha and
Ablowitz (1984) and Pathria and Morris (1990). However, the classical nu-
merical analysis strategies cannot be employed to investigate uniform in ε
properties of discretization schemes in the semiclassical limit regime. As
we shall detail in Section 4, even seemingly reasonable, i.e., stable and
consistent, discretization schemes, which are heavily used in many practical
application areas of Schrödinger-type equations, require huge computational
resources in order to give accurate physical observables for ε� 1. The sit-
uation gets even worse when an accurate resolution of uε itself is required.
To this end, we remark that time-splitting spectral methods tend to behave
better than finite difference/finite element methods, as we shall see in more
detail in Section 5.
In summary, there is clearly a big risk in using classical discretization

techniques for Schrödinger calculations in the semiclassical regime. Certain
schemes produce completely incorrect observables under seemingly reason-
able meshing strategies, i.e., an asymptotic resolution of the oscillation is
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not always enough. Even worse, in these cases there is no warning from
the scheme (such as destabilization) that something has gone wrong in the
computation (since local error control is computationally not feasible in the
semiclassical regime). The only safety anchor here lies in asymptotic math-
ematical analysis, such as WKB analysis, and/or a physical insight into
the problem. They typically yield a (rigorous) asymptotic description of uε

for small ε � 1, which can consequently be implemented on a numerical
level, providing an asymptotic numerical scheme for the problem at hand.
In this work, we shall discuss several asymptotic schemes, depending on the
particular type of potentials V considered.

While one can not expect to be able to pass to the classical limit di-
rectly in the solution uε of (1.1), one should note that densities of physical
observables, which are the quantities most interesting in practical appli-
cations, are typically better behaved as ε → 0, since they are quadratic
in the wave function (see Section 2.1 below). However, weak convergence
of uε as ε → 0 is not sufficient for passing to the limit in the observable
densities (since weak convergence does not commute with nonlinear opera-
tions). This makes the analysis of the semiclassical limit a mathematically
highly complex issue. Recently, much progress has been made in this area,
particularly by using tools from micro-local analysis, such as H-measures
(Tartar 1990) and Wigner measures (Lions and Paul 1993, Markowich and
Mauser 1993, Gérard, Markowich, Mauser and Poupaud 1997). These tech-
niques go far beyond classical WKB methods, since the latter suffers from
the appearance of caustics: see, e.g., Sparber, Markowich and Mauser (2003)
for a recent comparison of the two methods. In contrast, Wigner measure
techniques reveal a kinetic equation in phase space, whose solution, the
so-called Wigner measure associated to uε, does not exhibit caustics (see
Section 3 for more details).

A word of caution is in order. First, a reconstruction of the asymptotic
description for uε itself (for ε � 1) is in general not straightforward, since,
typically, some phase information is lost when passing to the Wigner pic-
ture. Second, phase space techniques have proved to be very powerful in the
linear case and in certain weakly nonlinear regimes, but they have not yet
shown much strength when applied to nonlinear Schrödinger equations in
the regime of supercritical geometric optics (see Section 15.2). There, classi-
cal WKB analysis (and in some special cases techniques for fully integrable
systems) still prevails. The main mathematical reason for this is that the
initial value problem for the linear Schrödinger equation propagates only
one ε-scale of oscillations, provided the initial datum in itself is ε-oscillatory
(as is always assumed in WKB analysis). New (spatial) frequencies ξ may be
generated during the time evolution (typically at caustics) but no new scales
of oscillations will arise in the linear case. For nonlinear Schrödinger prob-
lems this is different, as new oscillation scales may be generated through the
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nonlinear interaction of the solution with itself. Further, one should note
that this important analytical distinction, i.e., no generation of new scales
but possible generation of new frequencies (in the linear case), may not be
relevant on the numerical level, since, say, 100ε is analytically just a new
frequency, but numerically a new scale.
Aside from semiclassical situations, modern research in the numerical

solution of Schrödinger-type equations goes in a variety of directions, of
which the most important are as follows.

(i) Stationary problems stemming from, e.g., material sciences. We men-
tion band diagram computations (to be touched upon below in Sec-
tions 12 and 13) and density functional theory for approximating the
full microscopic Hamiltonian (not to be discussed in this paper). The
main difference between stationary and time-dependent semiclassical
problems is given by the fact that in the former situation the spatial
frequency is fixed, whereas in the latter (as mentioned earlier) new
frequencies may arise over the course of time.

(ii) Large space dimensions d� 1, arising, for example, when the number
of particles N � 1, since the quantum mechanical Hilbert space for N
indistinguishable particles (without spin) is given by L2(R3N ). This
is extremely important in quantum chemistry simulations of atom-
istic/molecular applications. Totally different analytical and numer-
ical techniques need to be used and we shall not elaborate on these
issues in this paper. We only remark that if some of the particles are
very heavy and can thus be treated classically (invoking the so-called
Born–Oppenheimer approximation: see Section 11), a combination of
numerical methods for both d� 1 and ε� 1 has to be used.

2. WKB analysis for semiclassical Schrödinger equations

2.1. Basic existence results and physical observables

We recall the basic existence theory for linear Schrödinger equations of the
form

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε, uε(0, x) = uεin(x). (2.1)

For the sake of simplicity we assume the (real-valued) potential V = V (x)
to be continuous and bounded, i.e.,

V ∈ C(Rd;R) : |V (x)| ≤ K.

The Kato–Rellich theorem then ensures that the Hamiltonian operator

Hε := −ε
2

2
∆ + V (x) (2.2)
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is essentially self-adjoint on D(−∆) = C∞
0 ⊂ L2(Rd;C) and bounded from

below by −K: see, e.g., Reed and Simon (1975). Its unique self-adjoint
extension (to be denoted by the same symbol) therefore generates a strongly
continuous semi-group U ε(t) = e− itHε/ε on L2(Rd), which ensures the global
existence of a unique (mild) solution uε(t) = U ε(t)uin of the Schrödinger
equation (2.1). Moreover, since U ε(t) is unitary, we have

‖uε(t, ·)‖2L2 = ‖uεin‖2L2 , ∀ t ∈ R.

In quantum mechanics this is interpreted as conservation of mass. In addi-
tion, we also have conservation of the total energy

E[uε(t)] =
ε2

2

∫
Rd

|∇uε(t, x)|2 dx+

∫
Rd

V (x)|uε(t, x)|2 dx, (2.3)

which is the sum of the kinetic and the potential energies.
In general, expectation values of physical observables are computed via

quadratic functionals of uε. To this end, denote by aW (x, εDx) the operator
corresponding to a classical (phase space) observable a ∈ C∞

b (Rd × R
d),

obtained via Weyl quantization,

aW (x, εDx)f(x) :=
1

(2π)m

∫∫
Rd×Rd

a

(
x+ y

2
, εξ

)
f(y) e i(x−y)·ξ dξ dy, (2.4)

where εDx := − iε∂x. Then the expectation value of a in the state uε at
time t ∈ R is given by

a[uε(t)] = 〈uε(t), aW (x, εDx)u
ε(t)〉L2 , (2.5)

where 〈·, ·〉L2 denotes the usual scalar product on L2(Rd;C).

Remark 2.1. The convenience of the Weyl calculus lies in the fact that an
(essentially) self-adjoint Weyl operator aW (x, εDx) has a real-valued symbol
a(x, ξ): see Hörmander (1985).

The quantum mechanical wave function uε can therefore be considered
only an auxiliary quantity, whereas (real-valued) quadratic quantities of uε

yield probability densities for the respective physical observables. The most
basic quadratic quantities are the particle density

ρε(t, x) := |uε(t, x)|2, (2.6)

and the current density

jε(t, x) := ε Im
(
uε(t, x)∇uε(t, x)). (2.7)

It is easily seen that if uε solves (2.1), then the following conservation law
holds:

∂tρ
ε + div jε = 0. (2.8)
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In view of (2.3) we can also define the energy density

eε(t, x) :=
1

2
|ε∇uε(t, x)|2 + V (x)ρε(t, x). (2.9)

As will be seen (see Section 5), computing these observable densities numer-
ically is usually less cumbersome than computing the actual wave function
uε accurately. From the analytical point of view, however, we face the prob-
lem that the classical limit ε→ 0 can only be regarded as a weak limit (in a
suitable topology), due to the oscillatory nature of uε. Quadratic operations
defining densities of physical observables do not, in general, commute with
weak limits, and hence it remains a challenging task to identify the (weak)
limits of certain physical observables, or densities, respectively.

2.2. Asymptotic description of high frequencies

In order to gain a better understanding of the oscillatory structure of uε

we invoke the following WKB approximation (see Carles (2008) and the
references given therein):

uε(t, x)
ε→0∼ aε(t, x) e iS(t,x)/ε, (2.10)

with real-valued phase S and (possibly) complex-valued amplitude aε, sat-
isfying the asymptotic expansion

aε
ε→0∼ a+ εa1 + ε2a2 + · · · . (2.11)

Plugging the ansatz (2.10) into (2.1), one can determine an approximate
solution to (2.1) by subsequently solving the equations obtained in each
order of ε.
To leading order, i.e., terms of order O(1), one obtains a Hamilton–Jacobi

equation for the phase function S:

∂tS +
1

2
|∇S|2 + V (x) = 0, S(0, x) = Sin(x). (2.12)

This equation can be solved by the method of characteristics, provided V (x)
is sufficiently smooth, say V ∈ C2(Rd). The characteristic flow is given by
the following Hamiltonian system of ordinary differential equations:

ẋ(t, y) = ξ(t, y), x(0, y) = y,

ξ̇(t, y) = −∇xV (x(t, y)), ξ(0, y) = ∇Sin(y).
(2.13)

Remark 2.2. The characteristic trajectories y �→ x(t, y) obtained via
(2.13) are usually interpreted as the rays of geometric optics. The WKB
approximation considered here is therefore also regarded as the geometric
optics limit of the wave field uε.
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Figure 2.1. Caustics generated from initial data ∂xSin(x) = − sin(πx)| sin(πx)|p−1:
(a) p = 1, and the solution becomes triple-valued; (b) p = 2, and we exhibit
single-, triple- and quintuple-valued solutions.

By the Cauchy–Lipschitz theorem, this system of ordinary differential
equations can be solved at least locally in time, and consequently yields the
phase function

S(t, x) = S(0, x) +

∫ t

0

1

2
|∇S(τ, y(t, x))|2 − V (τ, y(t, x)) dτ,

where y(τ, x) denotes the inversion of the characteristic flowXt : y �→ x(t, y).
This yields a smooth phase function S ∈ C∞([−T, T ]×R

d) up to some time
T > 0 but possibly very small. The latter is due to the fact that, in general,
characteristics will cross at some finite time |T | <∞, in which case the flow
map Xt : R

d → R
d is no longer one-to-one. The set of points at which Xt

ceases to be a diffeomorphism is usually called a caustic set. See Figure 2.1
(taken from Gosse, Jin and Li (2003)) for examples of caustic formulation.
Ignoring the problem of caustics for a moment, one can proceed with

our asymptotic expansion and obtain at order O(ε) the following transport
equation for the leading-order amplitude:

∂ta+∇S · ∇a+ a

2
∆S = 0, a(0, x) = ain(x). (2.14)

In terms of the leading-order particle density ρ := |a|2, this reads
∂tρ+ div(ρ∇S) = 0, (2.15)

which is reminiscent of the conservation law (2.8).
The transport equation (2.14) is again solved by the methods of charac-

teristics (as long as S is smooth, i.e., before caustics) and yields

a(t, x) =
ain(y(t, x))√
Jt(y(t, x))

, |t| ≤ T, (2.16)
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where Jt(y) := det∇yx(t, u) denotes the Jacobi determinant of the Hamil-
tonian flow. All higher-order amplitudes an are then found to be solutions
of inhomogeneous transport equations of the form

∂tan +∇S · ∇an +
an
2
∆S = ∆an−1. (2.17)

These equations are consequently solved by the method of characteristics.
At least locally in time (before caustics), this yields an approximate solution
of WKB type,

uεapp(t, x) = e iS(t,x)/ε
(
a(t, x) + εa1(t, x) + ε2a2(t, x) + · · · ),

including amplitudes (an)
N
n=1 up to some order N ∈ N. It is then straight-

forward to prove the following stability result.

Theorem 2.3. Assume that the initial data of (2.1) are given in WKB
form,

uεin(x) = ain(x) e
iSin(x)/ε, (2.18)

with Sin ∈ C∞(Rd), and let ain ∈ S(Rd), i.e., smooth and rapidly decaying.
Then, for any closed time interval I ⊂ T , before caustic onset, there exists
a C > 0, independent of ε ∈ (0, 1], such that

sup
t∈I

‖uε(t)− uεapp(t)‖L2∩L∞ ≤ CεN .

The first rigorous result of this type goes back to Lax (1957). Its main
drawback is the fact that the WKB solution breaks down at caustics, where
S develops singularities. In addition, the leading-order amplitude a blows
up in L∞(Rd), in view of (2.16) and the fact that limt→T Jt(y) = 0. Of
course, these problems are not present in the exact solution uε but are
merely an artifact of the WKB ansatz (2.10). Caustics therefore indicate
the appearance of new ε-oscillatory scales within uε, which are not captured
by the simple oscillatory ansatz (2.10).

2.3. Beyond caustics

At least locally away from caustics, though, the solution can always be
described by a superposition of WKB waves. This can be seen rather easily
in the case of free dynamics where V (x) = 0. The corresponding solution
of the Schrödinger equation (2.1) with WKB initial data is then explicitly
given by

uε(t, x) =
1

(2πε)d

∫∫
Rd×Rd

ain(y) e
iϕ(x,y,ξ,t)/ε dy dξ, (2.19)

with phase function

ϕ(x, y, ξ, t) := (x− y) · ξ + t

2
|ξ|2 + Sin(y). (2.20)
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The representation formula (2.19) comprises an oscillatory integral, whose
main contributions stem from stationary phase points at which ∂y,ξϕ(x, t) =
0. In view of (2.20) this yields

ξ = ∇S, y = x− tξ.

The corresponding map y �→ x(t, y) is the characteristic flow of the free
Hamilton–Jacobi equation

∂tS +
1

2
|∇S|2 = 0, S(0, x) = Sin(x).

Inverting the relation y �→ x(t, y) yields the required stationary phase points
{yj(t, x)}j∈N ∈ R

d for the integral (2.19). Assuming for simplicity that there
are only finitely many such points, then

uε(t, x) =
1

(2πε)d

∫∫
Rd×Rd

ain(y) e
iϕ(x,y,ξ,t)/ε dy dξ

ε→0∼
J∑

j=1

ain(yj(t, x))√
Jt(yj(t, x))

e iS(yj(t,x))/ε+iπmj/4,

(2.21)

with constant phase shifts mj = sgnD2S(yj(t, x))) ∈ N (usually referred
to as the Keller–Maslov index). The right-hand side of this expression is
usually referred to as multiphase WKB approximation. The latter can be
interpreted as an asymptotic description of interfering wave trains in uε.

Remark 2.4. The case of non-vanishing V (x), although similar in spirit,
is much more involved in general. In order to determine asymptotic descrip-
tion of uε beyond caustics, one needs to invoke the theory of Fourier inte-
gral operators: see, e.g., Duistermaat (1996). In particular, it is in general
very hard to determine the precise form and number of caustics appearing
throughout the time evolution of S(t, x). Numerical schemes for captur-
ing caustics have been developed in, e.g., Benamou and Solliec (2000), or
Benamou, Lafitte, Sentis and Solliec (2003) and the references therein.

3. Wigner transforms and Wigner measures

3.1. The Wigner-transformed picture of quantum mechanics

Whereas WKB-type methods aim for approximate solutions of uε, the goal
of this section is to directly identify the weak limits of physical observable
densities as ε→ 0. To this end, one defines the so-called Wigner transform
of uε, as given in Wigner (1932):

wε[uε](x, ξ) :=
1

(2π)d

∫
Rd

uε
(
x+

ε

2
η

)
uε
(
x− ε

2
η

)
eiξ·η dη. (3.1)
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Plancherel’s theorem together with a simple change of variables yields

‖wε‖L2(R2d) = ε−d(2π)−d/2‖uε‖2L2(Rd).

The real-valued Wigner transform wε ∈ L2(Rd
x × R

d
ξ) can be interpreted as

a phase space description of the quantum state uε. In contrast to classical
phase space distributions, wε in general also takes negative values (except
for Gaussian wave functions).
Applying this transformation to the Schrödinger equation (2.1), the time-

dependent Wigner function wε(t, x, ξ) ≡ wε[uε(t)](x, ξ) is easily seen to
satisfy

∂tw
ε + ξ · ∇xw

ε −Θε[V ]wε = 0, wε(0, x, ξ) = wε
in(x, ξ), (3.2)

where Θε[V ] is a pseudo-differential operator, taking into account the influ-
ence of V (x). Explicitly, it is given by

Θε[V ]f(x, ξ) :=
i

(2π)d

∫∫
Rd×Rd

δV ε(x, y)f(x, ξ′) eiη(ξ−ξ′) dη dξ′, (3.3)

where the symbol δV ε reads

δV ε :=
1

ε

(
V

(
x− ε

2
y

)
− V

(
x+

ε

2
y

))
.

Note that in the free case where V (x) = 0, the Wigner equation becomes the
free transport equation of classical kinetic theory. Moreover, if V ∈ C1(Rd)
we obviously have that

δV ε ε→0−→ y · ∇xV,

in which case the ε→ 0 limit of (3.2) formally becomes the classical Liouville
equation in phase space: see (3.7) below.
The most important feature of the Wigner transform is that it allows for

a simple computation of quantum mechanical expectation values of physical
observables. Namely,

〈uε(t), aW (x, εD)uε(t)〉L2 =

∫∫
Rd×Rd

a(x, ξ)wε(t, x, ξ) dx dξ, (3.4)

where a(x, ξ) is the classical symbol of the operator aW (x, εDx). In addition,
at least formally (since wε �∈ L1(Rd × R

d) in general), the particle density
(2.6) can be computed via

ρε(t, x) =

∫
Rd

wε(t, x, ξ) dξ,

and the current density (2.7) is given by

jε(t, x) =

∫
Rd

ξwε(t, x, ξ) dξ.
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Similarly, the energy density (2.9) is

eε(t, x) =

∫
Rd

H(x, ξ)wε(t, x, ξ) dξ,

where the classical (phase space) Hamiltonian function is denoted by

H(x, ξ) =
1

2
|ξ|2 + V (x). (3.5)

Remark 3.1. It can be proved that the Fourier transform of wε with re-
spect to ξ satisfies ŵε ∈ C0(R

d
y;L

1(Rd
x)) and likewise for the Fourier trans-

formation of wε with respect to x ∈ R
d. This allows us to define the integrals

of wε via a limiting process after convolving wε with Gaussians; see Lions
and Paul (1993) for more details.

3.2. Classical limit of Wigner transforms

The main point in the formulae given above is that the right-hand side of
(3.4) involves only linear operations of wε, which is compatible with weak
limits. To this end, we recall the main result proved in Lions and Paul
(1993) and Gérard et al. (1997).

Theorem 3.2. Let uε(t) be uniformly bounded in L2(Rd) with respect to
ε, that is,

sup
0<ε≤1

‖uε(t)‖L2 < +∞, ∀ t ∈ R.

Then, the set of Wigner functions {wε(t)}0<ε≤1 ⊂ S ′(Rd
x × R

d
ξ) is weak-∗

compact and thus, up to extraction of subsequences,

wε[uε]
ε→0−→ w0 ≡ w in L∞([0, T ];S ′(Rd

x × R
d
ξ)) weak-∗,

where the limit w(t) ∈ M+(Rd
x × R

d
ξ) is called the Wigner measure. If, in

addition ∀ t : (ε∇u(t)) ∈ L2(Rd) uniformly with respect to ε, then we also
have

ρε(t, x)
ε→0−→ ρ(t, x) =

∫
Rd

w(t, x, dξ),

jε(t, x)
ε→0−→ j(t, x) =

∫
Rd

ξw(t, x, dξ).

Note that although wε(t) in general also takes negative values, its weak
limit w(t) is indeed a non-negative measure in phase space.

Remark 3.3. The limiting phase space measures w(t) ∈ M+(Rd
x × R

d
p)

are also often referred to as semiclassical measures and are closely related
to the so-called H-measures used in homogenization theory (Tartar 1990).
The fact that their weak limits are non-negative can be seen by considering
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the corresponding Husimi transformation, i.e.,

wε
H[u

ε] := wε[uε] ∗x Gε ∗ξ Gε,

where we denote

Gε( · ) := (πε)−d/4e−| · |2/ε.

The Husimi transform wε
H is non-negative a.e. and has the same limit points

as the Wigner function wε; see Markowich and Mauser (1993).

This result allows us to exchange limit and integration on the limit on
the right-hand side of (3.4) to obtain

〈uε, aW (x, εDx)u
ε〉L2

ε→0−→
∫∫

Rd×Rd

a(x, ξ)w(t, x, ξ) dx dξ.

The Wigner transformation and its associated Wigner measure are therefore
highly useful tools for computing the classical limit of the expectation values
of physical observables. In addition, it is proved in Lions and Paul (1993)
and Gérard et al. (1997) that w(t, x, ξ) is the push-forward under the flow
corresponding to the classical Hamiltonian H(x, ξ), i.e.,

w(t, x, ξ) = win(F−t(x, ξ)),

where win is the initial Wigner measure and Ft : R
2d → R

2d is the phase
space flow given by

ẋ = ∇ξH(x, ξ), x(0, y, ζ) = y,

ξ̇ = −∇xH(x, ξ), ξ(0, y, ζ) = ζ.
(3.6)

In other words w(t, x, ξ) is a distributional solution of the classical Liouville
equation in phase space, i.e.,

∂tw + {H,w} = 0, (3.7)

where

{a, b} := ∇ξa · ∇xb−∇xa · ∇ξb

denotes the Poisson bracket. Note that in the case where H(x, ξ) is given
by (3.5), this yields

∂tw + ξ · ∇ξw −∇xV (x) · ∇ξw = 0, (3.8)

with characteristic equations given by the Newton trajectories:

ẋ = ξ, ξ̇ = −∇xV (x).

Strictly speaking we require V ∈ C1
b(R

d), in order to define w as a distribu-
tional solution of (3.8). Note, however, in contrast to WKB techniques, the
equation for the limiting Wigner measure (3.8) is globally well-posed, i.e.,
one does not experience problems of caustics. This is due to the fact that
the Wigner measure w(t, x, ξ) lives in phase space.
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3.3. Connection between Wigner measures and WKB analysis

A particularly interesting situation occurs for uεin given in WKB form (2.18).
The corresponding Wigner measure is found to be

wε[uεin]
ε→0−→ win = |ain(x)|2δ(ξ −∇Sin(x)), (3.9)

i.e., a mono-kinetic measure concentrated on the initial velocity v = ∇Sin.
In this case the phase space flow Ft is projected onto physical space R

d,
yielding Xt, the characteristic flow of the Hamilton–Jacobi equation (2.12).
More precisely, the following result has been proved in Sparber et al. (2003).

Theorem 3.4. Let w(t, x, ξ) be the Wigner measure of the exact solution
uε to (2.1) with WKB initial data. Then

w(t, x, ξ) = |a(t, x)|2δ(ξ −∇S(t, x))
if and only if ρ = |a|2 and v = ∇S are smooth solutions of the leading-order
WKB system given by (2.12) and (2.15).

This theorem links the theory of Wigner measures with the WKB approx-
imation before caustics. After caustics, the Wigner measure is in general
no longer mono-kinetic. However, it can be shown (Sparber et al. 2003, Jin
and Li 2003) that for generic initial data uεin and locally away from caustics,
the Wigner measure can be decomposed as

w(t, x, ξ) =
J∑

j=1

|aj(t, x)|2δ(ξ − vj(t, x)), (3.10)

which is consistent with the multiphase WKB approximation given in (2.21).

4. Finite difference methods for semiclassical Schrödinger
equations

4.1. Basic setting

A basic numerical scheme for solving linear partial differential equations is
the well-known finite difference method (FD), to be discussed in this section;
see, e.g., Strikwerda (1989) for a general introduction. In the following, we
shall be mainly interested in its performance as ε→ 0. To this end, we shall
allow for more general Schrödinger-type PDEs in the form (Markowich and
Poupaud 1999)

iε∂tu
ε = HW (x, εDx)u

ε, uε(0, x) = uεin(x), (4.1)

where HW denotes the Weyl quantization of a classical real-valued phase
space Hamiltonian H(x, ξ) ∈ C∞(Rd × R

d), which is assumed to grow at
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most quadratically in x and ξ. For the following we assume that the symbol
is a polynomial of order K ∈ N in ξ with C∞-coefficients Hk(x), i.e.,

H(x, ξ) =
∑
|k|≤K

Hk(x)ξ
k,

where k = (k1, . . . , kd) ∈ N
d denotes a multi-index with |k| := k1 + · · ·+ kd.

The differential operator H(x, εDx)
W can now be written as

H(x, εDx)
Wϕ(x) =

∑
|k|≤K

ε|k|Dk
y

(
Hk

(
x+ y

2

)
ϕ(y)

)∣∣∣∣
y=x

. (4.2)

In addition, assume that

H(x, εDx)
W is essentially self-adjoint on L2(Rd), (A1)

and, for simplicity,

∀ k, α ∈ N
d with |k| ≤ K ∃Ck,α > 0 : |∂αxHk(x)| ≤ Ck,α ∀x ∈ R

d. (A2)

Under these conditionsH(x, εDx)
W can be shown (Kitada 1980) to generate

a unitary (strongly continuous) semi-group of operators U ε(t) = e−itHW /ε,
which provides a unique global-in-time solution uε = uε(t) ∈ L2(Rd). Next,
let

Γ :=
{
γ = 1r1 + · · ·+ mrm : j ∈ Z for 1 ≤ j ≤ d

} ⊆ R
d

be the lattice generated by the linearly independent vectors r1, . . . , rd ∈ R
d.

For a multi-index k ∈ N
d we construct a discretization of order N of the

operator ∂kx as follows:

∂kxϕ(x) ≈
1

h|k|
∑
γ∈Γk

aγ,kϕ(x+ hγ). (4.3)

Here ∆x = h ∈ (0, h0] is the mesh size, Γk ⊆ Γ is the finite set of discretiza-
tion points and aγ,k ∈ R are coefficients satisfying∑

γ∈Γk

aγ,kγ
� = k!δ�,k, 0 ≤ || ≤ N + |k| − 1, (B1)

where δ�,k = 1 if  = k, and zero otherwise. It is an easy exercise to show
that the local discretization error of (4.3) is O(hN ) for all smooth functions
if (B1) holds. For a detailed discussion of the linear problem (B1) (i.e.,
possible choices of the coefficients aγ,k) we refer to Markowich and Poupaud
(1999).
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4.2. Spatial discretization

We shall now define the corresponding finite difference discretization of
H(x, εDx)

W by applying (4.3) directly to (4.2). To this end, we let

Hh,ε(x, ξ) =
∑
|k|≤K

�|k|(− i)|k|
∑
γ∈Γk

aγ,kHk(x) e
iγ·ξ/	, (4.4)

with � = ε
h being the ratio between the small semiclassical parameter ε and

the mesh size h. Then we obtain the finite difference discretization of (4.2)
in the form

H(x, εDx)
Wϕ(x) ≈ Hh,ε(x, εDx)

Wϕ(x)

=
∑
|k|≤K

�|k|(− i)|k|
∑
γ∈Γk

aγ,kHk

(
x+

hγ

2

)
ϕ(x+ hγ).

In view of (4.4), the discretization Hh,ε(x, εDx)
W is seen to be a bounded

operator on L2(Rd) and self-adjoint if

i|k|
∑
γ∈Γk

aγ,k e
iγ·ξ is real-valued for 0 ≤ |k| ≤ K. (B2)

We shall now collect several properties of such finite difference approxima-
tions, proved in Markowich, Pietra and Pohl (1999). We start with a spatial
consistency result.

Lemma 4.1. Let (A1), (B1), (B2) hold and ϕ ∈ S(Rd
x × R

d
ξ). Then, for

� = ε
h

ε,h→0−→ ∞,

Hh,εϕ
ε,h→0−→ Hϕ in S(Rd

x × R
d
ξ). (4.5)

For a given ε > 0, choosing h such that � = ε
h → ∞ corresponds to

asymptotically resolving the oscillations of wavelength O(ε) in the solution
uε(t, x) to the Schrödinger-type equation (4.1). In the case � = const., i.e.,
putting a fixed number of grid points per oscillation, the symbolHh,ε(x, ξ) ≡
H	(x, ξ) is independent of h and ε, i.e.,

H	(x, ξ) =
∑
|k|≤K

�|k|
∑
γ∈Γk

aγ,k(− i)|k|Hk(x) e
iγ·ξ/	. (4.6)

In the case �
ε,h→0−→ 0, which corresponds to a scheme ignoring the ε-

oscillations, we find

Hh,ε
h,ε→0∼

∑
γ∈Γ0

aγ,0 cos

(
γ · ξ
�

)
H0(x),



Methods for semiclassical Schrödinger equations 137

and hence Hh,ε(x, εDx)
W does not approximate H(x, εDx)

W . We thus can-
not expect reasonable numerical results in this case (which will not be
investigated further).

4.3. Temporal discretization and violation of gauge invariance

For the temporal discretization one can employ the Crank–Nicolson scheme
with time step ∆t > 0. This is a widely used time discretization scheme for
the Schrödinger equation, featuring some desirable properties (see below).
We shall comment on the temporal discretizations below. The scheme reads

ε
uσn+1 − uσn

∆t
+ iHh,ε(x, εDx)

W

(
1

2
uσn+1+

1

2
uσn

)
= 0, n = 0, 1, 2, . . . , (4.7)

subject to initial data uσin = uεin(x), where from now on, we shall denote the
vector of small parameters by σ = (ε, h,∆t). Note that the self-adjointness
of Hh,ε(x, εDx)

W implies that the operator

1 + isHh,ε(x, εDx)
W

is invertible on L2(Rd) for all s ∈ R. Therefore the scheme (4.7) gives well-
defined approximations uσn for n = 1, 2, . . . if uεin ∈ L2(Rd). Moreover, we
remark that it is sufficient to evaluate (4.7) at x ∈ hΓ in order to obtain
discrete equations for uσn(hγ), γ ∈ Γ.

Remark 4.2. For practical computations, one needs to impose artificial
‘far-field’ boundary conditions. Their impact, however, will not be taken
into account in the subsequent analysis.

By taking the L2 scalar product of (4.7) with
(
1
2u

σ
n+1 +

1
2u

σ
n

)
, one can

directly infer the following stability result.

Lemma 4.3. The solution of (4.7) satisfies

‖uσn‖L2 = ‖uεin‖L2 , n = 0, 1, 2, . . . .

In other words, the physically important property of mass-conservation
also holds on the discrete level.
On the other hand, the scheme can be seen to violate the gauge invariance

of (4.1). More precisely, one should note that expectation values of physical
observables, as defined in (2.5), are invariant under the substitution (gauge
transformation)

vε(t, x) = uε(t, x) e iωt/ε, ω ∈ R.

In other words, the average value of the observable in the state uε is equal
to its average value in the state vε.
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Remark 4.4. Note that in view of (3.1), the Wigner function is seen to
also be invariant under this substitution, i.e.,

∀ω ∈ R : wε[uε(t)] = wε[uε(t) e iωt/ε] ≡ wε[vε(t)].

On the other hand, using this gauge transformation the Schrödinger equa-
tion (4.1) transforms to

iε∂tv
ε =
(
H(x, εDx)

W + ω
)
vε, vε(0, x) = uεin(x), (4.8)

which implies that the zeroth-order term H0(x) in (4.2) is replaced by
H0(x) +ω, while the other coefficients Hk(x), k �= 0, remain unchanged. In
physical terms, H0(x) corresponds to a scalar (static) potential V (x). The
corresponding force field obtained via F (x) = ∇H0(x) = ∇(H0(x) + ω) is
unchanged by the gauge transformation and thus (4.8) can be considered
(physically) equivalent to (4.1). The described situation, however, is com-
pletely different for the difference scheme outlined above. Indeed, a simple
calculation shows that the discrete gauge transformation

vσn = uσn e
iωtn/ε

does not commute with the discretization (4.7), up to adding a real constant
to the potential. Thus, the discrete approximations of average values of
observables depend on the gauging of the potential. In other words, the
discretization method is not time-transverse-invariant.

4.4. Stability–consistency analysis for FD in the semiclassical limit

The consistency–stability concept of classical numerical analysis provides
a framework for the convergence analysis of finite difference discretizations
of linear partial differential equations. Thus, for ε > 0 fixed it is easy to
prove that the scheme (4.7) is convergent of order N in space and order 2 in
time if the exact solution uε(t, x) is sufficiently smooth. Therefore, again for
fixed ε > 0, we conclude convergence of the same order for average values
of physical observables provided a(x, ξ) is smooth.
However, due to the oscillatory nature solutions to (4.1) the local dis-

cretization error of the finite difference schemes and, consequently, also the
global discretization error, in general tend to infinity as ε → 0. Thus, the
classical consistency–stability theory does not provide uniform results in
the classical limit. Indeed, under the reasonable assumption that, for all
multi-indices j1 and j2 ∈ N

d,

∂|j1|+|j2|

∂tj1∂xj2
uε(t, x)

ε→0∼ ε−|j1|−j2 in L2(Rd),

locally uniformly in t ∈ R, the classical stability–consistency analysis gives
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the following bound for the global L2-discretization error:

O
(
(∆t)2

ε3

)
+O
(
hN

εN+1

)
.

The situation is further complicated by the fact that for any fixed t ∈ R,
the solution uε(t, ·) of (4.1) and its discrete counterpart uσn in general con-
verge only weakly in L2(Rd) as ε → 0, respectively, σ → 0. Thus, the limit
processes ε → 0, σ → 0 do not commute with the quadratically nonlin-
ear operation (2.5), needed to compute the expectation value of physical
observables a[uε(t)].

In practice, one is therefore interested in finding conditions on the mesh
size h and the time step ∆t, depending on ε in such a way that the expec-
tation values of physical observables in discrete form approximate a[uε(t)]
uniformly as ε→ 0. To this end, let tn = n∆t, n ∈ N, and denote

aσ(tn) := 〈a(·, εDx)
Wuσn, u

σ
n〉.

The function aσ(t), t ∈ R, is consequently defined by piecewise linear inter-
polation of the values aσ(tn). We seek conditions on h, k such that, for all
a ∈ S(Rm

x × R
m
ξ ),

lim
h,∆t→0

(aσ(t)− a[uε(t)]) = 0 uniformly in ε ∈ (0, ε0], (4.9)

and locally uniformly in t ∈ R. A rigorous study of this problem will be
given by using the theory of Wigner measures applied in a discrete setting.
Denoting the Wigner transformation (on the scale ε) of the finite difference
solution uσn by

wσ(tn) := wε[uσn],

and defining, as before, wσ(t), for any t ∈ R, by the piecewise linear inter-
polation of wσ(tn), we conclude that (4.9) is equivalent to proving, locally
uniformly in t,

lim
h,∆t→0

(wσ(t)− wε(t)) = 0 in S ′(Rd
x × R

d
ξ), uniformly in ε ∈ (0, ε0], (4.10)

where wε(t) is the Wigner transform of the solution uε(t) of (4.1). We shall
now compute the accumulation points of the sequence {wσ(t)}σ as σ → 0.
We shall see that for any given subsequence {σn}n∈N, the set of Wigner
measures of the difference schemes

µ(t) := lim
n→∞wσn(t)

depends decisively on the relative sizes of ε, h and ∆t. Clearly, in those cases
in which µ = w, where w denotes the Wigner measure of the exact solution
uε(t), the desired property (4.10) follows. On the other hand (4.10) does not
hold if the measures µ and w are different. Such a Wigner-measure-based
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study of finite difference schemes has been conducted in Markowich et al.
(1999) and Markowich and Poupaud (1999). The main result given there is
as follows.

Theorem 4.5. Fix a scale ε > 0 and denote by µ the Wigner measure of
the discretization (4.7) as σ → 0. Then we have the following results.

Case 1. Let h/ε→ 0 (or, equivalently, �→ ∞).

(i) If ∆t/ε→ 0, then µ satisfies

∂tµ+ {H,µ} = 0, µ(0, x, ξ) = win(x, ξ).

(ii) If ∆t/ε→ ω ∈ R
+, then µ solves

∂

∂t
µ+

{
2

ω
arctan

(
ω

2
H

)
, µ

}
= 0, µ(0, x, ξ) = win(x, ξ).

(iii) If ∆t/ε→ ∞ and if in addition there exists C > 0 such that |H(x, ξ)| ≥
C, ∀x, ξ ∈ R

d, then µ is constant in time, i.e.,

µ(t, x, ξ) ≡ µin(x, ξ), ∀ t ∈ R.

Case 2. If h/ε→ 1/� ∈ R
+, then the assertions (i)–(iii) hold true, with H

replaced by H	 defined in (4.6).

The proof of this result proceeds similarly to the derivation of the phase
space Liouville equation (3.7), in the continuous setting. Note that Theo-
rem 4.5 implies that, as ε→ 0, expectation values for physical observables in
the state uε(t), computed via the Crank–Nicolson finite difference scheme,
are asymptotically correct only if both spatial and temporal oscillations of
wavelength ε are accurately resolved.

Remark 4.6. Time-irreversible finite difference schemes, such as the ex-
plicit (or implicit) Euler scheme, behave even less well, as they require
∆t = o(ε2) in order to guarantee asymptotically correct numerically com-
puted observables; see Markowich et al. (1999).

5. Time-splitting spectral methods for semiclassical
Schrödinger equations

5.1. Basic setting, first- and second-order splittings

As has been discussed before, finite difference methods do not perform well
in computing the solution to semiclassical Schrödinger equations. An al-
ternative is given by time-splitting trigonometric spectral methods, which
will be discussed in this subsection; see also McLachlan and Quispel (2002)
for a broad introduction to splitting methods. For the sake of notation, we
shall introduce the method only in the case of one space dimension, d = 1.
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Generalizations to d > 1 are straightforward for tensor product grids and
the results remain valid without modifications.
In the following, we shall therefore study the one-dimensional version of

equation (2.1), i.e.,

iε∂tu
ε = −ε

2

2
∂xxu

ε + V (x)uε, uε(0, x) = uεin(x), (5.1)

for x ∈ [a, b], 0 < a < b < +∞, equipped with periodic boundary conditions

uε(t, a) = uε(t, b), ∂xu
ε(t, a) = ∂xu

ε(t, b), ∀ t ∈ R.

We choose the spatial mesh size ∆x = h > 0 with h = (b− a)/M for some
M ∈ 2N, and an ε-independent time step ∆t ≡ k > 0. The spatio-temporal
grid points are then given by

xj := a+ jh, j = 1, . . . ,M, tn := nk, n ∈ N.

In the following, let uε,nj be the numerical approximation of uε(xj , tn), for
j = 1, . . . ,M .

First-order time-splitting spectral method (SP1 )

The Schrödinger equation (5.1) is solved by a splitting method, based on
the following two steps.

Step 1. From time t = tn to time t = tn+1, first solve the free Schrödinger
equation

iε∂tu
ε +

ε2

2
∂xxu

ε = 0. (5.2)

Step 2. On the same time interval, i.e., t ∈ [tn, tn+1], solve the ordinary
differential equation (ODE)

iε∂tu
ε − V (x)uε = 0, (5.3)

with the solution obtained from Step 1 as initial data for Step 2. Equation
(5.3) can be solved exactly since |u(t, x)| is left invariant under (5.3),

u(t, x) = |u(0, x)| e iV (x)t.

In Step 1, the linear equation (5.2) will be discretized in space by a (pseudo-)
spectral method (see, e.g., Fornberg (1996) for a general introduction) and
consequently integrated in time exactly. More precisely, one obtains at time
t = tn+1

u(tn+1, x) ≈ uε,n+1
j = e iV (xj)k/ε uε,∗j , j = 0, 1, 2, . . . ,M,
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with initial value uε,0j = uεin(xj), and

uε,∗j =
1

M

M/2−1∑
�=−M/2

e iεkγ
2
� /2 ûε,n� e iγ�(xj−a),

where γ� =
2πl
b−a and ûε,n� denote the Fourier coefficients of uε,n, i.e.,

ûε,n� =
M∑
j=1

uε,nj e−iγ�(xj−a),  = −M
2
, . . . ,

M

2
− 1.

Note that the only time discretization error of this method is the splitting
error, which is first-order in k = ∆t, for any fixed ε > 0.

Strang splitting (SP2 )
In order to obtain a scheme which is second-order in time (for fixed ε > 0),
one can use the Strang splitting method , i.e., on the time interval [tn, tn+1]
we compute

uε,n+1
j = e iV (xj)k/2ε uε,∗∗j , j = 0, 1, 2, . . . ,M − 1,

where

uε,∗∗j =
1

M

M/2−1∑
�=−M/2

e iεkγ
2
� /2 ûε,∗� e iγ�(xj−a),

with ûε,∗� denoting the Fourier coefficients of uε,∗ given by

uε,∗j = e iV (xj)k/2ε uε,nj .

Again, the overall time discretization error comes solely from the splitting,
which is now (formally) second-order in ∆t = k for fixed ε > 0.

Remark 5.1. Extensions to higher-order (in time) splitting schemes can
be found in the literature: see, e.g., Bao and Shen (2005). For rigorous
investigations of the long time error estimates of such splitting schemes we
refer to Dujardin and Faou (2007a, 2007b) and the references given therein.

In comparison to finite difference methods, the main advantage of such
splitting schemes is that they are gauge-invariant : see the discussion in
Section 4 above. Concerning the stability of the time-splitting spectral
approximations with variable potential V = V (x), one can prove the fol-
lowing lemma (see Bao, Jin and Markowich (2002)), in which we denote
U = (u1, . . . , uM )� and ‖ · ‖l2 the usual discrete l2-norm on the interval
[a, b], i.e.,

‖U‖l2 =

(
b− a

M

M∑
j=1

|uj |2
)1/2

.
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Lemma 5.2. The time-splitting spectral schemes SP1 and SP2 are un-
conditionally stable, i.e., for any mesh size h and any time step k, we have

‖U ε,n‖l2 = ‖U ε,0‖l2 ≡ ‖U ε
in‖l2 , n ∈ N,

and consequently

‖uε,nint ‖L2(a,b) = ‖uε,0int‖L2(a,b), n ∈ N,

where uε,nint denotes the trigonometric polynomial interpolating

{(x1, uε,n1 ), (x1, u
ε,n
1 ), . . . , (xM , u

ε,n
M )}.

In other words, time-splitting spectral methods satisfy mass-conservation
on a fully discrete level.

5.2. Error estimate of SP1 in the semiclassical limit

To get a better understanding of the stability of spectral methods in the
classical limit ε→ 0, we shall establish the error estimates for SP1. Assume
that the potential V (x) is (b− a)-periodic, smooth, and satisfies∥∥∥∥ dm

dxm
V

∥∥∥∥
L∞[a,b]

≤ Cm, (A)

for some constant Cm > 0. Under these assumptions it can be shown that
the solution uε = uε(t, x) of (5.1) is (b−a)-periodic and smooth. In addition,
we assume ∥∥∥∥ ∂m1+m2

∂tm1∂xm2
uε
∥∥∥∥
C([0,T ];L2[a,b])

≤ Cm1+m2

εm1+m2
, (B)

for all m,m1, m2 ∈ N ∪ {0}. Thus, we assume that the solution oscillates
in space and time with wavelength ε, but no smaller.

Remark 5.3. The latter is known to be satisfied if the initial data uεin
only invoke oscillations of wavelength ε (but no smaller).

Theorem 5.4. Let V (x) satisfy assumption (A) and let uε(t, x) be a solu-
tion of (5.1) satisfying (B). Denote by uε,nint the interpolation of the discrete
approximation obtained via SP1. Then, if

∆t

ε
= O(1),

∆x

ε
= O(1),

as ε→ 0, we have that, for all m ∈ N and tn ∈ [0, T ],∥∥uε(tn)− uε,nint

∥∥
L2(a,b)

≤ Gm
T

∆t

(
∆x

ε(b− a)

)m

+
CT∆t

ε
, (5.4)

where C > 0 is independent of ε and m and Gm > 0 is independent of ε,
∆x, ∆t.
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Figure 5.1. Numerical solution of (a) ρε and (b) jε at t = 0.54, as given in
Example 5.5. In the figure, the solution computed by using SP2 for
ε = 0.0008, h = 1

512 , is superimposed, with the limiting ρ and j obtained by
taking moments of the Wigner measure solution of (3.8).

The proof of this theorem is given in Bao et al. (2002), where a similar
result is also shown for SP2. Now let δ > 0 be a desired error bound such
that

‖uε(tn)− uε,nint ‖L2[a,b] ≤ δ

holds uniformly in ε. Then Theorem 5.4 suggests the following meshing
strategy on O(1) time and space intervals:

∆t

ε
= O(δ),

∆x

ε
= O(δ1/m(∆t)1/m

)
, (5.5)

wherem ≥ 1 is an arbitrary integer, assuming that Gm does not increase too
fast as m→ ∞. This meshing is already more efficient than what is needed
for finite differences. In addition, as will be seen below, the conditions
(5.5) can be strongly relaxed if, instead of resolving the solution uε(t, x),
one is only interested in the accurate numerical computation of quadratic
observable densities (and thus asymptotically correct expectation values).

Example 5.5. This is an example from Bao et al. (2002). The Schrödinger
equation (2.1) is solved with V (x) = 10 and the initial data

ρin(x) = exp(−50(x− 0.5)2),

Sin(x) = −1

5
ln(exp(5(x− 0.5)) + exp(−5(x− 0.5))), x ∈ R.
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The computational domain is restricted to [0, 1] equipped with periodic
boundary conditions. Figure 5.1 shows the solution of the limiting position
density ρ and current density j obtained by taking moments of w, satisfying
the Liouville equation (3.8). This has to be compared with the oscillatory
ρε and jε, obtained by solving the Schrödinger equation (2.1) using SP2.
As one can see, these oscillations are averaged out in the weak limits ρ, j.

5.3. Accurate computation of quadratic observable densities using
time-splitting

We shall again invoke the theory of Wigner functions and Wigner measures.
To this end, let uε(t, x) be the solution of (5.1) and let wε(t, x, ξ) be the
corresponding Wigner transform. Keeping in mind the results of Section 3,
we see that the first-order splitting scheme SP1 corresponds to the following
time-splitting scheme for the Wigner equation (3.2).

Step 1. For t ∈ [tn, tn+1], first solve the linear transport equation

∂tw
ε + ξ ∂xw

ε = 0. (5.6)

Step 2. On the same time interval, solve the non-local (in space) ordinary
differential equation

∂tw
ε −Θε[V ]wε = 0, (5.7)

with initial data obtained from Step 1 above.

In (5.6), the only possible ε-dependence stems from the initial data. In
addition, in (5.7) the limit ε → 0 can be easily carried out (assuming suf-
ficient regularity of the potential V (x)) with k = ∆t fixed. In doing so,
one consequently obtains a time-splitting scheme of the limiting Liouville
equation (3.8) as follows.

Step 1. For t ∈ [tn, tn+1], solve

∂tw + ξ ∂xw
0 = 0.

Step 2. Using the outcome of Step 1 as initial data, solve, on the same
time interval,

∂tw − ∂xV ∂ξw
0 = 0.

Note that in this scheme no error is introduced other than the splitting
error, since the time integrations are performed exactly.
These considerations, which can easily be made rigorous (for smooth po-

tentials), show that a uniform time-stepping (i.e., an ε-independent k = ∆t)
of the form

∆t = O(δ)
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combined with the spectral mesh size control given in (5.5) yields the fol-
lowing error:

‖wε(tn)− wε,n
int ‖L2(a,b) ≤ δ,

uniformly in ∆t as ε → 0. Essentially this implies that a fixed number
of grid points in every spatial oscillation of wavelength ε combined with
ε-independent time-stepping is sufficient to guarantee the accurate compu-
tation of (expectation values of) physical observables in the classical limit.
This strategy is therefore clearly superior to finite difference schemes, which
require k/ε → 0 and h/ε → 0, even if one only is interested in computing
physical observables.

Remark 5.6. Time-splitting methods have been proved particularly suc-
cessful in nonlinear situations: see the references given in Section 15.4 below.

6. Moment closure methods

We have seen before that a direct numerical calculation of uε is numerically
very expensive, particularly in higher dimensions, due to the mesh and time
step constraint (5.5). In order to circumvent this problem, the asymptotic
analysis presented in Sections 2 and 3 can be invoked in order to design
asymptotic numerical methods which allow for an efficient numerical simu-
lation in the limit ε→ 0.

The initial value problem (3.8)–(3.9) is the starting point of the numerical
methods to be described below. Most recent computational methods are
derived from, or closely related to, this equation. The main advantage is
that (3.8)–(3.9) correctly describes the limit of quadratic densities of uε

(which in itself exhibits oscillations of wavelength O(ε)), and thus allows a
numerical mesh size independent of ε. However, we face the following major
difficulties in the numerical approximation.

(1) High-dimensionality . The Liouville equation (3.8) is defined in phase
space, and thus the memory requirement exceeds the current compu-
tational capability in d ≥ 3 space dimensions.

(2) Measure-valued initial data. The initial data (3.9) form a delta measure
and the solution at later time remains one (for a single-valued solution),
or a summation of several delta functions (for a multivalued solution
(3.10)).

In the past few years, several new numerical methods have been intro-
duced to overcome these difficulties. In the following, we shall briefly de-
scribe the basic ideas of these methods.
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6.1. The concept of multivalued solutions

In order to overcome the problem of high-dimensionality one aims to ap-
proximate w(t, x, p) by using averaged quantities depending only on t, x.
This is a well-known technique in classical kinetic theory, usually referred
to as moment closure. A basic example is provided by the result of Theo-
rem 3.4, which tells us that, as long as the WKB analysis of Section 2.2 is
valid (i.e., before the appearance of the first caustic), the Wigner measure
is given by a mono-kinetic distribution in phase space, i.e.,

w(t, x, ξ) = ρ(t, x)δ(ξ − v(t, x)),

where one identifies ρ = |a|2 and v = ∇S. The latter solve the pressure-less
Euler system

∂tρ+ div(ρv) = 0, ρ(0, x) = |ain|2(x),
∂tv + (v · ∇)v +∇V = 0, v(0, x) = ∇Sin(x),

(6.1)

which, for smooth solutions, is equivalent to the system of transport equa-
tion (2.14) coupled with the Hamilton–Jacobi equation (2.12), obtained
through the WKB approximation. Thus, instead of solving the Liouville
equation in phase space, one can as well solve the system (6.1), which is
posed on physical space Rt × R

d
x. Of course, this can only be done until

the appearance of the first caustic, or, equivalently, the emergence of shocks
in (6.1).
In order to go beyond that, one might be tempted to use numerical meth-

ods based on the unique viscosity solution (see Crandall and Lions (1983))
for (6.1). However, the latter does not provide the correct asymptotic de-
scription – the multivalued solution – of the wave function uε(t, x) beyond
caustics. Instead, one has to pass to so-called multivalued solutions, based
on higher-order moment closure methods. This fact is illustrated in Fig-
ure 6.1, which shows the difference between viscosity solutions and multi-
valued solutions. Figures 6.1(a) and 6.1(b) are the two different solutions
for the following eikonal equation (in fact, the zero-level set of S):

∂tS + |∇xS| = 0, x ∈ R
2. (6.2)

This equation, corresponding to H(ξ) = |ξ|, arises in the geometric optics
limit of the wave equation and models two circular fronts moving outward
in the normal direction with speed 1; see Osher and Sethian (1988). As one
can see, the main difference occurs when the two fronts merge. Similarly,
Figures 6.1(c) and 6.1(d) show the difference between the viscosity and the
multivalued solutions to the Burgers equation

∂tv +
1

2
∂xv

2 = 0, x ∈ R. (6.3)
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Eikonal equation

(a) (b)

Burgers equation

(c) (d)

Figure 6.1. Multivalued solution (left) versus viscosity solution (right).
(a, b) Zero-level set curves (at different times) of solutions to the eikonal
equation (6.2). (c, d) Two solutions to the Burgers equation (6.3) before
and after the formation of a shock.

This is simply the second equation in the system (6.1) for V (x) = 0, written
in divergence form. The solution begins as a sinusoidal function and then
forms a shock. Clearly, the solutions are different after the shock formation.

6.2. Moment closure

The moment closure idea was first introduced by Brenier and Corrias (1998)
in order to define multivalued solutions to the Burgers equation, and seems
to be the natural choice in view of the multiphase WKB expansion given in
(2.21). The method was then used numerically in Engquist and Runborg
(1996) (see also Engquist and Runborg (2003) for a broad review) and Gosse
(2002) to study multivalued solutions in the geometrical optics regime of
hyperbolic wave equations. A closely related method is given in Benamou
(1999), where a direct computation of multivalued solutions to Hamilton–
Jacobi equations is performed. For the semiclassical limit of the Schrödinger
equation, this was done in Jin and Li (2003) and then Gosse et al. (2003).
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In order to describe the basic idea, let d = 1 and define

m�(t, x) =

∫
R

ξ�w(t, x, ξ) dξ,  = 1, 2, . . . , L ∈ N, (6.4)

i.e., the th moment (in velocity) of the Wigner measure. By multiplying
the Liouville equation (3.8) by ξ� and integrating over Rξ, one obtains the
following moment system:

∂tm0 + ∂xm1 = 0,

∂tm1 + ∂xm2 = −m0∂xV,

...

∂tmL−1 + ∂xmL = −(L− 1)mL−2∂xV.

Note that this system is not closed , since the equation determining the th
moment involves the (+ 1)th moment.

The δ-closure

As already mentioned in (3.10), locally away from caustics the Wigner mea-
sure of uε as ε→ 0 can be written as

w(t, x, ξ) =
J∑

j=1

ρj(t, x)δ(ξ − vj(t, x)), (6.5)

where the number of velocity branches J can in principle be determined
a priori from ∇Sin(x). For example, in d = 1, it is the total number of
inflection points of v(0, x): see Gosse et al. (2003). Using this particular
form (6.5) of w with L = 2J provides a closure condition for the moment
system above. More precisely, one can express the last moment m2J as a
function of all of the lower-order moments (Jin and Li 2003), i.e.,

m2J = g(m0,m1, . . . ,m2J−1). (6.6)

This consequently yields a system of 2J × 2J equations (posed in physical
space), which effectively provides a solution of the Liouville equation, before
the generation of a new phase, yielding a new velocity vj , j > J . It was
shown in Jin and Li (2003) that this system is only weakly hyperbolic, in the
sense that the Jacobian matrix of the flux is a Jordan block, with only J
distinct eigenvalues v1, v2, . . . , vJ . This system is equivalent to J pressure-
less gas equations (6.1) for (ρj , vj) respectively. In Jin and Li (2003) the
explicit flux function g in (6.6) was given for J ≤ 5. For larger J a numerical
procedure was proposed for evaluating g.
Since the moment system is only weakly hyperbolic, with phase jumps

which are under-compressive shocks (Gosse et al. 2003), standard shock-cap-
turing schemes such as the Lax–Friedrichs scheme and the Godunov scheme
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face severe numerical difficulties as in the computation of the pressure-less
gas dynamics: see Bouchut, Jin and Li (2003), Engquist and Runborg (1996)
or Jiang and Tadmor (1998). Following the ideas of Bouchut et al. (2003)
for the pressure-less gas system, a kinetic scheme derived from the Liouville
equation (3.8) with the closure condition (6.6) was used in Jin and Li (2003)
for this moment system.

The Heaviside closure

Another type of closure was introduced by Brenier and Corrias (1998) using
the following ansatz, called H-closure, to obtain the J-branch velocities vj ,
with j = 1, . . . , J :

w(t, x, ξ) =
J∑

j=1

(−1)j−1H(vj(t, x)− ξ). (6.7)

This type of closure condition for (3.8) arises from an entropy-maximization
principle: see Levermore (1996). Using (6.7), one arrives at (6.6) with
L = J . The explicit form of the corresponding function g(m0, . . . ,m2J−1)
for J < 5 is available analytically in Runborg (2000). Note that this method
decouples the computation of velocities vj from the densities ρj . In fact,
to obtain the latter, Gosse (2002) has proposed solving the following linear
conservation law (see also Gosse and James (2002) and Gosse et al. (2003)):

∂tρj + ∂x(ρjvj) = 0, for j = 1, . . . , N.

The numerical approximation to this linear transport with variable or even
discontinuous flux is not straightforward. Gosse et al. (2003) used a semi-
Lagrangian method that uses the method of characteristics, requiring the
time step to be sufficiently small for the case of non-zero potentials.
The corresponding method is usually referred to as H-closure. Note that

in d = 1 the H-closure system is a non-strictly rich hyperbolic system,
whereas the δ-closure system described before is only weakly hyperbolic.
Thus one expects a better numerical resolution from the H-closure ap-
proach, which, however, is much harder to implement in the higher dimen-
sion. In d = 1, the mathematical equivalence of the two moment systems
was proved in Gosse et al. (2003).

Remark 6.1. Multivalued solutions also arise in the high-frequency ap-
proximation of nonlinear waves, for example, in the modelling of electron
transport in vacuum electronic devices: see, e.g., Granastein, Parker and
Armstrong (1999). There the underlying equations are the Euler–Poisson
equations, a nonlinearly coupled hyperbolic–elliptic system. The multival-
ued solution of the Euler–Poisson system also arises for electron sheet initial
data, and can be characterized by a weak solution of the Vlasov–Poisson
equation: see Majda, Majda and Zheng (1994). Similarly, the work of Li,
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Wöhlbier, Jin and Booske (2004) uses the moment closure ansatz (6.6) for
the Vlasov–Poisson system; see also Wöhlbier, Jin and Sengele (2005). For
multivalued (or multiphase) solution of the semiclassical limit of nonlinear
dispersive waves using the closely related method of Whitham’s modulation
theory , we refer to Whitham (1974) and Flaschka, Forest and McLaughlin
(1980). Finally, we mention that multivalued solutions also arise in supply
chain modelling: see, e.g., Armbruster, Marthaler and Ringhofer (2003).

In summary, the moment closure approach yields an Eulerian method
defined in the physical space which offers a greater efficiency compared to
the computation in phase space. However, when the number of phases
J ∈ N becomes very large and/or in dimensions d > 1, the moment systems
become very complex and thus difficult to solve. In addition, in high space
dimensions, it is very difficult to estimate a priori the total number of phases
needed to construct the moment system. Thus it remains an interesting and
challenging open problem to develop more efficient and general physical-
space-based numerical methods for the multivalued solutions.

7. Level set methods

7.1. Eulerian approach

Level set methods have been recently introduced for computing multivalued
solutions in the context of geometric optics and semiclassical analysis. These
methods are rather general, and applicable to any (scalar) multi-dimensional
quasilinear hyperbolic system or Hamilton–Jacobi equation (see below). We
shall now review the basic ideas, following the lines of Jin and Osher (2003).
The original mathematical formulation is classical; see for example Courant
and Hilbert (1962).

Computation of the multivalued phase

Consider a general d-dimensional Hamilton–Jacobi equation of the form

∂tS +H(x,∇S) = 0, S(0, x) = Sin(x). (7.1)

For example, in present context of semiclassical analysis for Schrödinger
equations,

H(x, ξ) =
1

2
|ξ|2 + V (x),

while for applications in geometrical optics (i.e., the high-frequency limit of
the wave equation),

H(x, ξ) = c(x)|ξ|,
with c(x) denoting the local sound (or wave) speed. Introducing, as before,
a velocity v = ∇S and taking the gradient of (7.1), one gets an equivalent
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equation (at least for smooth solutions) in the form (Jin and Xin 1998):

∂tv + (∇ξH(x, v) · ∇)v +∇xH(x, v) = 0, v(0, x) = ∇xSin(x). (7.2)

Then, in d ≥ 1 space dimensions, define level set functions φj , for j =
1, . . . , d, via

∀(t, x) ∈ R× R
d : φj(t, x, ξ) = 0 at ξ = vj(t, x).

In other words, the (intersection of the) zero-level sets of all {φj}dj=1 yield
the graph of the multivalued solution vj(t, x) of (7.2). Using (7.2) it is easy
to see that φj solves the following initial value problem:

∂tφj + {H(x, ξ), φj}φj = 0, φj(x, ξ, 0) = ξj − vj(0, x), (7.3)

which is simply the phase space Liouville equation. Note that in contrast
to (7.2), this equation is linear and thus can be solved globally in time. In
doing so, one obtains, for all t ∈ R, the multivalued solution to (7.2) needed
in the asymptotic description of physical observables. See also Cheng, Liu
and Osher (2003).

Computation of the particle density
It remains to compute the classical limit of the particle density ρ(t, x). To do
so, a simple idea was introduced in Jin, Liu, Osher and Tsai (2005a). This
method is equivalent to a decomposition of the measure-valued initial data
(3.9) for the Liouville equation. More precisely, a simple argument based on
the method of characteristics (see Jin, Liu, Osher and Tsai (2005b)) shows
that the solution to (3.8)–(3.9) can be written as

w(t, x, ξ) = ψ(t, x, ξ)

d∏
j=1

δ(φj(t, x, ξ)),

where φj(t, x, ξ) ∈ R
n, j = 1, . . . , d, solves (7.3) and the auxiliary function

ψ(t, x, ξ) again satisfies the Liouville equation (3.8), subject to initial data:

ψ(0, x, ξ) = ρin(x).

The first two moments of w with respect to ξ (corresponding to the particle
ρ and current density J = ρu) can then be recovered through

ρ(t, x) =

∫
Rd

ψ(t, x, ξ)
d∏

j=1

δ(φj(t, x, ξ)) dξ,

u(t, x) =
1

ρ(t, x)

∫
Rd

ξψ(t, x, ξ)

d∏
j=1

δ(φj(t, x, ξ)) dξ.

Thus the only time one has to deal with the delta measure is at the numerical
output, while during the time evolution one simply solves for φj and ψ, both
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of which are smooth L∞-functions. This avoids the singularity problem
mentioned earlier, and gives numerical methods with much better resolution
than solving (3.8)–(3.9) directly, e.g., by approximating the initial delta
function numerically. An additional advantage of this level set approach
is that one only needs to care about the zero-level sets of φj . Thus the
technique of local level set methods developed in Adalsteinsson and Sethian
(1995) and Peng, Merriman, Osher, Zhao and Kang (1999) can be used.
One thereby restricts the computational domain to a narrow band around
the zero-level set, in order to reduce the computational cost to O(N lnN),
for N computational points in the physical space. This is a nice alternative
for dimension reduction of the Liouville equation. When solutions for many
initial data need to be computed, fast algorithms can be used: see Fomel
and Sethian (2002) or Ying and Candès (2006).

Example 7.1. Consider (2.1) in d = 1 with periodic potential V (x) =
cos(2x+ 0.4)), and WKB initial data corresponding to

Sin(x) = sin(x+ 0.15),

ρin(x) =
1

2
√
π

[
exp

(
−
(
x+

π

2

)2)
+ exp

(
−
(
x− π

2

)2)]
.

Figure 7.1 shows the time evolution of the velocity and the corresponding
density computed by the level set method described above. The velocity
eventually develops some small oscillations with higher frequency, which
require a finer grid to resolve.

Remark 7.2. The outlined ideas have been extended to general linear
symmetric hyperbolic systems in Jin et al. (2005a). So far, however, level
set methods have not been formulated for nonlinear equations, except for
the one-dimensional Euler–Poisson equations (Liu and Wang 2007), where
a three-dimensional Liouville equation has to be used in order to calculate
the corresponding one-dimensional multivalued solutions.

7.2. The Lagrangian phase flow method

While the Eulerian level set method is based on solving the Liouville equa-
tion (3.8) on a fixed mesh, the Lagrangian (or particle) method , is based
on solving the Hamiltonian system (3.6), which is simply the characteristic
flow of the Liouville equation (3.7). In geometric optics this idea is referred
to as ray tracing (Cervený 2001), and the curves x(t, y, ζ), ξ(t, y, ζ) ∈ R

d,
obtained by solving (3.6), are usually called bi-characteristics.

Remark 7.3. Note that finding an efficient way to numerically solve Hamil-
tonian ODEs, such as (3.6), is a problem of great (numerical) interest in its
own right: see, e.g., Leimkuhler and Reich (2004).
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(a) (b)

Figure 7.1. Example 7.1: (a) multivalued velocity v at
time T = 0.0, 6.0, and 12.0, (b) corresponding density ρ.
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Here we shall briefly describe a fast algorithm, called the phase flow
method in Ying and Candès (2006), which is very efficient if multiple initial
data, as is often the case in practical applications, are to be propagated by
the Hamiltonian flow (3.6). Let Ft : R

2d → R
2d be the phase flow defined

by

Ft(y, ζ) = (x(t, y, ζ), ξ(t, y, ζ)), t ∈ R.

A manifold M ⊂ R
d
x × R

d
ξ is said to be invariant if Ft(M) ⊂ M. For the

autonomous ODEs, such as (3.6), a key property of the phase map is the
one-parameter group structure, Ft ◦ Fs = Ft+s.

Instead of integrating (3.6) for each individual initial condition (y, ζ), up
to, say, time T , the phase flow method constructs the complete phase map
FT . To this end, one first constructs the Ft for small times using standard
ODE integrators and then builds up the phase map for larger times via a
local interpolation scheme together with the group property of the phase
flow. Specifically, fix a small time τ > 0 and suppose that T = 2nτ .

Step 1. Begin with a uniform or quasi-uniform grid on M.

Step 2. Compute an approximation of the phase map Fτ at time τ . The
value of Fτ at each grid point is computed by applying a standard ODE or
Hamiltonian integrator with a single time step of length τ . The value of Fτ

at any other point is defined via a local interpolation.

Step 3. For k = 1, . . . , n, construct F2kτ using the group relation F2kτ =
F2k−1τ ◦ F2k−1τ . Thus, for each grid point (y, ζ),

F2kτ (y, ζ) = F2k−1τ (F2k−1τ (y, ζ)),

while F2kτ is defined via a local interpolation at any other point.

When the algorithm terminates, one obtains an approximation of the
whole phase map at time T = 2nτ . This method is clearly much faster than
solving each for initial condition independently.

8. Gaussian beam methods: Lagrangian approach

A common numerical problem with all numerical approaches based on the
Liouville equation with mono-kinetic initial data (3.8)–(3.9) is that the par-
ticle density ρ(t, x) blows up at caustics. Another problem is the loss of
phase information when passing through a caustic point, i.e., the loss of
the Keller–Maslov index (Maslov 1981). To this end, we recall that the
Wigner measure only sees the gradient of the phase: see (3.10). The latter
can be fixed by incorporating this index into a level set method as was done
in Jin and Yang (2008)). Nevertheless, one still faces the problem that any
numerical method based on the Liouville equation is unable to handle wave
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interference effects. The Gaussian beam method (or Gaussian wave packet
approach, as it is called in quantum chemistry: see Heller (2006)), is an
efficient approximate method that allows an accurate computation of the
wave amplitude around caustics, and in addition captures the desired phase
information. This now classical method was developed in Popov (1982),
Ralston (1982) and Hill (1990), and has seen increasing activity in recent
years. In the following, we shall describe the basic ideas, starting with its
classical Lagrangian formulation.

8.1. Lagrangian dynamics of Gaussian beams

Similar to the WKB method, the approximate Gaussian beam solution is
given in the form

ϕε(t, x, y) = A(t, y) e iT (t,x,y)/ε, (8.1)

where the variable y = y(t, y0) will be determined below and the phase
T (t, x, y) is given by

T (t, x, y) = S(t, y)+ p(t, y) · (x− y)+
1

2
(x− y)�M(t, y)(x− y)+O(x− y|3).

This is reminiscent of the Taylor expansion of the phase S around the point
y, upon identifying p = ∇S ∈ R

d, M = ∇2S, the Hessian matrix. The
idea is now to allow the phase T to be complex-valued (in contrast to WKB
analysis), and choose the imaginary part of M ∈ C

n×n positive definite so
that (8.1) indeed has a Gaussian profile.
Plugging the ansatz (8.1) into the Schrödinger equation (2.1), and ignor-

ing the higher-order terms in both ε and (y − x), one obtains the following
system of ODEs:

dy

dt
= p,

dp

dt
= −∇yV, (8.2)

dM

dt
= −M2 −∇2

yV, (8.3)

dS

dt
=

1

2
|p|2 − V,

dA

dt
= −1

2

(
Tr(M)

)
A, (8.4)

where p, V,M, S and A have to be understood as functions of (t, y(t, y0)).
The latter defines the centre of a Gaussian beam. Equations (8.2)–(8.4) can
be considered as the Lagrangian formulation of the Gaussian beam method,
with (8.2) furnishing a classical ray-tracing algorithm. We further note that
(8.3) is a Riccati equation for M . We state the main properties of (8.3),
(8.4) in the following theorem, the proof of which can be found in Ralston
(1982) (see also Jin, Wu and Yang (2008b)).
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Theorem 8.1. Let P (t, y(t, y0)) andR(t, y(t, y0)) be the (global) solutions
of the equations

dP

dt
= R,

dR

dt
= −(∇2

yV )P, (8.5)

with initial conditions

P (0, y0) = Id, R(0, y0) =M(0, y0), (8.6)

where Id is the identity matrix and Im(M(0, y0)) is positive definite. Assume
that M(0, y0) is symmetric. Then, for each initial position y0, we have the
following properties.

(1) P (t, y(t, y0)) is invertible for all t > 0.

(2) The solution to equation (8.3) is given by

M(t, y(t, y0)) = R(t, y(t, y0))P
−1(t, y(t, y0)). (8.7)

(3) M(t, y(t, y0)) is symmetric and Im(M(t, y(t, y0))) is positive definite
for all t > 0.

(4) The Hamiltonian H = 1
2 |p|2 + V is conserved along the y-trajectory,

as is (A2 detP ), i.e., A(t, y(t, y0)) can be computed via

A(t, y(t, y0)) =
(
(detP (t, y(t, y0)))

−1A2(0, y0)
)1/2

, (8.8)

where the square root is taken as the principal value.

In particular, since (A2 detP ) is a conserved quantity, we infer that A
does not blow up along the time evolution (provided it is initially bounded).

8.2. Lagrangian Gaussian beam summation

It should be noted that a single Gaussian beam given by (8.1) is not an
asymptotic solution of (2.1), since its L2(R2d)-norm goes to zero, in the
classical limit ε→ 0. Rather, one needs to sum over several Gaussian beams,
the number of which is O(ε−1/2). This is referred to as the Gaussian beam
summation; see for example Hill (1990). In other words, one first needs to
approximate given initial data through Gaussian beam profiles. For WKB
initial data (2.18), a possible way to do so is given by the next theorem,
proved by Tanushev (2008).

Theorem 8.2. Let the initial data be given by

uεin(x) = ain(x) e
iSin(x)/ε,

with ain ∈ C1(Rd) ∩ L2(Rd) and Sin ∈ C3(Rd), and define

ϕε(x, y0) = ain(y0) e
iT (x,y0)/ε,
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where

T (x, y0) = Tα(y0) + Tβ · (x− y0) +
1

2
(x− y0)

�Tγ (x− y0),

Tα(y0) = Sin(y0), Tβ(y0) = ∇xSin(y0), Tγ(y0) = ∇2
xSin(y0) + i Id.

Then ∥∥∥∥uεin − (2πε)−d/2

∫
Rd

rθ(· − y0)ϕ
ε(·, y0) dy0

∥∥∥∥
L2

≤ Cε
1
2 ,

where rθ ∈ C∞
0 (Rd), rθ ≥ 0 is a truncation function with rθ ≡ 1 in a ball of

radius θ > 0 around the origin, and C is a constant related to θ.

In view of Theorem 8.2, one can specify the initial data for (8.2)–(8.4) as

y(0, y0) = y0, p(0, y0) = ∇xSin(y0), (8.9)

M(0, y0) = ∇2
xSin(y0) + i Id, (8.10)

S(0, y0) = Sin(y0), A(0, y0) = ain(y0). (8.11)

Then, the Gaussian beam solution approximating the exact solution of (2.1)
is given by

uεG(t, x) = (2πε)−d/2

∫
Rd

rθ(x− y(t, y0))ϕ
ε(t, x, y(t, y0)) dy0.

In discretized form this reads

uεG(t, x) ≈ (2πε)−d/2

Ny0∑
j=1

rθ(x− y(t, yj0))ϕ
ε(t, x, yj0)∆y0,

where the yj0 are equidistant mesh points, and Ny0 is the number of the

beams initially centred at yj0.

Remark 8.3. Note that the cut-off error introduced via rθ becomes large
when the truncation parameter θ is taken too small. On the other hand, a
big θ for wide beams makes the error in the Taylor expansion of T large.
As far as we know, it is still an open mathematical problem to determine
an optimal size of θ when beams spread. However, for narrow beams one
can take a fairly large θ, which makes the cut-off error almost zero. For
example, a one-dimensional constant solution can be approximated by

1 =

∫
R

1√
2πε

exp

(−(x− y0)
2

2ε

)
dy0 ≈

∑
j

∆y0√
2πε

exp

(−(x− yj0)
2

2ε

)
,

in which rθ ≡ 1.
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8.3. Higher-order Gaussian beams

The above Gaussian beam method can be extended to higher order in ε:
see Tanushev (2008), Jin et al. (2008b) and Liu and Ralston (2010). For
notational convenience we shall only consider the case d = 1. Consider the
Schrödinger equation (2.1) with initial data

uεin(x) = e iSin(x)/ε
N∑
j=0

εjaj(x), x ∈ R.

Let a ray y(t, y0) start at a point y0 ∈ R. Expand Sin(x) in a Taylor series
around y0:

Sin(x) =
k+1∑
β=0

Sβ(y0)(x− y0)
β +O(|x− y0|β+1).

Then, a single kth-order Gaussian beam takes the form

ϕε
k(t, x, y) =

[k/2]−1∑
j=1

εjAj(t, y) e
iT (t,x,y)/ε,

where the phase is given by

T (t, x, y) = T0(t, y)+p(t, y)(x−y)+1

2
M(t, y)(x−y)2+

k+1∑
β=3

1

β!
Tβ(t, y)(x−y)β ,

and the amplitude reads

Aj =

k−2j−1∑
β=0

1

β!
Aj,β(t, y)(x− y)β .

Here the bi-characteristic curves (y(t, y0), p(t, y(t, y0))) satisfy the Hamilto-
nian system (8.2) with initial data

y(0, y0) = y0, p(0, y0) = ∂yS0(y0).

In addition, the equations for the phase coefficients along the bi-charac-
teristic curves are given by

dT0
dt

=
p2

2
− V,

dM

dt
= −M2 − ∂2yV,

dTβ
dt

= −
β∑

γ=2

(β − 1)!

(γ − 1)!(β − γ)!
TγTβ−γ+2 − ∂βy V,
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for β = 3, . . . , k + 1. These equations are equipped with initial data

T0(0, y0) = S0(y0), M(0, y0) = ∂2yS0(y0) + i Id, Tβ(0, y0) = Sβ(y0).

Finally, the amplitude coefficients are obtained recursively by solving the
transport equations for Aj,β with β ≤ k − 2j − 1, starting from

dA0,0

dt
= −1

2
Tr(M(t, z))A0,0, (8.12)

with initial data
Aj,β(0, y0) = aβ(y0).

In d = 1, the kth-order Gaussian beam superposition is thus formed by

uεG,k(t, x) = (2πε)−1/2

∫
R

rθ(x− y(t, y0))ϕ
ε
k(t, x, y(t, y0)) dy0, (8.13)

where, as before, rθ ∈ C∞
0 (R;R) is some cut-off function. For this type

of approximation, the following theorem was proved in Liu, Runborg and
Tanushev (2011).

Theorem 8.4. If uε(t, x) denotes the exact solution to the Schrödinger
equation (2.1) and uεG,k is the kth-order Gaussian beam superposition, then

sup
|t|<T

‖uε(t, ·)− uεG,k(t, ·)‖ ≤ C(T )εk/2, (8.14)

for any T > 0.

9. Gaussian beam methods: Eulerian approach

9.1. Eulerian dynamics of Gaussian beams

The Gaussian beam method can be reformulated in an Eulerian framework.
To this end, let us first define the linear Liouville operator as

L = ∂t + ξ · ∇y −∇yV · ∇ξ.

In addition, we shall denote

Φ := (φ1, . . . , φd),

where φj is the level set function defined in (7.1) and (7.3). Using this, Jin
et al. (2005b) and Jin and Osher (2003) showed that one can obtain from the
original Lagrangian formulation (8.2)–(8.4) the following (inhomogeneous)
Liouville equations for velocity, phase and amplitude, respectively:

LΦ = 0, (9.1)

LS =
1

2
|ξ|2 − V, (9.2)

LA =
1

2
Tr
(
(∇ξΦ)

−1∇yΦ
)
A. (9.3)
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In addition, if one introduces the quantity (Jin et al. 2005b)

f(t, y, ξ) = A2(t, y, ξ) det(∇ξΦ),

then f(t, y, ξ) again satisfies the Liouville equation, i.e.,

Lf = 0. (9.4)

Two more inhomogeneous Liouville equations, which are the Eulerian
version of (8.5) for P and R, were introduced in Leung, Qian and Burridge
(2007) to construct the Hessian matrix. More precisely, one finds

LR = −(∇2
yV )P, (9.5)

LP = R. (9.6)

Note that the equations (9.1)–(9.4) are real , while (9.5) and (9.6) are com-
plex and consist of 2n2 equations.

Gaussian beam dynamics using complex level set functions

In Jin et al. (2008b) the following observation was made. Taking the gradient
of the equation (9.1) with respect to y and ξ separately, we have

L(∇yΦ) = ∇2
yV∇ξΦ, (9.7)

L(∇ξΦ) = −∇yΦ. (9.8)

Comparing (9.5)–(9.6) with (9.7)–(9.8), one observes that −∇yΦ and ∇ξΦ
satisfy the same equations as R and P , respectively. Since the Liouville
operator is linear, one can allow Φ to be complex-valued and impose for
−∇yΦ, ∇ξΦ the same initial conditions as for R and P , respectively. By
doing so,

R = −∇xΦ, P = ∇ξΦ

hold true for any time t ∈ R. In view of (8.6) and (8.10), this suggests the
following initial condition for Φ:

Φ0(y, ξ) = −iy + (ξ −∇yS0). (9.9)

With this observation, one can now solve (9.1) for complex Φ, subject to
initial data (9.9). Then the matrix M can be constructed by

M = −∇yΦ(∇ξΦ)
−1, (9.10)

where the velocity v = ∇yS is given by the intersection of the zero-level
contours of the real part of Φ, i.e., for each component φj ,

Re(φj(t, y, ξ)) = 0, at ξ = v(t, y) = ∇yS. (9.11)

Note that in order to compute v, S and M , one only needs to solve d
complex-valued homogeneous Liouville equations (9.1). The Eulerian level
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set method of Jin et al. (2008b) (in complex phase space) can then be
summarized as follows.

Step 1. Solve (9.1) for Φ complex , with initial condition (9.9), and obtain
the velocity v by the intersection of the zero-level sets of Reφj , j = 1, . . . , n.

Step 2. Use −∇yΦ and ∇ξΦ to construct M by (9.10) (note that these
quantities are already available from the first step after discretizing the
Liouville equation for Φ).

Step 3. Integrate the velocity v along the zero-level sets (Gosse 2002, Jin
and Yang 2008) to get the phase S. To do so, one performs a numerical
integration following each branch of the velocity. The integration constants
are obtained by the boundary condition and the fact that the multivalued
phase is continuous when passing from one branch to the other. For exam-
ple, if one considers a bounded domain [a, b] in space dimension d = 1, the
phase function is given by

S(t, x) = −V (a)t− 1

2

∫ t

0
v2(τ, a) dτ +

∫ x

a
v(t, y) dy + S(0, a). (9.12)

For more details on this and its extension to higher dimensions, see Jin and
Yang (2008).

Step 4. Solve (9.4) with the initial condition

f0(y, ξ) = A2
0(y, ξ).

Then amplitude A is given by

A = (det(∇ξΦ)
−1f)1/2, (9.13)

where the square root has to be understood as the principal value. (We also
refer to Jin, Wu and Yang (2011) for a more elaborate computation of A.)

Note that all functions appearing in Steps 2–4 only need to be solved
locally around the zero-level sets of Reφj , j = 1, . . . , n. Thus, the entire
algorithm can be implemented using the local level set methods of Osher,
Cheng, Kang, Shim and Tsai (2002) and Peng et al. (1999). For a given mesh
size ∆y, the computational cost is therefore O((∆y)−d ln(∆y)−1), about the
same as the local level set methods for geometrical optics computation: see
Jin et al. (2005b).

Remark 9.1. If one is only interested in computing the classical limit of
(the expectation values of) physical observables, one observes that the only
term in (9.12) which affects a quadratic observable density for fixed time t is∫ x
a v(t, y) dy. Thus, as long as one is only interested in physical observables,
one can simply take

S(t, x) =

∫ x

a
v(t, y) dy (9.14)



Methods for semiclassical Schrödinger equations 163

in the numerical simulations.

That M and A are indeed well-defined via (9.10) and (9.13) is justified
by the following theorem (which can be seen as the Eulerian version of
Theorem 8.1), proved in Jin et al. (2008b).

Theorem 9.2. Let Φ = Φ(t, y, ξ) ∈ C be the solution of (9.1) with initial
data (9.9). Then, the following properties hold:

(1) ∇ξΦ is non-degenerate for all t ∈ R,

(2) Im
(−∇yΦ(∇ξΦ)

−1
)
is positive definite for all t ∈ R, y, ξ ∈ R

d.

Although det
(
Re(∇ξΦ)

)
= 0 at caustics, the complexified Φ makes ∇ξΦ

non-degenerate, and the amplitude A, defined in (9.13), does not blow up
at caustics.

9.2. Eulerian Gaussian beam summation

As before, we face the problem of Gaussian beam summation, i.e., in order to
reconstruct the full solution uε a superposition of single Gaussian beams has
to be considered. To this end, we define a single Gaussian beam, obtained
through the Eulerian approach, by

ϕ̃ε(t, x, y, ξ) = A(t, y, ξ) eiT (t,x,y,ξ)/ε, (9.15)

where A is solved via (9.13), and

T (t, x, y, ξ) = S(t, y, ξ) + ξ · (x− y) +
1

2
(x− y)�M(t, y, ξ)(x− y).

Then, the wave function is constructed via the following Eulerian Gaussian
beam summation formula (Leung et al. 2007):

ũεG(t, x) = (2πε)−d/2

∫∫
Rd×Rd

rθ(x− y)ϕ̃ε(t, x, y, ξ)
d∏

j=1

δ(Re(φj)) dξ dy,

which is consistent with the Lagrangian summation formula (8.2).
Indeed, the above given double integral for uεG can be evaluated as a single

integral in y as follows. We again denote by vj , j = 1, . . . , J the jth branch
of the multivalued velocity and write

ũεG(t, x) = (2πε)−d/2

∫
Rd

rθ(x− y)

J∑
j=1

ϕ̃ε(t, x, y, vk)

| det(Re(∇ξΦ)ξ=vj )|
dy. (9.16)

However, since det
(
Re(∇ξΦ)

)
= 0 at caustics, a direct numerical integration

of (9.16) loses accuracy around caustics. To get better accuracy, one can
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split (9.16) into two parts,

I1 =
J∑

j=1

∫
Ω1

(2πε)−d/2rθ(x− y)
ϕ̃ε(t, x, y, vk)∣∣det(Re(∇ξΦ)ξ=vj )

∣∣ dy, (9.17)

I2 =
J∑

j=1

∫
Ω2

(2πε)−d/2rθ(x− y)
ϕ̃ε(t, x, y, vk)∣∣det(Re(∇ξΦ)ξ=vj )

∣∣ dy, (9.18)

where

Ω1 :=
{
y :
∣∣det(Re(∇pφ)(t, y, pj))

∣∣ ≥ τ
}
,

Ω2 :=
{
y :
∣∣det(Re(∇pφ)(t, y, pj))

∣∣ < τ
}
,

with τ being a small parameter. The latter is chosen sufficiently small to
minimize the cost of computing (9.18), yet large enough to make I1 a regular
integral.
The regular integral I1 can then be approximated by a standard quadra-

ture rule, such as the trapezoid quadrature rule, while the singular integral
I2 is evaluated by the semi-Lagrangian method introduced in Leung et al.
(2007).

Remark 9.3. When the velocity contours are complicated due to large
numbers of caustics, implementation of the local semi-Lagrangian method
is hard. In such situations one can use a discretized δ-function method for
numerically computing (9.18), as was done in Wen (2010). In this method
one needs to numerically solve (9.2) in order to obtain the phase function,
since all values of φj near the support of δ(Re(φj)) are needed to evalu-
ate (9.18).

Example 9.4. This is an example from Jin et al. (2008b). It considers
the free motion of particles in d = 1 with V (x) = 0. The initial conditions
for the Schrödinger equation (2.1) are induced by

ρin(x) = exp(−50x2), vin(x) = ∂xS0(x) = − tanh(5x).

Figure 9.1 shows the l∞-errors between the square modulus of uε, the ex-
act solution of the Schrödinger equation (2.1), and the approximate solution
constructed by: (i) the level set method described in Section 7, (ii) the level
set method with Keller–Maslov index built in (Jin and Yang 2008), and
(iii) the Eulerian Gaussian beam method described above. As one can see,
method (ii) improves the geometric optics solution (i) away from caustics,
while the Gaussian beam method offers a uniformly small error even near
the caustics.
Compared to the Lagrangian formulation based on solving the ODE sys-

tem (8.2)–(8.4), the Eulerian Gaussian beam method has the advantage of
maintaining good numerical accuracy since it is based on solving PDEs on
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(a)

(b)

(c)

Figure 9.1. Example 9.4: numerical errors between the solution of
the Schrödinger equation and (a) the geometrical optics solution,
(b) the geometrical optics with phase shift built in, and (c) the
Gaussian beam method. Caustics are around x = ±0.18.
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fixed grids. Moreover, higher-order (in ε) Eulerian Gaussian beam methods
have been constructed: see Liu and Ralston (2010) and Jin et al. (2011).

Remark 9.5. Research on Gaussian beam methods is of great recent in-
terest in the applied mathematics community: see, e.g., Leung et al. (2007),
Jin et al. (2008b) and Leung and Qian (2009) for Eulerian formulations,
Tanushev (2008), Motamed and Runborg (2010), Liu and Ralston (2010),
Bougacha, Akian and Alexandre (2009) and Liu et al. (2011) for error esti-
mates, and Tanushev, Engquist and Tsai (2009), Ariel, Engquist, Tanushev
and Tsai (2011), Qian and Ying (2010) and Yin and Zheng (2011) for initial
data decompositions.

9.3. Frozen Gaussian approximations

The construction of the Gaussian beam approximation is based on the trun-
cation of the Taylor expansion of the phase T (t, x, y) (8.1) around the beam
centre y. Hence it loses accuracy when the width of the beam becomes large,
i.e., when the imaginary part of M(t, y) in (8.1) becomes small so that the
Gaussian function is no longer localized . This happens, for example, when
the solution of the Schrödinger equation spreads (namely, the ray deter-
mined by (8.2) diverges), which can be seen as the time-reversed situation
of caustic formation. The corresponding loss in the numerical computation
can be overcome by re-initialization every once in a while: see Tanushev
et al. (2009), Ariel et al. (2011), Qian and Ying (2010) and Yin and Zheng
(2011). However, this approach increases the computational complexity in
particular, when beams spread quickly.
The frozen Gaussian approximation (as it is referred to in quantum chem-

istry), first proposed in Heller (1981), uses Gaussian functions with fixed
widths to approximate the exact solution uε. More precisely, instead of
using Gaussian beams only in the physical space, the frozen Gaussian ap-
proximation uses a superposition of Gaussian functions in phase space. That
is why the method is also known by the name coherent state approximation.
To this end, we first decompose the initial data into several Gaussian func-
tions in phase space,

ψε(y0, p0) =

∫
Rd

uεin(y) e
−( ip0·(y−y0)− 1

2
|y−y0|2)/ε dy,

and then propagate the centre of each function (y(t), p(t)) along the Hamil-
tonian flow (8.2), subject to initial data at (y0, p0). The frozen Gaussian
beam solution takes the form

uεFG(t, x) =

(2πε)−3d/2

∫∫
Rd×Rd

a(t, y0, p0)ψ(y0, p0) e
( ip(t)·(x−y(t))− 1

2
|x−y(t)|2)/ε dp0 dy0,
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where the complex-valued amplitude a(t, y0, p0), is the so-called Herman–
Kluk pre-factor : see Herman and Kluk (1984). Since the width of the
Gaussians is fixed, one does not encounter the problem of beam spreading
here. However, since this method is based in phase space, the computational
cost is considerably higher than the standard Gaussian beam methods. For
subsequent developments in this direction, see Herman and Kluk (1984),
Kay (1994, 2006), Robert (2010), Swart and Rousse (2009) and Lu and
Yang (2011).

10. Asymptotic methods for discontinuous potentials

Whenever a medium is heterogeneous, the potential V can be discontin-
uous, creating a sharp potential barrier or interface where waves can be
partially reflected and transmitted (as in the Snell–Descartes Law of Re-
fraction). This gives rise to new mathematical and numerical challenges
not present in the smooth potential case. Clearly, the semiclassical limit
(3.8)–(3.9) does not hold at the barrier. Whenever V is discontinuous, the
Liouville equation (3.8) contains characteristics which are discontinuous or
even measure-valued. To this end, we recall that the characteristic curves
(x(t), ξ(t)) are determined by the Hamiltonian system (3.6). The latter is a
nonlinear system of ODEs whose right-hand side is not Lipschitz due to the
singularity in ∇xH(x, ξ), and thus the classical well-posedness theory for
the Cauchy problem of the ODEs fails. Even worse, the coefficients in the
Liouville equation are in general not even BV (i.e., of bounded variation),
for which almost everywhere solutions were introduced by DiPerna and Li-
ons (1989) and Ambrosio (2004). Analytical studies of semiclassical limits
in situations with interface were carried out by, e.g., Bal, Keller, Papanico-
laou and Ryzhik (1999b), Miller (2000), Nier (1995, 1996) and Benedetto,
Esposito and Pulvirenti (2004) using more elaborate Wigner transformation
techniques, such as two-scale Wigner measures.

10.1. The interface condition

In order to allow for discontinuous potentials, one first needs to introduce
a notion of solutions of the underlying singular Hamiltonian system (3.6).
This can be done by providing interface conditions for reflection and trans-
mission, based on Snell’s law. The solution so constructed will give the
correct transmission and reflection of waves through the barrier, obeying
the laws of geometrical optics.
Figure 10.1 (taken from Jin, Liao and Yang (2008a)) shows typical cases

of wave transmissions and reflections through an interface. When the in-
terface is rough, or in higher dimensions, the scattering can be diffusive,
in which the transmitted or reflected waves can move in all directions: see
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Figure 10.1. Wave transmissions and reflections through an interface.

Figure 10.1(b). However, in this section we will not discuss the diffusive in-
terface, which was treated analytically in Bal et al. (1999b) and numerically
in Jin et al. (2008a).

An Eulerian interface condition

Jin and Wen (2006a) provide an interface condition connecting the Liouville
equations at both sides of a given (sharp) interface. Let us focus here only
on the case of space dimension d = 1 and consider a particle moving with
velocity ξ > 0 towards the barrier. The interface condition at a given fixed
time t is given by

w(t, x+, ξ+) = αT w(t, x
−, ξ−) + αR w(t, x

+,−ξ+). (10.1)

Here the superscripts ‘±’ represent the right and left limits of the quantities,
αT ∈ [0, 1] and αR ∈ [0, 1] are the transmission and reflection coefficients re-
spectively, satisfying αR+αT = 1. For a sharp interface x+ = x−, however,
ξ+ and ξ− are connected by the Hamiltonian preservation condition

H(x+, ξ+) = H(x−, ξ−). (10.2)

The latter is motivated as follows. In classical mechanics, the Hamiltonian
H = 1

2ξ
2 + V (x) is conserved along the particle trajectory, even across the

barrier. In this case, αT , αR = 0 or 1, i.e., a particle can be either completely
transmitted or completely reflected. In geometric optics (corresponding to
H(x, ξ) = c(x)|ξ|), condition (10.2) is equivalent to Snell’s Law of Refrac-
tion for a flat interface (Jin and Wen 2006b), i.e., waves can be partially
transmitted or reflected.
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Remark 10.1. In practical terms, the coefficients αT and αR are deter-
mined from the original Schrödinger equation (2.1) before the semiclas-
sical limit is taken. Usually one invokes stationary scattering theory to
do so. Thus (10.1) represents a multiscale coupling between the (macro-
scopic) Liouville equation and the (microscopic) Schrödinger (or wave) equa-
tion. Furthermore, by incorporating the diffraction coefficients, determined
from the geometrical theory of diffraction developed in Keller and Lewis
(1995), into the interface condition, one could even simulate diffraction
phenomena near boundaries, interfaces or singular geometries (Jin and Yin
2008a, 2008b, 2011).

The well-posedness of the initial value problem of the singular Liouville
equation with the interface condition (10.1) was established in Jin and Wen
(2006a), using the method of characteristics. To determine a solution at
(x, p, t) one traces back along the characteristics determined by the Hamil-
tonian system (3.6) until hitting the interface. At the interface, the solution
bifurcates according to the interface condition (10.1). One branch of the
solution thereby corresponds to the transmission of waves and the other
to the reflection. This process continues until one arrives at t = 0. The
interface condition (10.1) thus provides a generalization of the method of
characteristics.

A Lagrangian Monte Carlo particle method for the interface

A notion of the solution of the (discontinuous) Hamiltonian system (3.6) was
introduced in Jin (2009) (see also Jin and Novak (2006)) using a probability
interpretation. One thereby solves the system (3.6) using a standard ODE or
Hamiltonian solver, but at the interface, the following Monte Carlo solution
can be constructed (we shall only give a solution in the case of ξ− > 0; the
other case is similar).

(1) With probability αR, the particle (wave) is reflected with

x �→ x, ξ− �→ −ξ−. (10.3)

(2) With probability αT , the particle (wave) is transmitted, with

x �→ x, ξ+ obtained from ξ− using (10.2). (10.4)

Although the original problem is deterministic, this probabilistic solution
allows one to go beyond the interface with the new value of (x, ξ) defined in
(10.3)–(10.4). This is the Lagrangian formulation of the solution determined
by using the interface condition (10.1). This is the basis of a (Monte-Carlo-
based) particle method for thin quantum barriers introduced in Jin and
Novak (2007).
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10.2. Modification of the numerical flux at the interface

A typical one-dimensional semi-discrete finite difference method for the Li-
ouville equation (3.7) is

∂twij + ξj

w−
i+ 1

2
,j
− w+

i− 1
2
,j

∆x
−DVi

wi,j+ 1
2
− wi,j− 1

2

∆ξ
= 0.

Here wij is the cell average or pointwise value of w(t, xi, ξj) at fixed t. The
numerical fluxes wi+ 1

2
,j , wi,j+ 1

2
are typically defined by a (first-, or higher-

order) upwind scheme, and DVi is some numerical approximation of ∂xV at
x = xi.
When V is discontinuous, such schemes face difficulties when the Hamil-

tonian is discontinuous, since ignoring the discontinuity of V in the ac-
tual numerical computation will result in solutions which are inconsistent
with the notion of the physically relevant solution, defined in the preced-
ing subsection. Even with a smoothed Hamiltonian, it is usually impos-
sible (at least in the case of partial transmission and reflection) to obtain
transmission and reflection with the correct transmission and reflection co-
efficients. A smoothed V will also give a severe time step constraint like
∆t ∼ O(∆x∆ξ): see, e.g., Cheng, Kang, Osher, Shim and Tsai (2004).
This is a parabolic-type CFL condition, despite the fact that we are solving
a hyperbolic problem.
A simple method to solve this problem was introduced by Jin and Wen

(2005, 2006a). The basic idea is to build the interface condition (10.1) into
the numerical flux , as follows. Assume V is discontinuous at xi+1/2. First
one should avoid discretizing V across the interface at xi+1/2. One possible
discretization is

DVk =
V −
k+1/2 − V +

k−1/2

∆x
, for k = i, i+ 1,

where, for example,

V ±
k+1/2 = lim

x→xk+1/1±0
V (x).

The numerical flux in the ξ direction, Wi,j±1/2, can be the usual numerical
flux (for example, the upwind scheme or its higher-order extension). To
define the numerical flux w±

i+1/2,j , without loss of generality, consider the

case ξj > 0. Using the upwind scheme, w−
i+ 1

2
,j
= wij . However,

w+
i+1/2,j = w(x+i+1/2, ξ

+
j ) = αT w(x

−
i+1/2, ξ

−
j ) + αR w(x

+
i+1/2,−ξ+j )

= αT wi(ξ
−
j ) + αR wi+1,−j ,

while ξ− is obtained from (10.2) with ξ+j = ξj . Since ξ− may not be a
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grid point, one has to define it approximately. A simple approach is to
locate the two cell centres that bound it, then use a linear interpolation to
approximate the needed numerical flux at ξ−j . The case of ξj < 0 is treated
similarly. The detailed algorithm to generate the numerical flux is given in
Jin and Wen (2005, 2006a).
This numerical scheme overcomes the aforementioned analytic and nu-

merical difficulties. In particular, it possesses the following properties.

(1) It produces the correct physical solution crossing the interface (as de-
fined in the previous subsection). In particular, in the case of geometric
optics, this solution is consistent with the Snell–Descartes Law of Re-
fraction at the interface.

(2) It allows a hyperbolic CFL condition ∆t = O(∆x,∆ξ).

The idea outlined above has its origin in so-called well-balanced kinetic
schemes for shallow water equations with bottom topography: see Perthame
and Simeoni (2001). It has been applied to computation of the semi-
classical limit of the linear Schrödinger equation with potential barriers
in Jin and Wen (2005), and the geometrical optics limit with complete
transmission/reflection in Jin and Wen (2006b), for thick interfaces, and
Jin and Wen (2006a), for sharp interfaces. Positivity and both l1 and l∞
stabilities were also established, under a hyperbolic CFL condition. For
piecewise constant Hamiltonians, an l1-error estimate of the first-order fi-
nite difference of this type was established in Wen (2009), following Wen
and Jin (2009).

Remark 10.2. Let us remark that this approach has also been extended
to high-frequency elastic waves (Jin and Liao 2006), and high-frequency
waves in random media with diffusive interfaces (Jin et al. 2008a). When
the initial data are measure-valued, such as (3.9), the level set method
introduced in Jin et al. (2005b) becomes difficult for interfaces where waves
undergo partial transmissions and reflections, since one needs to increase
the number of level set functions each time a wave hits the interface. A
novel method to get around this problem has been introduced in Wei, Jin,
Tsai and Yang (2010). It involves two main ingredients.

(1) The solutions involving partial transmissions and partial reflections are
decomposed into a finite sum of solutions, obtained by solving problems
involving only complete transmissions or complete reflections. For the
latter class of problems, the method of Jin et al. (2005b) applies.

(2) A re-initialization technique is introduced such that waves coming from
multiple transmissions and reflections can be combined seamlessly as
new initial value problems. This is implemented by rewriting the sum
of several delta functions as one delta measure with a suitable weight,
which can easily be implemented numerically.
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10.3. Semiclassical computation of quantum barriers

Correct modelling of electron transport in nano-structures, such as resonant
tunnelling diodes, superlattices or quantum dots, requires the treatment of
quantum phenomena in highly localized regions within the devices (so-called
quantum wells), while the rest of the device can be dealt with by classical
mechanics. However, solving the Schrödinger equation in the entire physical
domain is usually too expensive, and thus it is attractive to use a multiscale
approach as given in Ben Abdallah, Degond and Gamba (2002): that is,
solve the quantum mechanics only in the quantum well, and couple the
solution to classical mechanics outside the well. To this end, the following
semiclassical approach for thin quantum barriers was proposed in Jin and
Novak (2006).

Step 1. Solve the time-independent Schrödinger equation (either analyti-
cally or numerically) for the local barrier well to determine the scattering
data, i.e., the transmission and reflection coefficients αT , αR.

Step 2. Solve the classical Liouville equation elsewhere, using the scattering
data generated in Step 1 and the interface condition (10.1) given above.

The results for d = 1 and d = 2 given in Jin and Novak (2006, 2007)
demonstrate the validity of this approach whenever the well is either very
thin (i.e., of the order of only a few ε) or well separated. In higher di-
mensions, the interface condition (10.1) needs to be implemented in the
direction normal to interface, and the interface condition may be non-local
for diffusive transmissions or reflections (Jin and Novak 2007). This method
correctly captures both the transmitted and the reflected quantum waves,
and the results agree (in the sense of weak convergence) with the solution
obtained by directly solving the Schrödinger equation with small ε. Since
one obtains the quantum scattering information only in a preprocessing step
(i.e., Step 1), the rest of the computation (Step 2) is classical, and thus the
overall computational cost is the same as for computing classical mechanics.
Nevertheless, purely quantum mechanical effects, such as tunnelling, can be
captured.
If the interference needs to be accounted for, then such Liouville-based

approaches are not appropriate. One attempt was made in Jin and Novak
(2010) for one-dimensional problems, where a complex Liouville equation is
used together with an interface condition using (complex-valued) quantum
scattering data obtained by solving the stationary Schrödinger equation.
Its extension to multi-dimensional problems remains to be done. A more
general approach could use Gaussian beam methods, which do capture the
phase information. This is an interesting line of research yet to be pursued.
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11. Schrödinger equations with matrix-valued potentials
and surface hopping

Problems closely related to those mentioned in Section 10 arise in the study
of semiclassical Schrödinger equations with matrix-valued potentials. This
type of potential can be seen as a highly simplified model of the full many-
body quantum dynamics of molecular dynamics. Using the celebrated
Born–Oppenheimer approximation to decouple the dynamics of the elec-
trons from the one for the much heavier nuclei (see, e.g., Spohn and Teufel
(2001)), one finds that the electrons are subject to external forces which can
be modelled by a system of Schrödinger equations for the nuclei along the
electronic energy surfaces. The nucleonic Schrödinger system has matrix-
valued potentials, which will be treated in this section.
To this end, we consider the following typical situation, namely, a time-

dependent Schrödinger equation with R
2×2-matrix-valued potential (see,

e.g., Spohn and Teufel (2001), or Teufel (2003)):

iε∂tu
ε =

(
−ε

2

2
∆x + V (x)

)
uε, uε(0, x) = uεin ∈ L2(R2,C2), (11.1)

for (t, x) ∈ R
+ × R

2 and ∆x = diag(∆x1 +∆x2 ,∆x1 +∆x2). The unknown
uε(t, x) ∈ C

2 and V is a symmetric matrix of the form

V (x) =
1

2
trV (x) +

(
v1(x) v2(x)
v2(x) −v1(x)

)
, (11.2)

with v1(x), v2(x) ∈ R. The matrix V then has two eigenvalues,

λ(±)(x) = trV (x)±
√
v1(x)2 + v2(x)2.

Remark 11.1. In the Born–Oppenheimer approximation, the dimension-
less semiclassical parameter ε > 0 is given by ε =

√
m
M , where m and

M are the masses of an electron and a nucleus respectively (Spohn and
Teufel 2001). Then, all oscillations are roughly characterized by the fre-
quency 1/ε, which typically ranges between one hundred and one thousand.

11.1. Wigner matrices and the classical limit for matrix-valued potentials

In this section, we shall discuss the influence of matrix-valued potentials on
the semiclassical limit of the Schrödinger equations (11.1). Introduce the
Wigner matrix as defined in Gérard et al. (1997):

W ε[uε](x, ξ) = (2π)−2

∫
R2

ψε

(
x− ε

2
η

)
⊗ψ̄ε

(
x+

ε

2
η

)
e iη·ξ dy, (x, ξ) ∈ R

2
x×R

2
ξ .

We also let W denote the corresponding (weak) limit

W ε[uε]
ε→0−→W ∈ L∞(R;M+(R2

x × R
2
ξ ;R

2)).
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(a) (b)

Figure 11.1. The conical crossings for potentials (a) Viso and (b) VJT
defined in (11.3). The crossing point is (0, 0) for both potentials.

In order to describe the the dynamics of the limiting matrix-valued measure
W (t, x, ξ), first note that the complex 2× 2 matrix-valued symbol of (11.1)
is given by

P (x, ξ) =
i

2
|ξ|2 + iV (x).

The two eigenvalues of − iP (x, ξ) are

λ1,2(x, ξ) =
|ξ|2
2

+ trV (x)±
√
v1(x)2 + v2(x)2 =

|ξ|2
2

+ λ±(x).

These eigenvalues λn, n = 1, 2 govern the time evolution of the limiting
measure W (t), as proved in Gérard et al. (1997). They act as the correct
classical Hamiltonian function in phase space, corresponding to the two
energy levels, respectively. In the following, we shall say that two energy
levels cross at a point x∗ ∈ R

2 if λ+(x∗) = λ−(x∗). Such a crossing is
called conical if the vectors∇xv1(x∗) and∇xv2(x∗) are linearly independent.
In Figure 11.1 we give two examples of conical crossings for potentials of
the form

Viso =

(
x1 x2
x2 −x1

)
, VJT =

(
x1 x2
x2 −x1

)
. (11.3)

If all the crossings are conical, the crossing set

S = {x ∈ R
2 : λ+(x) = λ−(x)}

is a sub-manifold of co-dimension two in R
2: see Hagedorn (1994). Assume

that the Hamiltonian flows with Hamiltonians λn leave invariant the set

Ω = (R2
x × R

2
ξ)\S.
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For (x, ξ) ∈ Ω, denote by χn(x, ξ) the column eigenvector corresponding to
the eigenvalue λn(x, ξ), and the matrix

Πn(x, ξ) = χn(x, ξ)(χτ (x, ξ))
�

is the orthogonal projection onto the eigenspace associated to λn(x, ξ).
By Theorem 6.1 of Gérard et al. (1997), the matrix-valued Wigner mea-

sureW (t) commutes with the projectors Πn, outside the crossing set S, and
can thus be decomposed as

W (t, ·) = Π1W (t, ·)Π1 +Π2W (t, ·)Π2.

Since the eigenspaces are both one-dimensional, the decomposition is sim-
plified to be

W (t, ·) =W1(t, ·)Π1 +W2(t, ·)Π2.

The scalar functions Wn(t, x, ξ) given by

Wn(t, x, ξ) = tr(ΠnW (t, x, ξ))

are then found to satisfy the Liouville equations

∂tWn +∇ξλn · ∇xWn −∇xλn · ∇ξWn = 0, (t, x, ξ) ∈ R
+ × Ω, (11.4)

subject to initial data

Wn(0) = tr(ΠnW ), (x, ξ) ∈ Ω. (11.5)

The scalar functions Wn, n = 1, 2, are the phase space probability densities
corresponding to the upper and lower energy levels, respectively. One can
recover from them the particle densities ρn via

ρn(t, x) =

∫
R2
ξ

Wn(t, x, ξ) dξ, n = 1, 2. (11.6)

In other words, the Liouville equations (11.4) yield the propagation of the
Wigner measures W1(t, ·) and W2(t, ·) on any given time interval, provided
that their supports do not intersect the eigenvalue crossing set S.
However, analytical and computational challenges arise when their sup-

ports intersect the set S. In S the dynamics of W1,W2 are coupled due
to the non-adiabatic transitions between the two energy levels, and an ad-
ditional hopping condition is needed (analogous to the interface condition
considered in Section 10 above).

The Landau–Zener formula

Lasser, Swart and Teufel (2007) give a heuristic derivation of the non-
adiabatic transition probability. The derivation is based on the Hamiltonian
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system corresponding to the Liouville equations (11.4), i.e.,

ẋn(t) = ∇ξλn(t) = ξn(t),

ξ̇n(t) = −∇xλn(t), n = 1, 2.
(11.7)

The basic idea is to insert the trajectories (x(t), ξ(t)) of the Hamiltonian
systems (11.7) into the trace-free part of the potential matrix (11.2) to
obtain a system of ordinary differential equations, given by

iε
d

dt
uε(t) =

(
v1(x(t)) v2(x(t))
v2(x(t)) −v1(x(t))

)
uε(t).

The non-adiabatic transitions occur in the region where the spectral gap
between the eigenvalues becomes minimal. The function

h(x(t)) = |λ+(x(t))− λ−(x(t))| = 2|ϑ(x(t))|
measures the gap between the eigenvalues in phase space along the classi-
cal trajectory (x(t), ξ(t)), where ϑ(x) = (v1(x), v2(x)) and | · | denotes the
Euclidean norm. The necessary condition for a trajectory to attain the
minimal gap is given by

d

dt
|ϑ(x(t))|2 = ϑ(x(t)) · ∇xϑ(x(t))ξ(t) = 0,

where∇xϑ(x(t) is the Jacobian matrix of the vector ϑ(x(t)), and ξ(t) = ẋ(t).
Hence, a crossing manifold in phase space containing these points is given by

S∗ =
{
(x, ξ) ∈ R

2
x × R

2
ξ : ϑ(x(t)) · ∇xϑ(x(t))ξ(t) = 0

}
.

The transition probability when one particle hits S∗ is assumed to be
given by

T ε(x0, ξ0) = exp

(
−π
ε

(ϑ(x0) ∧∇xϑ(x0)ξ0)
2

|∇xϑ(x0)ξ0|3
)
, (11.8)

which is the famous Landau–Zener formula (Landau 1932, Zener 1932).
Note that T decays exponentially in x and ξ and

lim
ε→0

T ε = T0 =

{
1 (x, ξ) ∈ S∗},
0 (x, ξ) /∈ S∗.

In other words, as ε → 0, the transition between the energy bands only
occurs on the set S∗, which is consistent with the result in the previous
subsections.

11.2. Numerical approaches

Lagrangian surface hopping

One widely used numerical approach to simulation of the non-adiabatic dy-
namics at energy crossings is the surface hopping method, first proposed by
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Tully and Preston (1971), and further developed in Tully (1990) and Sholla
and Tully (1998). The basic idea is to combine the classical transports of
the system on the individual potential energy surfaces λ±(x) that follow
(11.7) with an instantaneous transitions at S∗ from one energy surface to
another. The rate of transition is determined by the Landau–Zener formula
(11.8) whenever available, or computed by some quantum mechanical sim-
ulation locally around S∗. The hoppings were performed in a Monte Carlo
procedure based on the transition rates. For a review of surface hopping
methods see Drukker (1999).
More recently, surface hopping methods have generated increasing interest

among the mathematical community. For molecular dynamical simulations,
Horenko, Salzmann, Schmidt and Schütte (2002) adopted the partial Wigner
transform to reduce a full quantum dynamics into the quantum–classical Li-
ouville equation, and then the surface hopping is realized by approximating
the quantum Liouville equation using phase space Gaussian wave packets.
From the analytical point of view, Lasser and Teufel (2005) and Ferma-
nian Kammerer and Lasser (2003) analysed the propagation through conical
surface crossings using matrix-valued Wigner measures and proposed a cor-
responding rigorous surface hopping method based on the semiclassical limit
of the time-dependent Born–Oppenheimer approximation. In Lasser et al.
(2007) and Kube, Lasser and Weber (2009) they used a particle method to
solve the Liouville equation, in which each classical trajectory was subject
to a deterministic branching (rather than Monte Carlo) process. Branching
occurs whenever a trajectory attains one of its local minimal gaps between
the eigenvalue surfaces. The new branches are consequently re-weighted
according to the Landau–Zener formula for conical crossings
These Lagrangian surface hopping methods are very simple to implement,

and in particular, very efficient in high space dimensions. However, they
require either many statistical samples in a Monte Carlo framework or the
increase of particle numbers whenever hopping occurs. In addition, as is
typical for Lagrangian methods, a complicated numerical re-interpolation
procedure is needed whenever the particle trajectories diverge, in order to
maintain uniform accuracy in time.

Eulerian surface hopping

The Eulerian framework introduced in Jin, Qi and Zhang (2011) consists
of solving the two Liouville equations (11.4), with a hopping condition that
numerically incorporates the Landau–Zener formula (11.8). Note that the
Schrödinger equation (11.1) implies conservation of the total mass, which
in the semiclassical limit ε→ 0, locally away from S∗, yields

d

dt

∫
(W1 +W2)(t, x, ξ) dξ dx = 0. (11.9)
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For this condition to hold for all x, ξ, the total flux in the direction normal
to S∗ needs to be continuous across S∗. To ensure this, the Landau–Zener
transition at S∗ should be formulated as a continuity condition for the total
flux in the normal direction en. Define the flux function jn(x, ξ) ∈ R

2 for
each eigenvalue surface via

jn(x, ξ) = (∇ξλn,−∇xλn)Wn(x, ξ), n = 1, 2.

Assume, before hopping, that the particle remains on one of the eigenvalue
surfaces, i.e.,

(1) j1(x
−
0 , ξ

−
0 ) �= 0 and j2(x

−
0 , ξ

−
0 ) = 0, or

(2) j1(x
−
0 , ξ

−
0 ) = 0 and j2(x

−
0 , ξ

−
0 ) �= 0.

Then the interface condition is given by(
j1(x

+
0 , ξ

+
0 ) · en

j2(x
+
0 , ξ

+
0 ) · en

)
=

(
1− T (x0, ξ0) T (x0, ξ0)
T (x0, ξ0) 1− T (x0, ξ0)

)(
j1(x

−
0 , ξ

−
0 ) · en

j2(x
−
0 , ξ

−
0 ) · en

)
,

where (x±, ξ±) are the (pre- and post-hopping) limits to (x0, ξ0) ∈ S∗ along
the direction en.

Remark 11.2. There is a restriction of this approach based on the Liou-
ville equation and the Landau–Zener transition probability. The interfer-
ence effects generated when two particles from different energy levels arrive
at S∗ at the same time are thereby not accounted for, and thus important
quantum phenomena, such as the Berry phase, are missing. One would
expect that Gaussian beam methods could handle this problem, but this
remains to be explored.

12. Schrödinger equations with periodic potentials

So far we have only considered ε-independent potential V (x). The situation
changes drastically if one allows for potentials varying on the fast scale
y = x/ε. An important example concerns the case of highly oscillatory
potentials VΓ(x/ε), which are periodic with respect to a periodic lattice
Γ ⊂ R

d. In the following we shall therefore consider Schrödinger equations
of the form

iε∂tu
ε = −ε

2

2
∆uε + VΓ

(
x

ε

)
uε + V (x)uε, uε(0, x) = uεin(x). (12.1)

Here V ∈ C∞ denotes some smooth, slowly varying potential and VΓ is a
rapidly oscillating potential (not necessarily smooth). For definiteness we
shall assume that for some orthonormal basis {ej}dj=1, VΓ satisfies

VΓ(y + 2πej) = VΓ(y) ∀ y ∈ R
d, (12.2)

i.e., Γ = (2πZ)d.
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Remark 12.1. Equations of this form arise in solid state physics, where
they are used to describe the motion of electrons under the action of an
external field and a periodic potential generated by the ionic cores. This
problem has been extensively studied from both physical and mathematical
points of view: see, e.g., Ashcroft and Mermin (1976), Bensoussan, Lions
and Papanicolaou (1978), Teufel (2003) and the references given therein.
One of the most striking dynamical effects due to the inclusion of a periodic
potential VΓ is the occurrence of so-called Bloch oscillations. These are
oscillations exhibited by electrons moving in a crystal lattice under the
influence of a constant electric field V (x) = F · x, F ∈ R

d (see Section 12.2
below).

12.1. Emergence of Bloch bands

In order to better understand the influence of VΓ, we recall here the basic
spectral theory for periodic Schrödinger operators of the form (Reed and
Simon 1976):

Hper = −1

2
∆y + VΓ(y).

With VΓ obeying (12.2), we have the following.

(1) The fundamental domain of the lattice Γ = (2πZ)d is the interval
Y = [0, 2π]d.

(2) The dual lattice Γ∗ can then be defined as the set of all wave numbers
k ∈ R for which plane waves of the form e ik·x have the same periodicity
as the potential VΓ. This yields Γ

∗ = Z
d in our case.

(3) The fundamental domain of the dual lattice, Y ∗, i.e., the (first) Bril-
louin zone, is the set of all k ∈ R closer to zero than to any other

dual lattice point. In our case Y ∗ =
[−1

2 ,
1
2

]d
, equipped with periodic

boundary conditions, i.e., Y ∗ � T
d.

By periodicity, it is sufficient to consider the operatorHper on the fundamen-
tal domain Y only, where we impose the following quasi-periodic boundary
conditions:

f(y + 2πej) = e2 ikjπf(y) ∀ y ∈ R, k ∈ Y ∗. (12.3)

It is well known (Wilcox 1978) that under mild conditions on VΓ, the opera-
tor H admits a complete set of eigenfunction {ψm(y, k)}m∈N, parametrized
by k ∈ Y ∗. These eigenfunctions provide, for each fixed k ∈ Y ∗, an ortho-
normal basis in L2(Y ). Correspondingly there exists a countable family of
real eigenvalues {E(k)}m∈N, which can be ordered as

E1(k) ≤ E2(k) ≤ · · · ≤ Em(k) ≤ · · · ,
where the respective multiplicities are accounted for in the ordering. The
set {Em(k) : k ∈ Y } ⊂ R is called themth energy band of the operator Hper.
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Figure 12.1. The eigenvalues Em(k), m = 1, . . . , 8
for Mathieu’s model: VΓ = cos y.

Concerning the dependence on k ∈ Y ∗, it has been shown (Wilcox 1978)
that for any m ∈ N there exists a closed subset X ⊂ Y ∗ such that Em(k)
is analytic and ψm(·, k) can be chosen to be a real analytic function for all
k ∈ Y ∗\X. Moreover,

Em−1 < Em(k) < Em+1(k) ∀ k ∈ Y ∗\X.
If this condition indeed holds for all k ∈ Y ∗, then Em(k) is called an isolated
Bloch band. Moreover, it is known that

measX = meas {k ∈ Y ∗ : En(k) = Em(k), n �= m} = 0. (12.4)

This set of Lebesgue measure zero consists of the so-called band crossings.
See Figure 12.1 for an example of bands for Mathieu’s model with potential
VΓ = cos y.
Note that due to (12.3) one can rewrite ψm(y, k) as

ψm(y, k) = e ik·yχm(y, k) ∀m ∈ N, (12.5)

for some 2π-periodic function χm(·, k), usually called Bloch functions. In
terms of χm(y, k) the spectral problem for Hper becomes (Bloch 1928)

H(k)χm(y, k) = Em(k)χm(y, k),

χm(y + 2πej , k) = χm(y, k) ∀ k ∈ Y ∗,
(12.6)

where H(k) denotes the shifted Hamiltonian

H(k) := e− ik·yHper e
ik·y =

1

2
(− i∇y + k)2 + VΓ(y). (12.7)
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Most importantly, the spectral data obtained from (12.6) allow us to de-
compose the original Hilbert space L2(Rd) into a direct sum of so-called band
spaces: L2(Rd) =

⊕∞
m=1Hm. This is the well-known Bloch decomposition

method , which implies that

∀ f ∈ L2(Rd) : f =
∑
m∈N

fm, fm ∈ Hm. (12.8)

The corresponding projection of f ∈ L2(Rd) onto the mth band space Hm

is thereby given via (Reed and Simon 1976)

fm(y) =

∫
Y ∗

(∫
Rd

f(ζ)ψm(ζ, k) dζ

)
ψm(y, k) dk. (12.9)

In the following, we shall also denote

Cm(k) :=

∫
Rd

f(ζ)ψm(ζ, k) dζ, (12.10)

the coefficient of the Bloch decomposition.

12.2. Two-scale WKB approximation

Equipped with the basic theory of Bloch bands, we recall here an extension
of the WKB method presented in Section 2.2 to the case of highly oscillatory
periodic potentials. Indeed, it has been shown in Bensoussan et al. (1978)
and Guillot, Ralston and Trubowitz (1988) that solutions to (12.1) can be
approximated (at least locally in time) by

uε(t, x)
ε→0∼ a(t, x)χm

(
x

ε
,∇S
)
e iS(t,x)/ε +O(ε), (12.11)

where χm is parametrized via k = ∇S(t, x). The phase function S thereby
solves the semiclassical Hamilton–Jacobi equation

∂tS + Em(∇S) + V (x) = 0, S(0, x) = Sin(x). (12.12)

The corresponding semiclassical flow Xsc
t : y �→ x(t, y) is given by

ẋ(t, y) = ∇kEm(k(t, y)), x(0, x) = y, (12.13a)

k̇(t, y) = −∇xV (x(t, y)), k(0, y) = ∇Sin(y). (12.13b)

The wave vector k ∈ Y ∗ is usually called crystal momentum. In the case of
a constant electric field V = F · x, equation (12.13b) yields

k(t, y) = k − tF, k = ∇Sin(y).
Note that since k ∈ Y ∗ � T

d, this yields a periodic motion in time of x(t, y),
the so-called Bloch oscillations.
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In addition, the leading-order amplitude in (12.11) is found to be the
solution of the semiclassical transport equation (Carles, Markowich and
Sparber 2004),

∂ta+∇kEm(∇S) · ∇a+ 1

2
divx(∇kEm(∇xφm))am = (βm · ∇xV (x)) am,

(12.14)
where

βm(t, x) := 〈χm(y,∇S),∇kχm(y,∇S)〉L2(Y ) (12.15)

denotes the so-called Berry phase term (Carles et al. 2004, Panati, Spohn
and Teufel 2006), which is found to be purely imaginary βm(t, x) ∈ (iR)d.
It is, importantly, related to the quantum Hall effect (Sundaram and Niu
1999). The amplitude a is therefore necessarily complex-valued and exhibits
a non-trivial phase modulation induced by the geometry of VΓ; see also
Shapere and Wilczek (1989) for more details. Note that (12.14) yields the
following conservation law for ρ = |a|2:

∂tρ+ div(ρ∇kEm(∇S)) = 0.

The outlined two-scale WKB approximation again faces the problem of
caustics. Furthermore, there is an additional problem of possible band-
crossings at which∇kEm is no longer defined. The right-hand side of (12.11)
can therefore only be regarded as a valid approximation for (possibly very)
short times only. Nevertheless, it shows the influence of the periodic poten-
tial, which can be seen to introduce additional high-frequency oscillations
(Γ-periodic) within uε.

Remark 12.2. These techniques have also been successfully applied in
weakly nonlinear situations (Carles et al. 2004).

12.3. Wigner measures in the periodic case

The theory of Wigner measures discussed in Section 3 can be extended to
the case of highly oscillatory potentials. The theory of the so-called Wigner
band series was developed in Markowich, Mauser and Poupaud (1994) and
Gérard et al. (1997). The basic idea is to use Bloch’s decomposition and
replace the continuous momentum variable ξ ∈ R

d by the crystal momentum
k ∈ Y ∗.
A more general approach, based on space adiabatic perturbation theory

(Teufel 2003), yields in the limit ε→ 0 a semiclassical Liouville equation of
the form

∂tw + {Hsc
m , w} = 0, w(0, x, k) = win(x, k), (12.16)

where w(t, x, k) is the mth band Wigner measure in the Γ-periodic phase
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space R
d
x × Y ∗, {·, ·} denotes the corresponding Poisson bracket, and

Hsc
m = Em(k) + V (x) (12.17)

denotes the mth band semiclassical Hamiltonian.

13. Numerical methods for Schrödinger equations with
periodic potentials

13.1. Bloch-decomposition-based time-splitting method

The introduction of a highly oscillatory potential VΓ
(
x
ε

)
poses numerical

challenges for the numerical computation of semiclassical Schrödinger equa-
tions. It has been observed by Gosse (2006) and Gosse and Markowich
(2004) that conventional split-step algorithms do not perform well. More
precisely, to guarantee convergence of the scheme, time steps of order O(ε)
are required. In order to overcome this problem, a new time-splitting algo-
rithm based on Bloch’s decomposition method has been proposed in Huang,
Jin, Markowich and Sparber (2007) and further developed in Huang, Jin,
Markowich and Sparber (2008) and Huang, Jin, Markowich and Sparber
(2009). The basic idea is as follows.

Step 1. For t ∈ [tn, tn+1] one first solves

iε∂tu
ε = −ε

2

2
∆uε + VΓ

(
x

ε

)
uε. (13.1)

The main point is that by using the Bloch decomposition method, Step 1
can be solved exactly , i.e., only up to numerical errors. In fact, in each
band space Hm, equation (13.1) is equivalent to

iε∂tu
ε
m = Em(− i∇)uεm, uεm ∈ Hm, (13.2)

where uεm ≡ P
ε
mu

ε is the (appropriately ε-scaled) projection of uε ∈ L2(Rd)
onto Hm defined in (12.9) and Em(− i∇) is the Fourier multiplier corre-
sponding to the symbol Em(k). Using standard Fourier transformation,
equation (13.2) is easily solved by

uεm(t, x) = F−1
(
e iEm(k)t/ε(Fum)(0, k)

)
, (13.3)

where F−1 is the inverse Fourier transform. In other words, one can solve
(13.1) by decomposing uε into a sum of band-space functions uεm, each
of which is propagated in time via (13.3). After resummation this yields
uε(tn+1, x). Once this is done, we proceed as usual to take into account
V (x).

Step 2. On the same time interval as before, we solve the ODE

iε∂tu
ε = V (x)uε, (13.4)
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where the solution obtained in Step 1 serves as initial condition for Step 2.
In this algorithm, the dominant effects from the dispersion and the peri-

odic lattice potential are computed in one step. It thereby maintains their
strong interaction and treats the non-periodic potential as a perturbation.
Because the split-step error between the periodic and non-periodic parts
is relatively small, the time steps can be chosen considerably larger than
a conventional time-splitting algorithm (see below). As in a conventional
splitting method (see Section 5), the numerical scheme conserves the par-
ticle density ρε = |uε|2 on the fully discrete level. More importantly, if
V (x) = 0, i.e., no external potential, the algorithm preserves the particle
density (and hence the mass) in each individual band space Hm.

Remark 13.1. Clearly, the algorithm given above is only first-order in
time, but this can easily be improved by using the Strang splitting method
(see Section 5). In this case, the method is unconditionally stable and
comprises spectral convergence for the space discretization as well as second-
order convergence in time.

Numerical calculation of Bloch bands

In the numerical implementation of this algorithm a necessary prerequisite
is the computation of Bloch bands Em(k) and Bloch eigenfunction χm(y, k).
This requires us to numerically solve the eigenvalue problem (12.6). In one
space dimension d = 1 we proceed as in Gosse and Markowich (2004), by
expanding VΓ ∈ C1(R) in its Fourier series

VΓ(y) =
∑
λ∈Z

V̂ (λ) e iλy, V̂ (λ) =
1

2π

∫ 2π

0
VΓ(y) e

− iλy dy.

Clearly, if VΓ ∈ C∞(R) the corresponding Fourier coefficients V̂ (λ) decay
faster than any power, as λ→ ±∞, in which case we only need to take into
account a few coefficients to achieve sufficient accuracy. Likewise, expand
the Bloch eigenfunction χm(·, k) in its respective Fourier series

χm(y, k) =
∑
λ∈Z

χ̂m(λ, k) e iλy.

For λ ∈ {−Λ, . . . ,Λ − 1} ⊂ Z, one consequently approximates the spectral
problem (12.6) by the algebraic eigenvalue problem

H(k)


χ̂m(−Λ)
χ̂m(1− Λ)

...
χ̂m(Λ− 1)

 = Em(k)


χ̂m(−Λ)
χ̂m(1− Λ)

...
χ̂m(Λ− 1)

, (13.5)



Methods for semiclassical Schrödinger equations 185

where the 2Λ× 2Λ matrix H(k) is given by

H(k) =
V̂ (0) + 1

2(k − Λ)2 V̂ (−1) · · · V̂ (1− 2Λ)

V̂ (1) V̂ (0) + 1
2(k − Λ + 1)2 · · · V̂ (2− 2Λ)

...
...

. . .
...

V̂ (2Λ− 1) V̂ (2Λ− 2) · · · V̂ (0) + 1
2(k + Λ− 1)2

.
The matrix H(k) has 2Λ eigenvalues. Clearly, this number has to be large
enough to have sufficiently many eigenvalues Em(k) for the simulation, i.e.,
we require m ≤ 2Λ. Note, however, that the number Λ is independent of
the spatial grid (in particular, independent of ε), thus the numerical costs
of this eigenvalue problem are often negligible compared to those of the
evolutionary algorithms (see below for more details).
In higher dimensions d > 1, computing the eigenvalue problem (12.6)

along these lines becomes numerically too expensive to be feasible. In many
physical applications, however, the periodic potential splits into a sum of
one-dimensional potentials, i.e.,

VΓ(y) =
d∑

j=1

VΓ(yj), Vj(yj + 2π) = Vj(yj),

where y = (y1, y2, . . . , yd) ∈ R
d. In this case, Bloch’s spectral problem can

be treated separately (using a fractional step-splitting approach) for each
coordinate yj ∈ R, as outlined before.

Remark 13.2. In practical applications, the accurate numerical compu-
tation of Bloch bands is a highly non-trivial task. Today, though, there
exists a huge amount of numerical data detailing the energy band struc-
ture of the most important materials used in the design of semiconductor
devices, for example. In the context of photonic crystals the situation is
similar. Thus, relying on such data one can in principle completely avoid
the above eigenvalue computations and their generalizations to more di-
mensions. To this end, one should also note that, given the energy bands
Em(k), we do not need any knowledge about VΓ to solve (12.1) numeri-
cally. Also, we remark that it was shown in Huang et al. (2009) that the
Bloch-decomposition-based time-splitting method is remarkably stable with
respect to perturbations of the spectral data.

Implementation of the Bloch-decomposition-based time-splitting method

In the numerical implementation we shall assume that VΓ admits the de-
composition (13.1). In this case we can solve (12.1) by using a fractional
step method, treating each spatial direction separately, i.e., one only needs
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to study the one-dimensional equation

iε∂tu
ε = −ε

2

2
∂xxu

ε + Vj

(
x

ε

)
uε (13.6)

on the time interval [tn, tn+1]. This equation will be considered on a one-dim-
ensional computational domain (a, b) ⊂ R, equipped with periodic boundary
conditions (necessary to invoke fast Fourier transforms). We suppose that
there are L ∈ N lattice cells within (a, b) and numerically compute uε at
L × R grid points, for some R ∈ N. In other words we assume that there
are R grid points in each lattice cell, which yields the discretization

k� = −1

2
+
− 1

L
, where  = {1, . . . , L} ⊂ N,

yr =
2π(r − 1)

R
, where r = {1, . . . , R} ⊂ N,

(13.7)

and thus un ≡ u(tn) are evaluated at the grid points

x�,r = ε(2π(− 1) + yr). (13.8)

Note that in numerical computations one can use R � L whenever ε � 1,
i.e., only a few grid points are needed within each cell.
Keeping in mind the basic idea of using Bloch’s decomposition, one has

the problem that the solution uε of (13.6) does not in general have the same
periodicity properties as ϕm. A direct decomposition of uε in terms of this
new basis of eigenfunctions is therefore not possible. This problem can be
overcome by invoking the following unitary transformation for f ∈ L2(R):

f(y) �→ f̃(y, k) :=
∑
γ∈Z

f(ε(y + 2πγ)) e− i2πkγ , y ∈ Y, k ∈ Y ∗,

with the properties

f̃(y + 2π, k) = e2 iπkf̃(y, k), f̃(y, k + 1) = f̃(y, k).

In other words f̃(y, k) admits the same periodicity properties with respect
to k and y as the eigenfunction ψm(y, k). In addition, the following inversion
formula holds:

f(ε(y + 2πγ)) =

∫
Y ∗
f̃(y, k) e i2πkγ dk. (13.9)

Moreover, one easily sees that the Bloch coefficient, defined in (12.10), can
be equivalently written as

Cm(k) =

∫
Y
f̃(y, k)ψm(y, k) dy, (13.10)

which, in view of (12.5), resembles a Fourier integral. In fact, all of these
formulae can be easily implemented by using the fast Fourier transform.
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The numerical algorithm needed to perform Step 1 outlined above is then
as follows.

Step 1.1. First compute ũε at time tn by

ũε(tn, x�,r, k�) =
L∑

j=1

uε(tn, xj,r) e
− i2πk�·(j−1),

where x�,r is as in (13.8).

Step 1.2. Compute the coefficient Cε
m(tn, k�) via (13.10):

Cε
m(tn, k�) ≈ 2π

R

R∑
r=1

ũε(tn, x�,r, k�)χm(yr, k�) e
− ik�yr .

Step 1.3. Evolve Cε
m(tn, k) up to time tn+1 according to (13.2),

Cε
m(tn+1, k�) = Cε

m(tn, k�) e
− iEm(k�)∆t/ε.

Step 1.4. ũε can be obtained at time tn+1 by summing over all band
contributions,

ũε(tn+1, x�,r, k�) =
M∑

m=1

Cε
m(tn+1, k�)χm(yr, k�) e

ik�yr .

Step 1.5. Perform the inverse transformation (13.9):

uε(tn+1, x�,r, k�) ≈ 1

L

L∑
j=1

ũε(tn+1, xj,r, kj) e
i2πkj(�−1).

This concludes the numerical procedure performed in Step 1.

The Bloch-decomposition-based time-splitting method was found to be
converging for ∆x = O(ε) and ∆t = O(1); see Huang et al. (2007) for more
details. In other words, the time steps can be chosen independently of ε, a
huge advantage in comparison to the standard time-splitting method used
in Gosse (2006), for instance. Moreover, the numerical experiments done
in Huang et al. (2007) show that, of only a few Bloch bands, Em(k) are
sufficient to achieve very high accuracy, even in cases where V (x) is no longer
smooth (typically m = 1, . . . ,M , with M ≈ 8 is sufficient). Applications of
this method are found in the simulation of lattice Bose–Einstein condensates
(Huang et al. 2008) and of wave propagation in (disordered) crystals (Huang
et al. 2009).

Remark 13.3. For completeness, we recall the numerical complexities for
the algorithm outlined above: see Huang et al. (2007). The complexities
of Steps 1.1 and 1.5 are O(RL lnL), the complexities of Steps 1.2 and 1.4
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are O(MLR lnR), and for Step 1.3 it is O(ML). The complexity of the
eigenvalue problem (13.5) is O(Λ3). However, since Λ (or R) is independent
of ε and since (13.5) needs to be solved only once (as a preparatory step),
the computational costs for this step are negligible. In addition, since M
and R are independent of ε, one can choose R � L and M � L, whenever
ε � 1. Finally, one should notice that the complexities in each time step
are comparable to the usual time-splitting method.

13.2. Moment closure in Bloch bands

It is straightforward to adapt the moment closure method presented in Sec-
tion 6 to the case of periodic potentials. To this end, one considers the
semiclassical Liouville equation (12.16), i.e.,

∂tw +∇kEm(k) · ∇xw −∇xV (x) · ∇kw = 0,

and close it with the following ansatz for the Wigner measure:

w(t, x, k) =

J∑
j=1

|aj(t, x)|2δ�(k − vj(t, x)),

where we let δ� denote the Γ∗-periodic delta distribution, i.e.,

δ� =
∑

γ∗∈Γ∗
δ(· − γ∗).

By following this idea, Gosse and Markowich (2004) showed the applicability
of the moment closure method in the case of periodic potentials in d = 1 (see
also Gosse (2006)). In addition, self-consistent Schrödinger–Poisson systems
were treated in Gosse and Mauser (2006). As mentioned earlier, extending
this method to higher space dimensions d > 1 is numerically challenging.

13.3. Gaussian beams in Bloch bands

The Gaussian beam approximation, discussed in Sections 8 and 9, can
also be extended to the Schrödinger equation with periodic potentials. To
this end, one adopts the Gaussian beam within each Bloch band of the
Schrödinger equation (12.1). In the following, we shall restrict ourselves to
the case d = 1, for simplicity.

Lagrangian formulation

As for the two-scale WKB ansatz (12.11), we define

ϕε
m(t, x, ym) = Am(t, ym)χ∗

m

(
∂xTm,

x

ε

)
e iTm(t,x,ym)/ε, (13.11)
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where ym = ym(t, y0), and

Tm(t, x, ym) = Sm(t, ym) + pm(t, ym)(x− ym) +
1

2
Mm(t, ym)(x− ym)2.

Here Sm ∈ R, pm ∈ R, am ∈ C, Mm ∈ C. In addition, we denote by χ∗
m

the function obtained by evaluating the usual Bloch function χm(y, k) (with
real-valued k ∈ Y ∗) at the point y = x/ε and k = ∂xTm ∈ C. To this end,
we impose the following condition:

χ∗
m(y, z) = χm(y, z) for z ∈ R.

One can derive a similar derivation of the Lagrangian formulation as in
Section 8.1 that corresponds to the semiclassical Hamiltonian (12.17). For
more details we refer to Jin, Wu, Yang and Huang (2010b). Here we only
mention that, in order to define the initial values for the Gaussian beams,
one first decomposes the initial condition, which is assumed to be given in
two-scale WKB form, i.e.,

uεin(x) = bin

(
x,
x

ε

)
e iSin(x)/ε,

in terms of Bloch waves with the help of the stationary phase method
(Bensoussan et al. 1978):

uεin(x)
ε→0∼

∞∑
m=1

ainm(x)χm

(
x

ε
, ∂xSin

)
e iSin(x)/ε +O(ε),

where the coefficient

ainm(x) =

∫
Y
bin(x, y)χm(y, ∂xSin) dy.

When one computes the Lagrangian beam summation integral, the complex-
valued

∂xTm = pm + (x− ym)Mm

can be approximated by the real-valued pm with a Taylor truncation error of
order O(|x− ym|). Since |x− ym| is of O(

√
ε) (see Tanushev (2008) and Jin

et al. (2008b)), this approximation does not destroy the total accuracy of the
Gaussian beam method, yet it provides the benefit that the eigenfunction
χ∗
m(k, z) is only evaluated for real-valued k (and thus consistent with the

Bloch decomposition method). However, because of this, the extension of
this method to higher order becomes a challenging task.

Eulerian formulation

Based on the ideas presented in Section 9, an Eulerian Gaussian beam
method for Schrödinger equations with periodic potentials has been intro-
duced in Jin et al. (2010b). It involves solving the (multivalued) velocity
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um = ∂xSm from the zero-level set of the function Φm, which satisfies the
homogeneous semiclassical Liouville equation (12.16) in the form

LmΦm = 0,

where the mth band Liouville operator Lm is defined as

Lm = ∂t + ∂kEm∂x − ∂xV ∂ξ, (13.12)

and Φm is the complex-valued d-dimensional level set function for the ve-
locity corresponding to the mth Bloch band. They also solve the following
inhomogeneous Liouville equations for the phase Sm and amplitude am:

LmSm = k∂kEm − V,

Lmam = −1

2
∂2kEmMmam + βmam∂yV,

where Lm is defined by (13.12) and βm denotes the Berry phase term as
given by (12.15). Here, the Hessian Mm ∈ C is obtained from

Mm = −∂yΦm

∂ξΦm
.

14. Schrödinger equations with random potentials

Finally, we shall consider (small) random perturbations of the potential
V (x). It is well known that in one space dimension, linear waves in a random
medium get localized even when the random perturbations are small: see,
e.g., Fouque, Garnier, Papanicolaou and Sølna (2007). Thus the analysis
here is restricted to three dimensions. (The two-dimensional case is difficult
because of criticality, i.e., the mean-field approximation outlined below is
most likely incorrect.)

14.1. Scaling and asymptotic limit

Consider the Schrödinger equation with a random potential VR:

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε +

√
ε VR

(
x

ε

)
uε, x ∈ R

3. (14.1)

Here VR(y) is a mean zero, stationary random function with correlation
length of order one. Its correlation length is assumed to be of the same
order as the wavelength. The

√
ε-scaling given above is critical in the sense

that the influence of the random potential is of the same order as the one
given by V (x) (see also the remark below). We shall also assume that the
fluctuations are statistically homogeneous and isotropic so that

〈VR(x)VR(y)〉 = R(|x− y|), (14.2)
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where 〈· ·〉 denotes statistical average and R(|x|) is the covariance of random
fluctuations. The power spectrum of the fluctuations is defined by

R̂(ξ) = (2π)−3

∫
R3

e iξ·xR(x) dx. (14.3)

When (14.2) holds, the fluctuations are isotropic and R̂ is a function of |ξ|
only.

Remark 14.1. Because of the statistical homogeneity, the Fourier trans-
form of the random potential VR is a generalized random process with ortho-
gonal increments

〈V̂R(ξ)V̂R(p)〉 = R̂(ξ)δ(ξ + p). (14.4)

If the amplitude of these fluctuations is large, then purely random scattering
will dominate and waves will be localized: see Fröhlich and Spencer (1983).
On the other hand if the random fluctuations are too weak, they will not
affect the transport of waves at all. Thus, in order to have scattering induced
by the random potential and the influence of the slowly varying background
V (x) affect the (energy transport of the) waves in comparable ways, the
fluctuations in the random potential must be of order

√
ε.

Using the ε-scaled Wigner transformation, we can derive the analogue of
(3.2) in the following form:

∂tw
ε + ξ · ∇xw

ε −Θε[V + VR]w
ε = 0, (14.5)

where the pseudo-differential operator Θε is given by (3.3). The behaviour
of this operator as ε → 0 is very different from the case without VR, as
can already be seen on the level of formal multiscale analysis: see Ryzhik,
Papanicolaou and Keller (1996).
Let y = x/ε be a fast spatial variable, and introduce an expansion of

wε(t) in the following form:

wε(t, x, ξ) = w(t, x, ξ) + ε1/2w(1)(t, x, y, ξ) + εw(2)(t, x, y, ξ) + · · · . (14.6)
Note that we hereby assume that the leading term w does not depend on
the fast scale. We shall also assume that the initial Wigner distribution
wε
in(x, ξ) tends to a smooth, non-negative function win(x, ξ), which decays

sufficiently fast at infinity. Then, as ε→ 0, one formally finds that 〈wε(t)〉,
i.e., the averaged solution to (14.5), is close to a limiting measure w(t),
which satisfies the following linear Boltzmann-type transport equation:

∂tw + ξ · ∇xw −∇xV · ∇ξw = Qw.

Here, the linear scattering operator Q is given by

Qw(x, ξ) = 4π

∫
R3

R̂(ξ − p)δ(|ξ|2 − |p|2)(w(x, p)− w(x, ξ)) dp, (14.7)
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with differential scattering cross-section

σ(k, p) = 4πR̂(ξ − p)δ(|ξ|2 − |p|2) (14.8)

and total scattering cross-section

Σ(k) = 4π

∫
R3

R̂(ξ − p)δ(|ξ|2 − |p|2) dp. (14.9)

Note that the transport equation (14.7) has two important properties. First,
the total mass (or energy, depending on the physical interpretation) is con-
served, i.e.,

E(t) =

∫∫
R3×R3

w(t, x, ξ) dξ dx = E(0). (14.10)

Second, the positivity of w(t, x, ξ) is preserved. Rigorous mathematical
results concerning the passage from (14.1) to the transport equation (14.7)
can be found in Spohn (1977), Dell’Antonio (1983) and Ho, Landau and
Wilkins (1993) (which contains extensive references), and, more recently, in
Erdös and Yau (2000).

14.2. Coupling with other media

One can also study the problems when there are other media, including
periodic media and interfaces (flat or random).
In the case of periodic media coupled with random media, one can use the

above multiscale analysis combined with the Bloch decomposition method
to derive a system of radiative transport equations: see Bal, Fannjiang,
Papanicolaou and Ryzhik (1999a). In the limit system ε→ 0, the transport
part is governed by the semiclassical Liouville equation (12.16) in each Bloch
band, while the right-hand side is a non-local scattering operator (similar
to the one above) coupling all bands.
One can also consider random high-frequency waves propagating through

a random interface. Away from the interface, one obtains the radiative
transport equation (14.7). At the interface, due to the randomness of the
interface, one needs to consider a diffusive transmission or reflection process,
in which waves can be scattered in all directions (see Figure 10.1). To this
end, a non-local interface condition has to be derived: see Bal et al. (1999b).
So far there have been few numerical works on random Schrödinger equa-

tions of the form (14.1). Bal and Pinaud (2006) studied the accuracy of the
radiative transport equation (14.7) as an approximation to (14.1). Jin et al.
(2008a) discretized a non-local interface condition for diffusive scattering,
similar in spirit to the treatment described in Section 10.2. We also mention
that the temporal resolution issue for time-splitting approximations of the
Liouville equations with random potentials was rigorously studied in Bal



Methods for semiclassical Schrödinger equations 193

and Ryzhik (2004). Finally, we refer to Fouque et al. (2007) and Bal, Ko-
morowski and Ryzhik (2010) for a comprehensive reading on high-frequency
waves in random media.

15. Nonlinear Schrödinger equations in the semiclassical
regime

So far we have only considered linear Schrödinger equations. Nonlinear mod-
els, however, are almost as important, since they describe a large number
of physical phenomena in nonlinear optics, quantum superfluids, plasma
physics or water waves: see, e.g., Sulem and Sulem (1999) for a general
overview. The inclusion of nonlinear effects poses new challenges for math-
ematical and numerical study.

15.1. Basic existence theory

In the following we consider nonlinear Schrödinger equations (NLS) in the
form

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε + εαf(x, |uε|2)uε, uε(0, x) = uεin(x), (15.1)

with α ≥ 0 some scaling parameter, measuring (asymptotically) the strength
of the nonlinearity. More precisely, we shall focus on two important classes
of nonlinearities:

(1) local gauge-invariant nonlinearities, where f = ±|uε|2σ, with σ > 0,
(2) Hartree-type nonlinearities, where f = V0 ∗ |uε|, with V0 = V0(x) ∈ R

some given convolution kernel.

The first case of nonlinearities has important applications in Bose–Einstein
condensation and nonlinear optics, whereas the latter typically appears as a
mean-field description for the dynamics of quantum particles, say electrons
(in which case one usually has V0(x) = ± 1

|x| in d = 3).

Concerning the existence of solutions to (15.1), we shall in the following
only sketch the basic ideas. For more details we refer to Cazenave (2003)
and Carles (2008). As a first step we represent the solution to (15.1) using
Duhamel’s formula:

uε(t) = U(t)uεin − iεα
∫ t

0
U ε(t− s)

(
f ε(x, |uε|2)(s)uε(s)) ds, (15.2)

where U ε(t) is the unitary semi-group generated by the linear Hamiltonian
H = −1

2∆+V (see the discussion in Section 2.1). The basic idea is to prove
that the right-hand side of (15.2) defines a contraction mapping (in some
suitable topology). To this end, one has to distinguish between the case
of sub- and supercritical nonlinearities. The existence of a unique solution
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uε ∈ C([0,∞);L2(Rd)) can be guaranteed, provided (sub-critical case) σ <
2
d and/or V0 sufficiently smooth and decaying, say V0 ∈ L∞(Rd) ∩ Lq(Rd),

with q > d
4 .

Remark 15.1. Unfortunately, this subcritical range of nonlinearities does
not allow inclusion of several physically important examples, such as a cubic
nonlinearity σ = 1 in three space dimensions (needed, for instance, in the
description of Bose–Einstein condensates).

In the case of supercritical nonlinearities σ > 2
d , the space L2(Rd) is gen-

erally too large to guarantee existence of solutions. Typically, one restricts
the initial data to uε ∈ H1(Rd), i.e., initial data with finite kinetic energy,
in order to control the nonlinear terms by means of Sobolev’s embedding.
Assuming that uε ∈ H1, local-in-time existence can be guaranteed by using
Strichartz estimates (see Cazenave (2003) for more details), and one obtains
uε ∈ C([−T ε, T ε];H1(Rd)), for some (possibly small) existence time T ε > 0.

Remark 15.2. Strictly speaking, we require σ < 2
d−2 in order to use

Sobolev’s embedding to control the nonlinearity. Note, however, that the
case of cubic NLS in d = 3 is allowed.

Even though local-in-time existence is relatively easy to achieve even in
the supercritical case, the existence of a global-in-time solution to (15.1)
generally does not hold. The reason is the possibility of finite-time blow-up,
i.e., the existence of a time |T ∗| <∞ such that

lim
t→T ∗ ‖∇u

ε‖ = +∞.

For T > T ∗, a strong solution to (15.1) ceases to exist, and one can only hope
for weak solutions, which, however, are usually not uniquely defined. In
order to understand better which situations blow-up can occur in, consider,
for simplicity, the case of a cubic NLS with V (x) = 0:

iε∂tu
ε = −ε

2

2
∆uε ± |uε|2uε, uε(0, x) = uεin(x). (15.3)

Given a local-in-time solution to this equation, one can invoke the conser-
vation of the (nonlinear) energy, i.e.,

E[uε(t)] =
ε2

2

∫
Rd

|∇uε(t, x)|2 dx± 1

2

∫
Rd

|uε(t, x)|4 dx = E[uεin].

Since E[uεin] < const., by assumption, we can see that in the case where the
nonlinearity comes with ‘+’, the a priori bound on the energy rules out the
possibility of finite-time blow-up. These nonlinearities are usually referred
to as defocusing. On the other hand, in the case of a focusing nonlinearity,
i.e., f = −|uε|2, we can no longer guarantee the existence of global-in-time
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solutions (in the supercritical regime). Rather, we have to expect finite-
time blow-up to occur in general. Clearly, this phenomenon will also have
a significant impact on numerical simulations, in particular for ε� 1.

15.2. WKB analysis of nonlinear Schrödinger equations

In order to understand the influence of nonlinear terms in the limit ε → 0,
one can again invoke a WKB approximation of the form (2.10):

uε(t, x)
ε→0∼ aε(t, x) e iS(t,x)/ε.

Let us assume for simplicity that α ∈ N. Then, plugging the ansatz given
above into (15.1), and ordering equal powers in ε, we see that S solves

∂tS +
1

2
|∇S|2 + V (x) =

{
0 if α > 0,

f(x, |a|2) if α = 0.
(15.4)

We see that in the case α = 0 we can no longer solve the Hamilton–Jacobi
equation for the phase S independently of the amplitude a. In other words,
the amplitude influences the geometry of the rays or characteristics. This is
usually referred to as supercritical geometric optics (Carles 2008), not to be
confused with the supercritical regime concerning the existence of solutions,
as outlined in Section 15.1 above.

Weakly nonlinear geometric optics

In contrast, the situation for α > 0 (subcritical geometric optics) is similar
to the linear situation, in the sense that the rays of geometric optics are
still given by (2.13) and thus independent of the nonlinearity. In this case,
the method of characteristics guarantees the existence of a smooth S ∈
C∞([−T, T ]×R

d) up to caustics, and one can proceed with the asymptotic
expansion to obtain the following transport equation for the leading-order
amplitude:

∂ta+∇S · ∇a+ a

2
∆S =

{
0 if α > 1,

−if(x, |a|2) if α = 1.
(15.5)

One sees that if α > 1, nonlinear effects are asymptotically negligible for
ε� 1. The solution is therefore expected to be roughly the same as in the
linear situation (at least before caustics). For α = 1, however, nonlinear
effects show up in the leading-order amplitude. Note, however, that by
multiplying (15.5) with ā and taking the real part, one again finds

∂tρ+ div(ρ∇S) = 0,

which is the same conservation law for ρ = |a|2 as in the linear case. The
nonlinear effects for α = 1 are therefore given solely by nonlinear phase
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modulations of the leading-order amplitude. In the case of a simple cubic
nonlinearity, one explicitly finds (Carles 2000)

a(t, x) =
a0(y(t, x))√
Jt(y(t, x))

e iG(t,x), |t| ≤ T, (15.6)

where the slowly varying phase G is given by

G(t, x) = −
∫ t

0

|a0(y(τ, x))|2
Jτ (y(τ, x))

dτ.

This regime is therefore often called weakly nonlinear geometric optics, and
indeed it is possible to prove a rigorous approximation result analogous to
Theorem 2.3 in this case too.

Supercritical geometric optics

On the other hand, the situation for α = 0 is much more involved. Indeed,
it can be easily seen that a naive WKB approximation breaks down since
the system of amplitude equation is never closed, i.e., the equation for an,
obtained at O(εn), involves an+1, and so on (a problem which is reminiscent
of the moment closure problem discussed in Section 6 above). This difficulty
was overcome by Grenier (1998) and Carles (2007a, 2007b), who noticed that
there exists an exact representation of uε in the form

uε(t, x) = aε(t, x) e iS
ε(t,x)/ε, (15.7)

with real-valued phase Sε (possibly ε-dependent) and complex-valued ampli-
tude aε. (Essentially, the right-hand side of (15.7) introduces an additional
degree of freedom by invoking complex amplitudes.) Plugging (15.7) into
(15.1) with α = 0, one has the freedom to split the resulting equations for
aε and Sε as follows. On plugging the ansatz given above into (15.1), and
ordering equal powers in ε, one sees that S solves

∂tS
ε +

1

2
|∇Sε|2 + V (x) + f(x, |aε|2) = 0,

∂ta
ε +∇Sε · ∇aε + a

2
∆Sε − i

ε

2
∆aε = 0.

Formally, we expect the limit of this system as ε→ 0 to give a semiclassical
approximation of uε, at least locally in time. Indeed this can be done by first
rewriting these equations into a new system for ρε = |aε|2 and vε = ∇Sε.
Under some assumptions on the nonlinearity f (satisfied, for instance, in
the cubic case), the obtained equations form a strictly hyperbolic system in
which one can rigorously pass to the limit as ε→ 0 to obtain

∂tv + v · ∇v + V (x) + f(ρ) = 0,

∂tρ+ div(ρv) = 0.
(15.8)
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This is a system of (irrotational) Euler equations for a classical fluid with
pressure law p(ρ) = f ′(ρ)/ρ. Following this approach, one can prove that as
long as (15.8) admits (local-in-time) smooth solutions ρ, v, the quantum me-
chanical densities (2.6)–(2.7) indeed converge strongly in C([0, T ];L1(Rd)),
with

ρε
ε→0−→ ρ, Jε ε→0−→ ρ.

Reconstructing from these limits an approximate solution of the nonlinear
Schrödinger equation in WKB form, i.e.,

uεapp(t, x) =
√
ρ(t, x) e iS(t,x)/ε, v(t, x) := ∇S(t, x),

generally requires some care (see Carles (2007b) for more details). Essen-
tially one needs to take into account a higher-order corrector to ensure that
the formal approximation is indeed correct up to errors of order O(ε), in-
dependent of t ∈ [0, T ].
The semiclassical limit for α = 0 for |t| > T , i.e., beyond the formation

of shocks in (15.8), is a very challenging mathematical problem. In the
one-dimensional case the only available result is given by Jin, Levermore
and McLaughlin (1999), using the inverse scattering technique. The semi-
classical limit of focusing NLS is more delicate, but can also be obtained by
inverse scattering: see Kamvissis, McLaughlin and Miller (2003).

Remark 15.3. Let us close this subsection by noticing that the analysis
for Hartree-type nonlinearities is found to require slightly less sophistication
than for local ones (Alazard and Carles 2007) and that the intermediate
case 0 < α < 1 can be understood as a perturbation of the situation for
α = 0 (Carles 2007b). In addition, a threshold condition for global smooth
solutions to (15.8) has been determined in Liu and Tadmor (2002).

15.3. Wigner measure techniques for nonlinear potentials

One might hope to extend the results for Wigner measures given in Sec-
tion 3 to nonlinear problems. This would have the considerable advantage
of avoiding problems due to caustics. Unfortunately, this idea has not been
very successful so far, the reason being that Wigner measures are obtained
as weak limits only, which in general is not sufficient to pass to the limit
in nonlinear terms. Indeed, one can even prove an ill-posedness result for
Wigner measures in the nonlinear case (Carles 2001).
A notable exception is the case of Hartree nonlinearities f = V0 ∗ |uε|

with smooth interaction kernels V0 ∈ C1
b(R

d) (Lions and Paul 1993). In this
case the Wigner measure associated to uε is found to be a solution of the
self-consistent Vlasov equation:

∂tw + ξ · ∇ξw −∇x(V0 ∗ ρ) · ∇ξw = 0, ρ(t, x) =

∫
Rd

w(t, x, dξ).
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The physically more interesting case of non-smooth interaction kernels, such
as V0 ∼ 1

|x| , which describes the coupling to a Poisson equation, is not

covered by this result and can only be established in the particular case of
the fully mixed quantum state; see Lions and Paul (1993) and Markowich
and Mauser (1993) for more details, and also Zhang (2002) for a similar
result valid for short times only.

15.4. Numerical challenges

Due to the introduction of nonlinear effects, the numerical difficulties dis-
cussed in Sections 4 and 5 are enhanced. The main numerical obstacles are
the formation of singularities in focusing nonlinear Schrödinger equations
and the creation of new scales at caustics for both focusing and defocusing
nonlinearities. Basic numerical studies of semiclassical NLS were conducted
in Bao et al. (2002) and Bao, Jin and Markowich (2003b), with the result
that finite difference methods typically require prohibitively fine meshes to
even approximate observables well in semiclassical defocusing and focusing
NLS computations. In the case when these very restrictive meshing con-
straints are bypassed, the usual finite difference schemes for NLS can deliver
incorrect approximations in the classical limit ε→ 0, without any particular
sign of instability (Carles and Gosse 2007). Time-splitting spectral schemes
are therefore the preferred method. To this end, we refer to Jin, Markowich
and Zheng (2004) for the application of the time-splitting spectral method
to the Zakharov system, to Huang, Jin, Markowich, Sparber and Zheng
(2005) for the numerical solution of the Dirac–Maxwell system, and to Bao
et al. (2003b) for numerical studies of nonlinear Schrödinger equations. In
addition, let us mention Bao, Jaksch and Markowich (2003a, 2004), where
numerical simulations of the cubically nonlinear Gross–Pitaevskii equation
(appearing in the description of Bose–Einstein condensates) are given using
time-splitting trigonometric spectral methods. A numerical study of ground
state solutions of the Gross–Pitaevskii equation can be found in Bao, Wang
and Markowich (2005).

Remark 15.4. Note, however, that in the nonlinear case, even for ε > 0
fixed, a rigorous convergence analysis of splitting methods is considerably
more difficult than for linear Schrödinger equations: see, e.g., Lubich (2008),
Gauckler and Lubich (2010) and Faou and Grebert (2010).

Due to the nonlinear creation of new highly oscillatory scales in the limit
ε → 0, time-splitting methods suffer from more severe meshing restrictions
for NLS than for linear Schrödinger equations, particularly after the appear-
ance of the first caustics in the corresponding WKB approximation; see Bao
et al. (2003b) and Carles and Gosse (2007) for more details. In the weakly
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nonlinear regime the following meshing strategy is sufficient:

∆x = O(ε), ∆t = O(ε)

(to be compared with (5.5)). In the regime of supercritical geometric optics,
however, one typically requires (even for quadratic observable densities)

∆x = O(ε), ∆t = o(ε),

i.e., a severe restriction on the time step. In addition, one may need to
invoke the Krasny filter (Krasny 1986), i.e., high Fourier-mode cut-offs, to
avoid artifacts (such as symmetry breaking) in focusing NLS computations
(Bao et al. 2003b). The latter, however, violates the conservation of mass:
a clear drawback from the physics point of view. In order to overcome
this problem, higher-order methods (in time) have to be deployed, such as
exponential time-differencing or the use of integrating factors, and we refer
to Klein (2008) for a comparison of different fourth-order methods for cubic
NLS in the semiclassical regime.

Remark 15.5. In the closely related problem of the complex Ginzburg–
Landau equation in the large space and time limit, the situation is known
to be slightly better, due to the dissipative nature of the equation; see
Degond, Jin and Tang (2008) for a numerical investigation. Finally, we
note that the cubic NLS in d = 1 is known to be fully integrable by means
of inverse scattering. This feature can be used in the design of numerical
algorithms, as has been done in Zheng (2006), for instance. A generalization
to higher dimensions or more general nonlinearities seems to be out of reach
at present.

The lack of a clear mathematical understanding of the asymptotic be-
haviour of solutions to the semiclassical NLS beyond the formation of caus-
tics has so far hindered the design of reliable asymptotic schemes. One of
the few exceptions is the case of the Schrödinger–Poisson equation in d = 1,
which can be analysed using Wigner measures, and which has recently been
studied numerically in Jin, Wu and Yang (2010a) using a Gaussian beam
method. In addition, moment closure methods have been employed for this
type of nonlinearity, since it is known that the underlying classical problem,
i.e., the Euler–Poisson system, allows for a construction of multivalued so-
lutions. Numerical simulations for the classical system have been conducted
in Wöhlbier et al. (2005). In addition, the case of the Schrödinger–Poisson
equation with periodic potential is treated in Gosse and Mauser (2006).
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V. Cervený (2001), Seismic Ray Theory, Cambridge University Press.
T. F. Chan and L. Shen (1987), ‘Stability analysis of difference scheme for variable

coefficient Schrödinger type equations’, SIAM J. Numer. Anal. 24, 336–349.
T. Chan, D. Lee and L. Shen (1986), ‘Stable explicit schemes for equations of the

Schrödinger type’, SIAM J. Numer. Anal. 23, 274–281.



202 S. Jin and P. Markowich and C. Sparber

L.-T. Cheng, M. Kang, S. Osher, H. Shim and Y.-H. Tsai (2004), ‘Reflection in a
level set framework for geometric optics’, CMES Comput. Model. Eng. Sci.
5, 347–360.

L.-T. Cheng, H. Liu and S. Osher (2003), ‘Computational high-frequency wave
propagation using the level set method, with applications to the semi-classical
limit of Schrödinger equations’, Comm. Math. Sci. 1, 593–621.

R. Courant and D. Hilbert (1962), Methods of Mathematical Physics , Vol. 2, In-
terscience.

M. G. Crandall and P.-L. Lions (1983), ‘Viscosity solutions of Hamilton–Jacobi
equations’, Trans. Amer. Math. Soc. 277, 1–42.

P. Degond, S. Jin and M. Tang (2008), ‘On the time splitting spectral method
for the complex Ginzburg–Landau equation in the large time and space scale
limit’, SIAM J. Sci. Comput. 30, 2466–2487.

M. Delfour, M. Fortin and G. Payre (1981), ‘Finite-difference solutions of a non-
linear Schrödinger equation’, J. Comput. Phys. 44, 277–288.

G. F. Dell’Antonio (1983), ‘Large time, small coupling behaviour of a quantum
particle in a random field’, Ann. Inst. H. Poincaré Sect. A (NS) 39, 339–384.
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J. Fröhlich and T. Spencer (1983), ‘Absence of diffusion in the Anderson tight
binding model for large disorder or low energy’, Comm. Math. Phys. 88, 151–
184.

L. Gauckler and C. Lubich (2010), ‘Splitting integrators for nonlinear Schrödinger
equations over long times’, Found. Comput. Math. 10, 275–302.

P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud (1997), ‘Homogenization
limits and Wigner transforms’, Comm. Pure Appl. Math. 50, 323–379.

L. Gosse (2002), ‘Using K-branch entropy solutions for multivalued geometric op-
tics computations’, J. Comput. Phys. 180, 155–182.

L. Gosse (2006), ‘Multiphase semiclassical approximation of the one-dimensional
harmonic crystal I: The periodic case’, J. Phys. A 39, 10509–10521.

L. Gosse and F. James (2002), ‘Convergence results for an inhomogeneous system
arising in various high frequency approximations’, Numer. Math. 90, 721–753.

L. Gosse and P. A. Markowich (2004), ‘Multiphase semiclassical approximation of
an electron in a one-dimensional crystalline lattice I: Homogeneous problems’,
J. Comput. Phys. 197, 387–417.

L. Gosse and N. J. Mauser (2006), ‘Multiphase semiclassical approximation of an
electron in a one-dimensional crystalline lattice III: From ab initio models to
WKB for Schrödinger–Poisson’, J. Comput. Phys. 211, 326–346.

L. Gosse, S. Jin and X. Li (2003), ‘Two moment systems for computing multiphase
semiclassical limits of the Schrödinger equation’, Math. Models Methods Appl.
Sci. 13, 1689–1723.

V. L. Granastein, R. K. Parker and C. Armstrong (1999), ‘Vacuum electronics at
the dawn of the twenty-first century’, Proc. IEEE 87, 702–716.

E. Grenier (1998), ‘Semiclassical limit of the nonlinear Schrödinger equation in
small time’, Proc. Amer. Math. Soc. 126, 523–530.

J.-C. Guillot, J. Ralston and E. Trubowitz (1988), ‘Semiclassical asymptotics in
solid-state physics’, Comm. Math. Phys. 116, 401–415.

G. A. Hagedorn (1994), ‘Molecular propagation through electron energy level cross-
ings’, Mem. Amer. Math. Soc. 111, #536.

E. J. Heller (1981), ‘Frozen Gaussians: A very simple semiclassical approximation’,
J. Chem. Phys. 75, 2923–2931.

E. J. Heller (2006), ‘Guided Gaussian wave packets’, Acc. Chem. Res. 39, 127–134.
M. Herman and E. Kluk (1984), ‘A semiclassical justification for the use of non-

spreading wavepackets in dynamics calculations’, J. Chem. Phys. 91, 2923–
2931.

N. Hill (1990), ‘Gaussian beam migration’, Geophysics 55, 1416–1428.
T. G. Ho, L. J. Landau and A. J. Wilkins (1993), ‘On the weak coupling limit for

a Fermi gas in a random potential’, Rev. Math. Phys. 5, 209–298.
I. Horenko, C. Salzmann, B. Schmidt and C. Schütte (2002), ‘Quantum-classical
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