
NUMERICAL SIMULATION OF THE NONLINEAR SCHRÖDINGER
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Abstract. By extending the Bloch-decomposition based time-splitting spectral method we intro-

duced earlier, we conduct numerical simulations of the dynamics of nonlinear Schrödinger equations

subject to periodic and confining potentials. We consider this system as a two-scale asymptotic prob-

lem with different scalings of the nonlinearity. In particular we discuss (nonlinear) mass transfer be-

tween different Bloch bands and also present three-dimensional simulations for lattice Bose-Einstein

condensates in the superfluid regime.
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1. Physical motivation

Recently there is a growing interest in the theoretical description and the experimental realization
of Bose-Einstein condensates (BECs) under the influence of so-called optical lattices, cf. [9, 19, 24, 25].
In such a system there are two extreme situations one needs to distinguish: the superfluid, or Gross-
Pitaevskii (GP) regime and the so-called Mott insulator. The two regimes are essentially induced by
the strength of the optical lattice, experimentally generated via intense laser fields. In the following
we shall focus solely on the superfluid regime, corresponding to situations where the optical lattice
potential is of order O(1) in amplitude. The BEC is then usually modelled by the celebrated Gross-
Pitaevskii equation, a cubically nonlinear Schrödinger equation (NLS), given by [25]

(1.1) ih̄∂tψ = − h̄2

2m
∆ψ + V (x) ψ + U0(x)ψ + Nα|ψ|2ψ, x ∈ R3, t ∈ R,

where m is the atomic mass, h̄ is the Planck constant, N is the number of atoms in the condensate and
α = 4πh̄2a/m, with a ∈ R denoting the characteristic scattering length of the particles. The external
potential U0(x) is confining in order to describe the electromagnetic trap needed for the experimental
realization of a BEC. Typically it is assumed to be of harmonic form

(1.2) U0(x) = mω2
0

|x|2
2

, ω0 ∈ R.
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A particular example for the periodic potentials used in physical experiments is then given by [11, 25]

(1.3) V (x) = s
3∑

`=1

h̄2ξ2
`

m
sin2 (ξ`x`) , ξ` ∈ R,

where ξ = (ξ1, ξ2, ξ3) denotes the wave vector of the applied laser field and s > 0 is a dimensionless
parameter describing the depth of the optical lattice (expressed in terms of the recoil energy). The
GP equation (1.1) provides an interesting test case for NLS-codes since it features high frequency
oscillations, two-scale external potentials and a (focusing or defocusing) nonlinearity.

The two-scale nature of the problem is naturally induced by the fact that the external confining
potential varies slowly (i.e. is almost constant) over a single lattice period. In other words we exhibit
many periods of V on the macroscopic scales induced by the trapping potential. After appropriate
scaling, cf. [8, 27], we therefore arrive at the following nonlinear Schödinger equation

(1.4)





iε∂tψ
ε =− ε2

2
∆ψε + VΓ

(x

ε

)
ψε + U(x)ψε + λε |ψε|2ψε, x ∈ R3,

ψε
∣∣
t=0

= ψε
in(x),

where ε > 0, denotes the semiclassical parameter describing the microscopic/macroscopic scale ratio.
The potentials U(x) and VΓ(x/ε) are now given in dimensionless form, such that the two-scale nature
of the problem is apparent. The highly oscillating lattice-potential VΓ(y) is assumed to be periodic
w.r.t a regular lattice Γ, i.e. VΓ(y + γ) = VΓ(y), for all γ ∈ Γ, y ∈ R3. Here and in what follows, we
shall always use the notation y = x/ε for the rescaled spatial variable. The equation (1.4) describes
the motion of the bosons on the macroscopic scale, i.e. ψε = ψε(t, x) is the condensate wave function.
It is well known that (1.4) preserves mass

M
[
ψε(t)

]
:=

∫

R3
|ψε(t, x)|2dx = M

[
ψε

I

]
,(1.5)

and energy

E
[
ψε(t)

]
:=

∫

R3

(
ε2

2
|∇ψ(t, x)|2 + (U + VΓ)|ψε(t, x)|2 +

λε

2
|ψε(t, x)|4

)
dx = E

[
ψε

I

]
,(1.6)

where the first term under the integral is the kinetic energy density, the second is the potential energy
density and the third the nonlinear interaction energy density. In particular we shall be interested
in the semiclassical regime, where ε ¿ 1, allowing for different nonlinearities with different strength.
More precisely we will respectively choose λε = O(1) or λε = O(εα), with 0 ≤ α ≤ 1. It is shown
in [8, 27], that a particular choice of λε in terms of powers of ε fixes a particular regime of physical
parameters. We remark that, due to the ε-oscillatory nature of solutions of (1.4) the case λε = O(1)
corresponds to the regime where dispersion and nonlinear interaction balance dynamically in leading
order.

In this paper, we extend the one-dimensional Bloch-decomposition based time-splitting spectral
method developed by the authors in [16] to three-dimensional evolutionary problems of the above
given type. We note that earlier numerical studies on closely related problems can be found in
[3, 5, 11, 22, 23], relying on different algorithms though. Concisely speaking, the purpose of this paper
is threefold:

• Firstly we generalize the numerical method proposed in [16] to a class of physically relevant
three dimensional problems and apply it to case studies of BECs in optical lattices with weak
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and strong nonlinearities (both, focusing and defocusing). We note that the numerical method
presented in this work is always based on solving the linear Bloch eigenvalue problem. However
we shall demonstrate that this method works efficiently even in the case where λε = O(1), i.e.
the case where dispersion and nonlinearity balance.

• Secondly, we present a comparison to a classical pseudo-spectral method which shows the vast
superiority of our Bloch-decomposition based approach, particularly in the case of non-smooth
potentials VΓ.

• Thirdly, we study quantitatively the phenomena of mass-transfer between different Bloch
bands in linear and nonlinear cases. We note that in the latter case, no analytical results
exist, at least to our knowledge.

The paper is then organized as follows: In section 2, we give a short review of the Bloch decomposition
method for periodic Schrödinger equations and we also recall the numerical algorithm developed in
[16]. We extend the one-dimensional scheme of [16] to three dimensions using operator-splitting. We
consequently compare our approach with a more standard pseudo-spectral method in Section 3. In
section 4, we first present several numerical tests concerning the (nonlinear) mixing of Bloch bands
before we finally show some three-dimensional simulations for lattice BECs as modelled by (1.4).

2. Description of the Bloch-decomposition based numerical method

In this section we will briefly recapitulate the numerical method developed in [16] and discuss its
extension to higher dimensions. For the convenience of the reader we first recall some basic definitions
and important facts to be used when dealing with periodic Schrödinger operators.

2.1. Review of the Bloch decomposition. Let us introduce some notation used throughout this
paper: For the sake of simplicity, set y = x/ε and let the spatial dimension be d = 1 (the extension
to higher dimensions is straightforward). For definiteness, we shall also assume that Γ = 2πZ, i.e.

(2.1) VΓ(y + 2π) = VΓ(y) ∀ y ∈ R.

In this case we have [2]:

• The fundamental domain of our lattice is C = (0, 2π).
• The dual lattice Γ∗ is then simply given by Γ∗ = Z.
• The fundamental domain of the dual lattice, i.e. the (first) Brillouin zone, is B =

(− 1
2 , 1

2

)
.

For our numerical simulations below we shall mainly use the following types of periodic potentials,
both of which are well known in the physics literature. Namely, the Mathieu model, i.e.

(2.2) VΓ(x) = cos(x),

and the Kronig-Penney model given by

(2.3) VΓ(x) = 1−
∑

γ∈Z
1x∈[π

2 +2πγ, 3π
2 +2πγ].
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Next, consider the eigenvalue problem,

(2.4)





(
−1

2
∂yy + VΓ(y)

)
ϕm(y, k) = Em(k)ϕm(y, k),

ϕm(y + 2π, k) = ei2πkyϕm(y, k), ∀ k ∈ B.

It is well known (see [26, 28, 29]) that under very mild conditions on VΓ, the problem (2.4) has a
complete set of eigenfunctions ϕm(y, k),m ∈ N, providing, for each fixed k ∈ B, an orthonormal
basis in L2(C). Correspondingly there exists a countable family of real eigenvalues which can be
ordered according to E1(k) ≤ E2(k) ≤ · · · ≤ Em(k) ≤ · · · , m ∈ N, taking into account the respective
multiplicity. The set {Em(k) | k ∈ B} ⊂ R is called the m-th energy band of the operator H. (In the
following the index m ∈ N will always denote the band index.)

For convenience we will frequently rewrite ϕm(y, k) as

(2.5) ϕm(y, k) = eikyχm(y, k) ∀m ∈ N,

where now χm(·, k) is 2π-periodic and called Bloch function. In terms of χm(y, k), the eigenvalue
problem (2.4) reads

(2.6)

{
H(k)χm(y, k) = Em(k)χm(y, k),

χm(y + 2π, k) = χm(y, k) ∀ k ∈ B,

where

(2.7) H(k) :=
1
2

(−i∂y + k)2 + VΓ(y),

denotes the so-called shifted Hamiltonian. Concerning the dependence on k ∈ B, it has been shown,
cf. [26, 29], that for any m ∈ N there exists a closed subset A ⊂ B such that Em(k) is analytic in
O = B\A. Similarly, the Bloch functions χm are found to be analytic and periodic in k, for all k ∈ O
and it holds that Em−1(k) < Em(k) < Em+1(k), for all k ∈ O. If this condition is satisfied for all
k ∈ B then E`(k) is said to be an isolated Bloch band. Finally we remark that [29]

(2.8) measA = meas {k ∈ B | Em1(k) = Em2(k), m1 6= m2} = 0.

In this set of measure zero one encounters so-called band crossings. The elements of this set are
characterized by the fact that Em(k) is only Lipschitz continuous but not differentiable.

By solving the eigenvalue problem (2.4), the Bloch decomposition allows us to decompose the
Hilbert space H = L2(R) into a direct sum of orthogonal band spaces [21, 26, 29], i.e.

L2(R) =
∞⊕

m=1

Hm, Hm :=
{

fm(y) =
∫

B
g(k) ϕm(y, k) dk, g ∈ L2(B)

}
.(2.9)

This consequently allows us to write

(2.10) ∀ f ∈ L2(R) : f(y) =
∑

m∈N
fm(y), fm ∈ Hm.

The corresponding projection of f onto the m-th band space is given by [21]

fm(y) ≡ (Pmf)(y)

=
∫

B

(∫

R
f(ζ)ϕm (ζ, k) dζ

)
ϕm (y, k) dk.

(2.11)
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In what follows, we will denote by

(2.12) Cm(k) :=
∫

R
f(ζ)ϕm (ζ, k) dζ

the coefficient of the Bloch decomposition. The main use of the Bloch decomposition is that it reduces
an equation of the form

(2.13) i∂tψ = −1
2

∂yyψ + VΓ(y)ψ, ψ
∣∣
t=0

= ψin(y),

into countably many, exactly solvable problems on Hm. Indeed in each band space one simply obtains

(2.14) i∂tψm = Em(−i∂y)ψm, ψm

∣∣
t=0

= (Pmψin)(y),

where Em(−iε∂y) denotes the Fourier-multiplier corresponding to the symbol Em(k). Using the
Fourier transformation F , equation (2.14) is easily solved by

(2.15) ψm(t, y) = F−1
(
e−iEm(k)t(F(Pε

mψin))(k)
)

.

Here the energy band Em(k) is understood to be periodically extended to all of R.

2.2. The Bloch decomposition based split-step algorithm. In [16] we introduced a new nu-
merical method, based on the Bloch decomposition described above. In order to make the paper
self-contained, we shall recall here the most important steps of our algorithm and then show how to
generalize it to more than one spatial dimension.

As a necessary preprocessing, we first need to calculate the energy bands Em(k) as well as the
eigenfunction ϕm(y, k) from (2.4) (or, likewise from (2.6)). In d = 1 dimension this is rather easy
to do and with an acceptable numerical cost as described in [16] (see also [15] for an analogous
treatment). We shall therefore not go into the details here and only remark that the numerical cost
for this preprocessing does not depend on the spatial grid to be chosen later on and is therefore almost
negligible when compared to the costs spent in the evolutionary algorithms below.

For the convenience of the computations, we consider the equation (1.4), for d = 1, on a bounded
domain D = [0, 2π] with periodic boundary conditions. This represents an approximation of the
(one-dimensional) whole-space problem, as long as the observed wave function does not touch the
boundaries x = 0, 2π. Then, for some N ∈ N, t > 0, let the time step be

4t =
t

N
, and tn = n4t, n = 1, · · · , N.

Suppose that there are L ∈ N lattice cells of Γ within the computational domain D, and that there
are R ∈ N grid points in each lattice cell, which yields the following discretization

(2.16)





k` = − 1
2

+
`− 1

L
, where ` = {1, · · · , L} ⊂ N,

yr =
2π(r − 1)

R
, where r = {1, · · · , R} ⊂ N.

Thus, for any time-step tn, we evaluate ψε(tn, ·), the solution of (1.4), at the grid points

(2.17) x`,r = ε(2π(`− 1) + yr).

Now we introduce the following unitary transformation of f ∈ L2(R)

(2.18) (Tf)(y, k) ≡ f̃(y, k) :=
∑

γ∈Z
f(ε(y + 2πγ)) e−i2πkγ , y ∈ C, k ∈ B,
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such that f̃(y+2π, k) = e2iπkf̃(y, k) and f̃(y, k+1) = f̃(y, k). In other words f̃(y, k) admits the same
periodicity properties w.r.t. k and y as the Bloch eigenfunction ϕm(y, k). Thus we can decompose
f̃(y, k) as a linear combination of such eigenfunctions ϕm(y, k). We introduce the transform T instead
of the traditional Bloch transform, in order to be able to solely use FFT in (2.27) and (2.31) below.
Note that the following inversion formula holds

(2.19) f(ε(y + 2πγ)) =
∫

B
f̃(y, k) ei2πkγdk.

Moreover one easily sees that the Bloch coefficient, defined in (2.12), can be equivalently be written
as

(2.20) Cm(k) =
∫

C
f̃(y, k)ϕm (y, k) dy,

which, in view of (2.5), resembles a Fourier integral.

We are now in position to set up the time-splitting algorithm. To this end, we first set d = 1, for
simplicity. We then solve (1.4) in two steps.

Step 1. First, we solve the equation

(2.21) iε∂tψ
ε = −ε2

2
∂xxψε + VΓ

(x

ε

)
ψε, x ∈ R,

on a fixed time-interval 4t. To do so we consider for each fixed t ∈ R, the corresponding transformed
solution (Tψε(t, ·)) ≡ ψ̃ε(t, y, k), where T is defined in (2.18) and y = x/ε. Note that if we would not
use T here, the solution ψε(t, ·) in general would not satisfy the same periodic boundary conditions
(w.r.t. y) as the eigenfunctions ϕm(y, k). After applying T we can decompose ψ̃ε(t, y, k) according to

(2.22) ψ̃ε(t, y, k) =
∑

m∈N
(Pmψ̃ε) =

∑

m∈N
Cε

m(t, k)ϕm (y, k) .

Of course, we have to truncate this summation at a certain fixed M ∈ N. Numerical experiments
on the band mixing (see also the next section) give us enough experience to choose M large enough,
typically M = 32, in order to maintain mass conservation up to a sufficiently high accuracy. By (2.14),
this consequently yields the following evolution equation for the coefficient Cε

m(t, k)

(2.23) iε∂tC
ε
m(t, k) = Em(k) Cε

m(t, k),

which yields

(2.24) Cε
m(t, k) = Cε

m(0, k)e−iEm(k)t/ε.

Step 2. In the second step, we solve the ordinary differential equation

(2.25) iε∂tψ
ε =

(
U(x) + λε|ψε|2

)
ψε,

on the same time-interval as before, where the solution obtained in Step 1 serves as initial condition
for Step 2. Again, we easily obtain the exact solution for this equation by

(2.26) ψε(t, x) = ψε(0, x) e−i(U(x)+λε|ψε|2)t/ε.

Note that this splitting conserves the total particle number ‖ψε(t, x)‖L2 also on the fully discrete level
and is thus unconditionally stable in the sense used by Iserles in [17] (w.r.t. to the discrete L2-norm).
Clearly, the algorithm given above is first order in time. But we can easily obtain a second order
scheme by the Strang splitting method, i.e. perform Step 1 with time-step 4t/2, then Step 2 with
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4t and finally once again Step 1 with 4t/2. Indeed, this is what we do when we implement the
algorithm. Step 1 consequently consists of several intermediate steps:

Step 1.1. We compute ψ̃ε, cf. (2.18), at time tn by

(2.27) ψ̃ε(tn, x`,r, k`) =
L∑

j=1

ψε(tn, xj,r) e−i2πk`·(j−1),

where x`,r is as in (2.17).

Step 1.2. Next, we compute the coefficient Cε
m(tn, k`) via (2.20),

(2.28) Cε
m(tn, k`) ≈ 2π

R

R∑
r=1

ψ̃ε(tn, x`,r, k`)χm(yr, k`) e−ik`yr .

Step 1.3. The obtained Bloch coefficients are then evolved up to tn+1 as given by (2.24),

(2.29) Cε
m(tn+1, k`) = Cε

m(tn, k`) e−iEm(k`)4t/ε.

Step 1.4. Then we obtain ψ̃ε at the time tn+1 by summing up all band contributions

(2.30) ψ̃ε(tn+1, x`,r, k`) =
M∑

m=1

Cε
m(tn+1, k`)χm(yr, k`) eik`yr .

Step 1.5. Finally, we perform the inverse transformation (2.19),

(2.31) ψε(tn+1, x`,r, k`) ≈ 1
L

L∑

j=1

ψ̃ε(tn+1, xj,r, kj) ei2πkj(`−1).

This concludes the numerical procedure performed in Step 1.

In our algorithm, we compute the dominant effects from the dispersion and the periodic lattice
potential in one step, maintaining their strong interaction, and treat the non-periodic potential as a
perturbation. Because the split-step error between the periodic and non-periodic parts is relatively
small, the time-steps can be chosen considerably larger than for a conventional time-splitting algorithm
[3, 4], see [16] for more details.

Moreover, an extension of the above given algorithm to more than one spatial dimension is straight-
forward, if the periodic potential VΓ is of the following form

(2.32) VΓ(y) =
d∑

j=1

Vj(xj), such that: Vj(xj + γj) = Vj(xj).

In other words, VΓ is given by the sum of one-dimensional lattice periodic potentials Vj . In this
case, Step 1 above, consequently generalizes to the task of solving an equation of the form (2.21)
for each spatial direction xj ∈ R separately. Since our new algorithm allows for much large time-
steps and much coarse spatial grid, than a conventional time-splitting code, we can apply it to such
multi-dimensional problems with reasonable computational complexity.

Remark 2.1. Note that the separability property (2.32) is necessary in order to be able to easily
compute the Bloch bands as a preparatory step. If VΓ does not obey (2.32), the computational
treatment of (2.4) is in itself a formidable task. For the main application we have in mind, namely
lattice BECs, the separability condition (2.32) holds, since there VΓ is typically given by (1.3).
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3. Comparison with the classical pseudo-spectral method

Often finite-difference methods are used to simulate (nonlinear) Schrödinger equations. However,
the results of [22] show that these methods disqualify in the semiclassical regime from a practical
point of view, since they require exceedingly small temporal and spatial mesh sizes. In contrast, time-
splitting spectral schemes have performed very well in such cases, cf. [3, 4]. In the present setting,
however, the fast varying periodic potential VΓ introduces additional difficulties. In [16] we compared
our Bloch-decomposition based algorithm with a time-splitting method which splits the dispersion
from all potential terms (the approach used in [15]). Even in the linear, one-dimensional case, this
method is not comparable in efficiency with our Bloch decomposition approach. To complete the
picture we shall now present a comparison with a method, invoking the same time-splitting as above
but with a trigonometric pseudo-spectral discretization of the periodic Hamiltonian.

More precisely, the classical pseudo-spectral method consists of the following steps:

Step 1. In the first step we solve the equation

iε∂tψ
ε = −ε2

2
∂xxψε + VΓ

(x

ε

)
ψε, x ∈ R,(3.1)

on a fixed time-interval 4t. Denoting by “ ·̂ ” the Fast Fourier transform (FFT) we then solve the
ordinary differential equation

iε∂tψ̂
ε(t, ξ) =

ε2|ξ|2
2

ψ̂ε + ̂(VΓψε).(3.2)

From here we consequently obtain ψε(t, x) by invoking an inverse FFT.

Step 2. In a second step, we solve, as before, the ordinary differential equation (2.25) on the same
time-interval (where the solution obtained in Step 1 serves as initial condition for Step 2). The splitting
of the equation (1.4) is therefore as above, only the numerical approach for solving (3.1) differs. Again
we shall implement this pseudo-spectral method by using Strang’s splitting to gain a second order
scheme in time.

We now compare the solutions ψBD, ψSP, respectively obtained via the two methods, referred to
as the “Bloch-decomposition”(BD) and “pseudo-spectral”(SP) methods respectively, with an “exact”
solution ψex, which is calculated by using very small time-steps. Here we use Gaussian initial data,
cf. (4.5). To this end we define the two errors

EBD(t) =

∥∥ψex(t, ·)− ψBD(t, ·) ∥∥
L2(R)

‖ψex(t, ·)‖L2(R)

, ESP(t) =

∥∥ψex(t, ·)− ψSP(t, ·)∥∥
L2(R)

‖ψex(t, ·)‖L2(R)

.(3.3)

The results are given in Tables 1–3. We summarize our numerical observations here:

• For smooth potentials VΓ and weak nonlinearities, i.e. λε = O(ε), both methods yield a
comparable numerical error as long as ε is not too small. Namely, both methods are spectrally
accurate in space and second order in time. The BD method yields smaller errors though (also
in the linear case). The real gain of the BD method is that as ε becomes smaller it allows
for much bigger time steps than the pseudo-spectral method. The smaller the ε is, the bigger
this advantage becomes.
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Figure 1. The graph of Em(k) for m = 1, · · · , 5.

• For non-smooth potential VΓ, BD is still spectrally accurate in space and second order in time,
while SP is only first order in space and time. The main reason is we can not approximate
the solution with low regularity by trigonometric functions with high accuracy.

• For strong nonlinearities, λε = O(1), and smooth potentials, both methods give comparable
results. Our interpretation for this is that in such cases, the main error comes from the
time-splitting, and the BD does not gain much over the SP.

Our numerical experiments show that, even with the same time-splitting, BD outperforms SP in
many, physically relevant, cases.

4. Numerical Simulations

Before applying our algorithm to the simulation of three-dimensional lattice BECs we shall first
study in more detail the influence of the nonlinearity on the Bloch decomposition. The corresponding
numerical experiments are of some interest on their own, since so far the mixing of Bloch bands (i.e. the
mass transfer between different bands) due to nonlinear interactions has not been fully clarified. We
remark that these tests have to seen as mathematical experiments which do not necessarily correspond
to realistic physical experiments.

4.1. Numerical experiments on nonlinear band mixing. In this subsection we again restrict
ourselves to d = 1 spatial dimensions for simplicity. The periodic potential is chosen to be (2.2).
Figure 1 shows a plot of the first few energy bands, drawn over B. For the slowly varying, external
potentials U(x), we shall choose either a simple constant force field, i.e.

(4.1) U(x) = x, x ∈ R,

or a harmonic oscillator type potential (centered in the middle of the computational domain)

(4.2) U(x) =
1
2
|x− π|2, x ∈ R.

Obviously, if U(x) 6= 0 an exact treatment along the lines of (2.13) – (2.15) is no longer possible for
the evolution equation (1.4), even if λε = 0. This is due to the fact that one has to take into account
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Table 1. Comparison tests with U(x) given by (4.2), t = 0.1, VΓ given by (2.2).

λε = 1
16

, ε = 1
16

, 4t = 1
100000

4x π/32 π/64 π/128 π/256

EBD(t) 2.39E-1 1.86E-3 5.80E-6 2.57E-10

Convergence order 7.0 8.3 14.5

ESP(t) 2.69E-1 3.17E-3 7.64E-6 5.28E-10

Convergence order 6.4 8.7 13.8

λε = 1
16

, ε = 1
16

, 4x = π
4096

Time step 4t 1/10 1/20 1/40 1/80

EBD(t) 5.95E-2 1.56E-2 3.38E-3 8.69E-4

Convergence order 1.9 2.2 2.0

ESP(t) 1.79E-1 4.49E-2 1.11E-2 2.73E-3

Convergence order 2.0 2.0 2.0

λε = 1
128

, ε = 1
128

, 4t = 1
100000

4x π/256 π/512 π/1024 π/2048

EBD(t) 3.22E-1 2.77E-2 2.81E-5 5.99E-9

Convergence order 3.5 9.9 12.2

ESP(t) 8.85E-1 8.37E-2 2.09E-4 9.44E-8

Convergence order 3.4 8.6 11.1

λε = 1
128

, ε = 1
128

, 4x = π
16384

Time step 4t 1/20 1/40 1/80 1/160

EBD(t) 9.47E-2 2.29E-2 5.23E-3 1.31E-3

Convergence order 2.0 2.0 2.0

Time step 4t 1/200 1/400 1/800 1/1600

ESP(t) 9.67E-2 2.33E-2 5.78E-3 1.45E-3

Convergence order 2.0 2.0 2.0

λε = 0, ε = 1
1024

, 4t = 1
100000

4x π/1024 π/2048 π/4096 π/8192

EBD(t) 9.53E-1 2.88E-1 4.73E-3 1.52E-5

Convergence order 1.7 5.9 8.3

ESP(t) 1.10 5.01E-1 1.92E-2 1.83E-4

Convergence order 1.1 4.7 6.7

λε = 0, ε = 1
1024

, 4x = π
65536

Time step 4t 1/10 1/20 1/40 1/80

EBD(t) 3.50E-2 8.85E-3 2.23E-3 5.59E-4

Convergence order 2.0 2.0 2.0

Time step 4t 1/5000 1/10000 1/20000 1/40000

ESP(t) 7.33E-2 1.83E-2 4.57E-3 1.14E-3

Convergence order 2.0 2.0 2.0
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Table 2. Comparison tests with U(x) given by (4.2), t = 0.1, VΓ(x) given by (2.3).

λε = 1
16

, ε = 1
16

, 4t = 1
100000

4x π/64 π/128 π/256 π/512

EBD(t) 1.10E-2 3.59E-3 4.68E-4 9.84E-6

Convergence order 1.6 2.9 5.6

ESP(t) 2.63E-1 1.29E-1 6.39E-2 3.17E-2

Convergence order 1.0 1.0 1.0

λε = 1
16

, ε = 1
16

, 4x = π
4096

Time step 4t 1/10 1/20 1/40 1/80

EBD(t) 2.53E-2 6.42E-3 1.62E-3 4.14E-4

Convergence order 2.0 2.0 2.0

Time step 4t 1/800 1/1600 1/3200 1/6400

ESP(t) 1.74E-2 9.53E-3 6.03E-3 4.08E-3

Convergence order 0.9 0.7 0.6

λε = 1, ε = 1
16

, 4t = 1
100000

4x π/64 π/128 π/256 π/512

EBD(t) 4.59E-2 1.47E-2 1.90E-3 6.15E-5

Convergence order 1.6 2.9 4.9

ESP(t) 2.16E-1 1.08E-2 5.42E-2 2.70E-2

Convergence order 1.0 1.0 1.0

λε = 1, ε = 1
16

, 4x = π
4096

Time step 4t 1/40 1/80 1/160 1/320

EBD(t) 4.18E-2 1.08E-2 2.67E-3 6.45E-4

Convergence order 2.0 2.0 2.0

Time step4t 1/800 1/1600 1/3200 1/6400

ESP(t) 1.74E-2 8.43E-3 5.03E-3 4.45E-3

Convergence order 1.0 0.7 0.2

the action of the non-periodic potential U(x), which in general mixes all Bloch bands Em(k). It is
well known however, at least in the linear case, that one has a so-called adiabatic decoupling of the
individual bands, as long as U(x) varies slowly on the scale of the periodic potential (which is the case
in our scaling). More precisely (see [28] and the references given therein)

(4.3) sup
t∈[0,T ]

∥∥(1− Pε
m)Uε(t)Pε

m

∥∥
B(L2(R))

≤ O(ε),

where Pε is the ε-rescaled projection onto the m-th Bloch band defined in (2.11) and Uε(t) = e−iHεt/ε

is the unitary group corresponding to the linear Hamiltonian operator

Hε = −ε2

2
∂xx + VΓ

(x

ε

)
+ U(x).

In other words: Under the influence of U(x) the m-th band is stable, up to errors of order O(ε). The
estimate (4.3) however only holds for energy bands Em(k) which are isolated from the rest of the
spectrum, i.e. which do not exhibit band-crossings. In the latter case mass transfer of order O(1)
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Table 3. Comparison tests with U(x) given by (4.2), t = 0.1, VΓ given by (2.2).

λε = 1, ε = 1
16

, 4t = 1
100000

4x π/32 π/64 π/128 π/256

EBD(t) 2.35E-1 4.97E-3 5.81E-6 1.10E-9

Convergence order 5.6 9.7 12.4

ESP(t) 2.67E-1 2.85E-3 6.83E-6 5.21E-9

Convergence order 6.5 8.7 10.4

λε = 1, ε = 1
16

, 4x = π
4096

Time step 4t 1/40 1/80 1/160 1/320

EBD(t) 2.22E-2 5.03E-3 1.24E-3 3.10E-4

Convergence order 2.1 2.0 2.0

ESP(t) 2.44E-2 5.66E-3 1.40E-3 3.50E-4

Convergence order 2.1 2.0 2.0

λε = 1, ε = 1
1024

, 4t = 1
1000000

4x π/2048 π/4096 π/8192 π/16384

EBD(t) 1.52E-1 1.85E-2 2.07E-4 2.35E-7

Convergence order 3.0 6.5 9.8

ESP(t) 2.84E-1 2.55E-2 3.92E-4 1.06E-6

Convergence order 3.5 6.0 8.5

λε = 1, ε = 1
1024

, 4x = π
65536

Time step 4t 1/1000 1/2000 1/4000 1/8000

EBD(t) 1.84E-1 4.64E-2 1.19E-2 2.99E-3

Convergence order 2.0 2.0 2.0

ESP(t) 1.97E-1 4.83E-2 1.25E-2 3.17E-3

Convergence order 2.0 2.0 2.0

is possible, the so-called Landau-Zener phenomena (see, e.g., [13, 18, 28] and the references given
therein). In the nonlinear case, the situation is even more complicated, as the strength (in terms of
ε) of the nonlinear coupling λε is expected to play a crucial role. So far, only the case of a weak
nonlinearity, i.e. λε ∼ O(ε), has been treated rigorously in [8, 12]. It has been shown there, that,
apart from certain resonance phenomena, an adiabatic decoupling also holds in the weakly nonlinear
case.

In the following we shall numerically study such band mixing phenomena. The reason for this is
twofold: Firstly, it gives us more experience on how many Bloch bands one has to take into account to
guarantee that our numerical algorithm preserves mass with sufficient accuracy. Secondly, we aim to
present some qualitative and quantitative studies on the phenomena for band mixing in the nonlinear
case, which are of some interest on their own.

Example 4.1 (linear band mixing). We set λε = 0 and consider initial conditions of the following
form

(4.4) ψε
I (x) = Pε

m0

(
a(x)eikx/ε

)
,
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where, upon setting y = x/ε, the projector Pε
m0

is defined (2.11) and the amplitude a(x) ∈ R is given
by a Gaussian

(4.5) a(x) =
(

2ω

π

)1/4

e−ω(x−π)2 , ω ∈ R.

We will test the mass transition from the band m0 (for different choices of m0) to other bands, due
to the influence of the potential U(x) given by (4.2). To this end we choose ε = 1/16. We also tried
different values for k and ω but there has been no significant difference in our results between the
different numerical results. Therefore, we only show the numerical results for ω = 6 and we will choose
either k = 0 or k = 5 in Fig. 2 and Fig. 3 below. We plot the mass density ρε(t, x) ≡ |ψε(t, x)|2 at
t = 0 and at the final time t = 1. Clearly, the use of Pε

m0
in (4.4) induces high oscillations already in

the initial data. We also show ρε
m(t, x) ≡ |Pm(ψε)(t = 1, x)|2, for m = m0, and its corresponding first

few neighboring bands.

As expected there is a huge difference between the case of an isolated band, for example m0 = 1,
and non-isolated bands. In the first case, only O(ε) mass transfer is exhibited, whereas we have mass
transfer of order O(1) in the case m0 = 4 (non-isolated band). Since band crossings are more likely the
higher m0 is, more mass transfer occurs at large m0. Quantitatively we can also distinguish between
different isolated bands. To this end we introduce the quantity

(4.6) Dε
m0

(t) :=
∥∥ψε(t, ·)− (Pε

m0
ψε(t, ·))

∥∥
L2(R)

,

as a measure for the mass transfer between m0 and other bands. The numerics show that the bands
m0 = 1 and m0 = 2 are more stable than m0 = 3. This is due to the fact that in the former two cases
the energy-gaps between the bands are larger than in the latter, cf. Table 4 and 5.

Table 4. Comparison of Dε
m0

(t = 1) for m0 = 1, . . . , 4 and ε = 1/16.

m0 = 1 m0 = 2 m0 = 3 m0 = 4

transferred mass

U(x) = 1
2
|x− π|2 1.9E-4 7.0E-3 1.0E-2 7.1E-1

transferred mass

U(x) = x
2.3E-3 7.8E-2 7.8E-1 9.8E-1

Table 5. Time evolution of Dε
3(t) with ε = 1/16 and U(x) = x.

t = 0.1 t = 0.25 t = 0.5 t = 0.75 t = 1

transferred mass 2.5E-2 1.2E-1 4.0E-1 7.5E-1 7.8E-1

Example 4.2 (nonlinear band mixing). We consider the same initial data as before and study
band mixing under the influence of different U(x) and a cubic nonlinearity of different strength λε.
We only show the results of the defocusing case, since the results for a focusing nonlinearity are very
much the same.

In Figures 4–7, we plot the results due to the influence of the harmonic oscillator, cf. (4.2). First
we plot the results for a weak nonlinearity, i.e. λε = O(ε) with ε = 1/16, in Figures 4 and 5, thereby
considering the case m0 = 1 (isolated) and m0 = 4 (non-isolated). We see that in both cases there
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Mass distribution for different bands at t = 1.

Figure 2. Numerical results for example 4.1 with ε = 1
16 , λε = 0, m0 = 1, k = 5.

is no significant difference in comparison with the linear situation. This changes dramatically though
when we choose λε = O(1), see Figures 6 and 7. For such a strong nonlinearity, the mass transfer is
O(1), even in the case of an isolated band, i.e. m0 = 1.

To get a more detailed picture of the influence of a cubic nonlinearity we consider, for any fixed
t∗ ∈ R of order O(1),

(4.7) λε = O(εα), Dε
m0

(t∗) = O(εγ), α, γ ≥ 0,

and we aim to numerically quantify the connection between α and γ. The results for different U(x)
and m0 = 1, or m0 = 4 are shown in Figure 8, which is plotted for t∗ = 1 and ε = 1/32:

First we consider the isolated band m0 = 1: We see that in the case of vanishing external potentials,
i.e. U(x) = 0 we have α ≈ γ. The same holds true for a non-zero U(x) and 0 ≤ α ≤ 1, the regime in
which the nonlinearity is (formally) stronger as the external potential. However, for an even smaller
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Figure 3. Numerical results for example 4.1 with ε = 1
16 , λε = 0, m0 = 4, k = 0.

nonlinearity, i.e. α ≥ 1, the influence of U(x) causes a band mixing of O(ε) and thus γ ≈ 1, no matter
which α ≥ 1 is chosen. For m0 = 4, a non-isolated band we see that there is an O(1) mass transfer
for all α ≥ 0, which moreover becomes stronger as α → 0.

Finally, in order to convince the reader about the stability of isolated bands for even longer times,
we plot the time-evolution of Dε

m0
(t) in Figure 9 under the influence of U(x) given by (4.2). We

consider the linear and the weakly nonlinear case.

4.2. Numerical simulation of three dimensional lattice BECs. Having obtained sufficient in-
sight on the phenomena of band mixing, we shall finally turn to the simulation of three-dimensional
lattice BECs described by (1.4). To do so we have to choose physically relevant initial data, having in
mind the following experimental situation: We assume that in the first step, the BEC is formed in a
trap without the lattice potential, i.e. only under the influence of U(x), where x = (x1, x2, x3). Then,
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Figure 4. Numerical results for example 4.2 with ε = 1
16 , λε = 1

16 , m0 = 1, k = 5.

in a second step, we assume that the lattice potential VΓ(x/ε) is switched on and the (nonlinear)
dynamics of the BEC under the combined influence of U(x) and VΓ(x/ε) is studied. For definiteness
we shall from now on consider the following potentials acting on the BEC

(4.8) VΓ (x) =
3∑

`=1

sin2 (x`) , U(x) =
1
2

3∑

`=1

|x` − π|2.

These choices, obtained from the potentials (1.2)–(1.3) by scaling, are consistent with various physical
experiments [1, 6, 9, 10, 19, 25].

We consequently have to set for the initial data of (1.4): ψε
in = φε

g, where φε
g is the ground state

solution of the following nonlinear eigenvalue problem

(4.9) −ε2

2
∆φε + Uφ + λε|φε|2φε = µε φε, ‖φε‖L2(R3) = 1.
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Figure 5. Numerical results for example 4.2 with ε = 1
16 , λε = 1

16 , m0 = 4, k = 0.

The ground state may be characterized as the unique (non-negative) solution φε = φε
g of (4.9) with

corresponding minimal chemical potential µε ∈ R. For a repulsive, or defocusing nonlinearity, i.e.
λε > 0, the ground state can the obtained by minimizing the energy E

[
φε

]
, in (1.6) with VΓ ≡ 0,

under the constraint ‖φε‖L2(R3) = 1 (see [20] for more details). For an attractive or focusing three-
dimensional condensate a global minimizer of E[φε] does not exist. Also, the interpretation of critical
points of the energy functional as possible candidates for the corresponding physical ground state
is not clear. Note however, that there are recent experiments [1, 10] where one is able to tune the
nonlinear interaction λε = λε(t) from positive into negative by using so-called Feshbach resonances.
Thus, also the case of a focusing nonlinearity in (1.4) is of physical interest.
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Figure 6. Numerical results for example 4.2 with ε = 1
16 , λε = 1, m0 = 1, k = 0.

Example 4.3 (3d lattice BEC, weak nonlinearity). We study the weakly nonlinear situation
where λε = O(ε). Following the scaling given in [8], we find that in this case

(4.10) ε =
(

a0

4πN |a|
)2/3

.

For example, in the case of a lattice BEC consisting of Rb atoms we have, cf. [11]:

(4.11) a0 ≈ 3, 4× 10−6[m], a ≈ 5, 4× 10−9[m].

The following numerical simulations are done for ε = 1/4, which corresponds to N ≈ 500 atoms in
the optical lattice of the form (1.3), where s = 1 and ξl ≈ 4, 6× 106[1/m]. Clearly, bigger values of N

correspond to smaller values of ε which leads to longer running-times of the code. Since λε = O(ε),
the ground state of the nonlinear eigenvalue problem (4.9) can be very well approximated (for, both,
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Figure 7. Numerical results for example 4.2 with ε = 1
16 , λε = 1, m0 = 4, k = 0.

a focusing and a defocusing nonlinearity) by the one of the linear equation, which yields

(4.12) µε
g =

3ε

2
, φε

g(x) =
1

(πε)3/4
e−U(x)/ε.

This corresponds to the quantum mechanical ground state of a harmonic oscillator induced by (4.8).

The numerical results are given in Figures 10 – 12, where we plot different sections of the total
mass density at initial time t = 0 and at t = 1 (final computation time). In the defocusing case
we see that the density starts to redistribute itself under the influence of the periodic potential and
the nonlinearity. Note that the density does not vanish at the anti-nodes of the periodic potential.
In the case where λε < 0 this behavior is countervailed by the typical concentration effects of the
focusing nonlinearity, leading to a blow-up for solutions to (1.4) and thus a collapse of the condensate.
Indeed the peak in the last picture of Fig. 10 is about three times higher than in the defocusing case.
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Here Dε
m0

= ‖ψε(t, ·)− Pm0ψ
ε(t, ·)‖2.

Figure 9. Example 4.2: Temporal behavior of Dε
m0

(t) for ε = 1
32 .
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ρε(t = 0, 2πx)
∣∣
x3=0

(initial density), ρε
+(t = 1, 2πx)

∣∣
x3=0

(defocusing case) and
ρε
−(t = 1, 2πx)

∣∣
x3=0

(focusing case).

Figure 10. Example 4.3 (weak nonlinearity): Comparison of the initial and final
mass densities, evaluated at x3 = 0, with |λε| = 1

4 and ε = 1
4 .

Figure 11. Example 4.3 (weak nonlinearity, defocusing case): Surface plot of
|ψε(t, 2πx)| = 0.25 at different times with λε = 1

4 and ε = 1
4 .

However, due to the asymptotic smallness of the nonlinearity it might still be possible to obtain a
(stable) periodic condensate over the life-time of the experiment.
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Figure 12. Example 4.3 (weak nonlinearity, focusing case): Surface plot of
|ψε(t, 2πx)| = 0.25 at different times for λε = − 1

4 and ε = 1
4 .

Example 4.4 (3d lattice BEC, strong nonlinearity). In the last example we treat the case of
strong interactions, i.e. λε = O(1). Via a scaling, analogous to the one in [3], the values ε = 1/4 and
λε = 1 used in the numerical experiments below, correspond to s ≈ 1600 and ξ` ≈ 0.25× 105[1/m] for
N ≈ 5× 104 Rb atoms.

For a repulsive interaction, λε > 0, the ground state of the nonlinear eigenvalue problem (4.9) is
then usually treated by the so-called Thomas-Fermi approximation, which corresponds to discarding
the dispersion of order O(ε2). The corresponding (ε-independent) equation then reads

(4.13) Uφ + λ|φ|2φ = µφ, ‖φ‖L2(R3) = 1,

which can be explicitly to get (in d = 3 spatial dimensions)

(4.14) µg =
1
2

(
15λ

4π

)2/5

, φg(x) =

{ √(
µg − U(x)

)
/λ, if U(x) < µg,

0 otherwise.

For the sake of completeness we also include the case of a focusing nonlinearity, starting from the
same initial data as in the defocusing case. This might be considered as a rather crude description of
the experiments where the nonlinear interaction is tuned from positive to negative.

We plot the obtained numerical results, for ε = 1/4, in Figures 13 – 15. In the focusing case we
again exhibit a huge concentration of mass. Figure 13 clearly shows the localization of the collapsing
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ρε(t = 0, 2πx)
∣∣
x3=0

(initial density), ρε
+(t = 1, 2πx)

∣∣
x3=0
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−(t = 1, 2πx)

∣∣
x3=0

(focusing case).
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Figure 13. Example 4.4 (strong nonlinearity): Comparison of the initial and final
mass densities, evaluated at x3 = 0, with |λε| = 1 and ε = 1

4 .

solution, invoking large gradients, i.e. sharp peaks. Note that during the course of time several large
peaks occur which eventually combine to one. Moreover we clearly see that due to the influence of
the periodic potential the density first tries to spread and recombine into the nodes of the potential.
Only after some time (i.e. for t > 1) this spreading is countervailed by the concentration effect of
the nonlinearity. For a defocusing nonlinearity the solutions rather seems to be a deformation of the
Thomas-Fermi approximation. We performed several numerical simulations which confirm that the
behavior of the solutions is largely independent of the precise nature of the periodic potential.

Finally, in order to indicate more clearly the difference between focusing and defocusing nonlin-
earities we consider the second spatial moment of the position density, i.e.

(4.15) Sε(t) =
∫

R3
|x|2|ψε(t, x)|2dx.

which can be seen as a measure for the spreading of the particle density. In Figures 16 and 17 we plot
the temporal behavior of S(t) for two different cases of VΓ (for d = 1). From these plots the difference
between the focusing and defocusing case is apparent.

5. Conclusion

In the present work, we extend the Bloch-decomposition based time-splitting spectral method de-
veloped in [16] for linear one-dimensional problem to the case of three-dimensional nonlinear Schrödinger
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Figure 14. Example 4.4 (strong nonlinearity, defocusing case): Surface plot of
|ψε(t, 2πx)| = 0.25 at different times with λε = 1 and ε = 1

4 .

equations with periodic potentials. We consider the corresponding evolutionary problem in a two-scale
asymptotic regime with different scalings of the nonlinearity. We mainly focus on the semiclassical
regime, where ε ¿ 1, allowing for, both, focusing and defocusing nonlinearities. In particular we dis-
cuss the (nonlinear) mass transfer between different Bloch bands and also present three-dimensional
simulations for lattice Bose-Einstein condensates in the superfluid regime. Moreover we demonstrate
the superiority of our numerical approach over the classical pseudo-spectral method in many physically
relevant situation.
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Figure 15. Example 4.4 (strong nonlinearity, focusing case): Surface plot of
|ψε(t, 2πx)| = 0.25 at different times with λε = −1, ε = 1

4 .
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