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The linear Schrödinger equation with periodic potentials is an important model in solid
state physics. The most efficient direct simulation using a Bloch decomposition-based
time-splitting spectral method [18] requires the mesh size to be Oð�Þ where � is the scaled
semiclassical parameter. In this paper, we generalize the Gaussian beam method intro-
duced in Jin et al. [23] to solve this problem asymptotically. We combine the technique
of Bloch decomposition and the Eulerian Gaussian beam method to arrive at an Eulerian
computational method that requires mesh size of Oð

ffiffiffi
�
p
Þ. The accuracy of this method is

demonstrated via several numerical examples.
� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The linear Schrödinger equation with periodic potentials
i�
@W�

@t
¼ � �

2

2
DW� þ VC

x
�

� �
W� þ UðxÞW�; x 2 Rn; ð1:1Þ
is a simple model in solid state physics which describes the motion of electrons with the periodic potentials generated by the
ionic cores. Here W�ðt; xÞ is the wave function, � is the re-scaled Plank constant in the semiclassical regime, and UðxÞ is the
smooth external potential. The oscillatory lattice-potential VCðzÞ is a periodic function in some regular lattice C.

We consider this model in one dimension with the two-scale WKB initial condition:
W�
0 x; z :¼ x

�

� �
¼ A0ðx; zÞeiS0ðxÞ=�: ð1:2Þ
Without loss of generality we assume C ¼ 2pZ, i.e.
VCðzþ 2pÞ ¼ VCðzÞ; 8z 2 R: ð1:3Þ
We introduce several physical concepts related to (1.3) [1]:
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� The fundamental domain of the lattice C is C ¼ ð0;2pÞ.
� The dual lattice C� ¼ Z.
� The (first) Brillouin zone is B ¼ ð� 1

2 ;
1
2Þ, which is the fundamental domain of C�.

The direct numerical simulation of (1.1) and (1.2) is prohibitively expensive due to the small parameter � in the semiclas-
sical regime and the highly oscillating structure of VC. The standard time-splitting spectral method [3] requires the mesh size
be oð�Þ and the time step be oð�Þ. A novel time-splitting spectral method based on the Bloch decomposition was proposed
recently by Huang et al. [18–20] which relaxes the time step requirement to be Oð1Þ with a much coarser mesh size of Oð�Þ.
However, such a mesh size is still expensive especially in high dimensions for a very small �.

One efficient alternative way is to solve (1.1) and (1.2) asymptotically by the Bloch band decomposition and the modified
WKB method [4], which leads to eikonal and transport equations in the semiclassical regime. The problem of these ap-
proaches is that they do not give accurate solution around caustics. The Gaussian beam method, developed for the high fre-
quency linear waves [34,38,37,29,30,23], and also in the setting of quantum mechanics [14–16], provides an efficient way to
compute the wave amplitude around caustics. The idea is to allow the phase function to be complex and choose the imag-
inary part properly so that the solution has a Gaussian profile. The detailed construction and its validity at caustics were ana-
lyzed by Ralston etc. in [35,7]. All these previous works gave the Gaussian beam method in the Lagrangian framework.

In [23], we developed an Eulerian Gaussian beam method to solve the linear Schrödinger equation asymptotically. The
method consists of solving n complex-valued and 1 real-valued homogeneous Liouville equations for n-space dimensional
problems. The solution to this method has been showed to have good accuracy even at caustics, with a mesh size as coarse
as Oð

ffiffiffi
�
p
Þ. There have also been other Eulerian Gaussian beam methods [26] that use much more complex-valued inhomo-

geneous Liouville equations. In this paper, we generalize our method in [23] for (1.1), (1.2) with the help of the Bloch decom-
position. The idea is to use the Eulerian Gaussian beam method of [23] for each of the Bloch band, and then superimpose
them for all the bands. (This method is restricted to adiabatic cases which do not permit band-crossings.) Since effectively
only small number of bands are needed numerically and the Liouville equation is solved locally in the vicinity of a co-dimen-
sional zero level curve [31,33,28], the overall cost of this method is much smaller than a full simulation by directly solving
(1.1) when � is small.

For periodic potentials, every energy band could yield caustics in the semiclassical regime. Since the solution is a super-
position of many energy bands, there could be many caustics thus significantly reduce the overall accuracy of the semiclas-
sical method. Thus methods accurate near caustics are highly desirable for such problems.

The paper is organized as follows. In Section 2 we give an overview of the Bloch decomposition and the semiclassical limit
of the Schrödinger equation with periodic structures. In Section 3, we formulate the Gaussian beam method for solving (1.1)
and (1.2) by combining the Bloch decomposition with the Eulerian Gaussian beam method of [23]. We show the accuracy
and efficiency of this Gaussian beam method through several numerical examples in Section 4. In Section 4.3, we study
an insulator example. Finally, we make some conclusive remarks in Section 5.

2. Overview of the Bloch decomposition and the semiclassical limit

2.1. The Bloch decomposition

Define EmðkÞ as the mth eigenvalue and vmðk; zÞ as the corresponding mth eigenfunction of the shifted Hamiltonian Hðk; zÞ:
Hðk; zÞ :¼ 1
2
ð�i@z þ kÞ2 þ VCðzÞ; ð2:1Þ

Hðk; zÞvmðk; zÞ ¼ EmðkÞvmðk; zÞ; ð2:2Þ
vmðk; zþ 2pÞ ¼ vmðk; zÞ; z 2 R; k 2 B: ð2:3Þ
EmðkÞ; k 2 B, is called the mth energy band, and fEmðkÞ;vmðk; zÞgm describe the spectral properties of the shifted Hamil-
tonian Hðk; zÞ. It has been shown in [40] that there exists an ordered countable family of real eigenvalues fEmðkÞg1m¼1 such
that
E1ðkÞ 6 E2ðkÞ 6 � � � 6 EmðkÞ 6 � � � ; m 2 N;
and the complete set of the eigenfunctions fvmðk; zÞg
1
m¼1 for each k 2 B forms an orthonormal basis of L2ðCÞ. This allows for a

decomposition of the initial condition (1.2) in terms of Bloch waves with the help of the stationary phase method (cf. [4,
Sections 3.2 and 4.7 of Chapter 4]):
W�
0ðx; zÞ ¼

X1
m¼1

a0
mðxÞvmð@xS0; zÞeiS0ðxÞ=� þ Oð�Þ; ð2:4Þ
where the coefficient
a0
mðxÞ ¼

Z 2p

0
A0ðx; zÞvmð@xS0; zÞdz: ð2:5Þ
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2.2. The semiclassical limit and its computation

Plugging the modified WKB ansatz:
W�ðt; xÞ ¼ A t; x;
x
�

� �
eiSðt;xÞ=�; ð2:6Þ
into (1.1) yields, to the leading order, the following eikonal equation for Sm and transport equation for am via a separation of
the slow scale x and fast scale x=� (cf. [4]):
@tSm þ Emð@xSmÞ þ UðxÞ ¼ 0; ð2:7Þ

@tam þ E0mð@xSmÞ@xam þ
1
2

am@x E0mð@xSmÞ
� �

þ bmam ¼ 0; ð2:8Þ
where bmðt; xÞ 2 iR is given by
bm ¼ h@tvm;vmiL2ðCÞ �
1
2
@x E0mð@xSmÞ
� �

� i
2
hð@z þ i@xSmÞ@xvm þ @xð@z þ i@xSmÞvm;vmiL2ðCÞ ð2:9Þ
with vm evaluated at k ¼ @mSmðt; xÞ and h�; �iL2ðCÞ defined as
hf ; giL2ðCÞ ¼
Z 2p

0
f �gdz:
The solution to (1.1) is approximated by
W�ðt; xÞ ¼
X1
m¼1

amðt; xÞvm @xSm;
x
�

� �
eiSmðt;xÞ=� þ Oð�Þ: ð2:10Þ
Note that since bmðt; xÞ 2 iR, the following conservation law holds [4]:
@tjamj2 þ @xðE0mð@xSmÞjamj2Þ ¼ 0:
The solution to the Hamilton–Jacobi Eq. (2.7) develops singularities when caustic forms, and the correct semiclassical lim-
it of the physical observables (density, velocity, etc.), as � ! 0, becomes multivalued beyond caustics. To describe the
dynamics beyond caustics, one can use the Wigner transform to obtain the Liouville equation along each band [2]:
Lmwm ¼ @twm þ E0mðnÞ@ywm � U0ðyÞ@nwm ¼ 0; ð2:11Þ
where wmðt; x; nÞ > 0 is the density distribution of the mth energy band of the particle. The operator Lm is the linear Liouville
operator for the mth energy band. The semiclassical limit initial data for wm, for (1.2), is measure-valued:
wmð0; x; nÞ ¼ a0
m

�� ��2dðn� @xS0Þ; ð2:12Þ
where a0
m is given by (2.5).

The (multivalued) physical observables such as qm;um ¼ @xSm etc. can be evaluated by taking the moments of wm over n.
An efficient numerical method to solve the Liouville Eq. (2.11) with initial data (2.12) was introduced in [6,21,22], through

a decomposition of wm ¼ fmdð/mÞ where both fm and /m solve the same Liouville equation for the mth energy band (in the
level set framework):
Lm/m ¼ 0; Lmfm ¼ 0:
One can compute the multivalued densities by
qmðt; yÞ 2
f ðt; y; nÞ
j@n/mj

����/mðt; y; nÞ ¼ 0
� 	

: ð2:13Þ
Based on this formulation, a level set method for the semiclassical limit of (1.2) was introduced in [27]. For the compu-
tations of multivalued solutions to this problem see also [10–13]. The problems with all these semiclassical methods is that
qm defined in (2.13) blows up at caustics since @n/m ¼ 0.

In Section 3, we will introduce the Bloch decomposition-based Gaussian beam method to solve (1.1) and (1.2), which is a
generalization of the Eulerian Gaussian beam method we developed in [23]. The key difference from (2.13) is that, one can
get rid of the singularities of j@n/mj by making /m complex.

2.3. Numerical computation of the Bloch bands

In this subsection, we briefly restate the numerical computation of the Bloch bands fEmðkÞ;vmðk; zÞgm for convenience. The
details are referred to [18, Section 2.2].

Define the Fourier transform of vm as
bvmðk; kÞ ¼
1

2p

Z 2p

0
vmðk; zÞe�ikzdz:
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By taking the Fourier transform of (2.2), one has
ðkþ kÞ2

2
bvmðk; kÞ þ

1
2p

Z 2p

0
e�ikzVCðzÞvmðk; zÞdz ¼ EmðkÞbvmðk; kÞ: ð2:14Þ
The discrete formula of (2.14) for k 2 f�K; . . . ;K� 1g � Z reads as
Hðk;KÞ

bvmðk;�KÞbvmðk;1�KÞ
..
.

bvmðk;K� 1Þ

0
BBBB@

1
CCCCA ¼ EmðkÞ

bvmðk;�KÞbvmðk;1�KÞ
..
.

bvmðk;K� 1Þ

0
BBBB@

1
CCCCA; ð2:15Þ
where the 2K� 2K matrix Hðk;KÞ is given by
Hðk;KÞ ¼

ð�KþkÞ2
2 þ bV Cð0Þ bV Cð�1Þ � � � bV Cð1� 2KÞ

bV Cð1Þ ð�Kþ1þkÞ2
2 þ bV Cð0Þ � � � bV Cð2� 2KÞ

..

. ..
. . .

. ..
.

bV Cð2K� 1Þ bV Cð2K� 2Þ � � � ðK�1þkÞ2
2 þ bV Cð0Þ

0
BBBBBBB@

1
CCCCCCCA
:

The eigenfunction vmðk; zÞ is computed by
vmðk; zÞ ¼
Z þ1

�1
bvmðk; kÞeikzdk �

XK�1

k¼�K

bvmðk; kÞeikz:
3. A Bloch decomposition-based Gaussian beam method

In this section we give the Bloch decomposition-based Gaussian beam method using both the Lagrangian and Eulerian
formulations. We first briefly introduce the Lagrangian formulation for solving the Schrödinger equation with periodic
potentials, then focus on the Eulerian formulation.

3.1. The Lagrangian formulation

In this subsection, we adopt the Gaussian beam approximation to the mth energy band of the Schrödinger Eq. (1.1).
Denote
u�;m
la ðt; x; y0Þ ¼ amðt; ymÞ~vm @xTm;

x
�

� �
ei Tmðt;x;ymÞ=�; ð3:1Þ
where ym ¼ ymðt; y0Þ, and Tmðt; x; ymÞ is a second order Taylor truncated phase function
Tmðt; x; ymÞ ¼ Smðt; ymÞ þ pmðt; ymÞðx� ymÞ þ
1
2

Mmðt; ymÞðx� ymÞ
2
:

Note that Sm 2 R; pm 2 R; am 2 C;Mm 2 C. ~vm @xTm;
x
�

� �
is vm k; x

�

� �
with real-valued k replaced by complex-valued @xTm and
~vmðk; zÞ ¼ vmðk; zÞ for k 2 R:
Using the Lagrangian beam summation formula (for example [17]) and (2.10), one has the Lagrangian Gaussian beam
solution to (1.1) as
U�
laðt; xÞ ¼

X1
m¼1

Z
R

1ffiffiffiffiffiffiffiffiffi
2p�
p rhðx� ymðt; y0ÞÞu�;m

la ðt; x; y0Þdy0; ð3:2Þ
in which rh 2 C10 ðRnÞ; rh P 0 is a truncation function with rh 	 1 in a ball of radius h > 0 about the origin and the trajectory of
the beam center ym is chosen as
dym

dt
¼ E0mðpmÞ; ymð0Þ ¼ y0:
By a similar derivation of the Lagrangian formulation as in [23, Section 2.1], one has the set of the evolutionary ODEs (the
details of the derivation are given in Appendix A):
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dym

dt
¼ E0mðpmÞ; ð3:3Þ

dpm

dt
¼ �U0ðymÞ; ð3:4Þ

dMm

dt
¼ �E00mðpmÞM

2
m � U00ðymÞ; ð3:5Þ

dSm

dt
¼ E0mðpmÞpm � EmðpmÞ � UðymÞ; ð3:6Þ

dam

dt
¼ �1

2
E00mMmam þ um;1ðpmÞU0ðymÞam; ð3:7Þ
where um;1 is given by
um;1ðkÞ ¼ h@kvm;vmiL2ðCÞ; ð3:8Þ
and ym ¼ ymðt; y0Þ, pm ¼ pmðt; ymðt; y0ÞÞ, Mm ¼ Mmðt; ymðt; y0ÞÞ, Sm ¼ Smðt; ymðt; y0ÞÞ, am ¼ amðt; ymðt; y0ÞÞ. Note that um;1 2 iR,
and um;1U0ðymÞ is the so-called Berry-phase in [5,32,36], which is importantly related to the Quantum Hall effects in physics
[36].

The Eqs. (3.3) and (3.4) are called the ray tracing equations; (3.5) is a Riccati equation for the Hessian Mm, which could be
solved by the dynamic first order system of ray tracing equations:
dPm

dt
¼ E00mðpmÞRm;

dRm

dt
¼ �U00ðymÞPm; ð3:9Þ

Mmðt; ymðt; y0ÞÞ ¼ RmP�1
m : ð3:10Þ
According to [37,23] we specify the initial conditions for (3.3)–(3.7) as
ymð0; y0Þ ¼ y0; ð3:11Þ
pmð0; y0Þ ¼ @yS0ðy0Þ; ð3:12Þ

Mmð0; y0Þ ¼ @2
y S0ðy0Þ þ i; ð3:13Þ

Smð0; y0Þ ¼ S0ðy0Þ; ð3:14Þ

amð0; y0Þ ¼ a0
mðy0Þ; ð3:15Þ
where a0
m is given by (2.5).

When one computes the Lagrangian beam summation integral using (3.1) and (3.2), the complex-valued @xTm ¼ pmþ
ðx� ymÞMm could be approximated by the real-valued pm with the Taylor truncated error of Oðjx� ymjÞ, i.e.
U�
laðt; xÞ ¼

X1
m¼1

Z
R

1ffiffiffiffiffiffiffiffiffi
2p�
p rhðx� ymÞamðt; ymÞ~vm pm;

x
�

� �
eiTmðt;x;ymÞ=�dy0 þ Oðjx� ymjÞ: ð3:16Þ
Since jx� ymj is of Oð
ffiffiffi
�
p
Þ (cf. [37,23]), this approximation does not destroy the total accuracy of the Gaussian beam meth-

od, yet it provides the benefit that the eigenfunction ~vmðk; zÞ is only evaluated for real-valued k which implies
~vmðk; zÞ ¼ vmðk; zÞ.

3.2. The Eulerian formulation

In this subsection, by an application of a similar technique developed in [23] we introduce the Eulerian Gaussian beam
formulation using the level set method to solve (1.1), (1.2).

First, corresponding to ray tracing Eqs. (3.3) and (3.4), an Eulerian level set method for computing (multivalued) velocity
um ¼ @xSm solves for the zero level set of /m which satisfies the homogeneous Liouville equation [6,22]:
Lm/m ¼ 0; ð3:17Þ
where Lm is defined in (2.11). Next, since the Lagrangian system (3.6) and (3.7) is defined on the rays (characteristics), its
Eulerian formulation can be written as [26]:
LmSm ¼ E0mðnÞn� EmðnÞ � UðyÞ; ð3:18Þ

Lmam ¼ �
1
2

E00mðnÞMmam þ um;1ðnÞU0ðyÞam; ð3:19Þ
and um;1 is determined by (3.8). It was observed in [23] that, if /m is complex, then Mm in (3.19) can be obtained from
Mm ¼ �
@y/m

@n/m
:
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To be compatible with the initial data (3.13)–(3.15), we use the following initial conditions:
/mð0; y; nÞ ¼ �iyþ ðn� @yS0Þ ð3:20Þ
Smð0; y; nÞ ¼ S0ðyÞ; amð0; y; nÞ ¼ a0

mðyÞ; ð3:21Þ
where a0
m is given by (2.5).

By essentially identical proofs as in [23, Theorem 3.2], one could see that (3.21) complexifies the Liouville Eq. (3.17) and
makes @n/m non-degenerate for all t > 0.

The multivalued velocity um is given by the zero level set of the real part of /m, i.e.
Re /mðt; y;umÞ ¼ 0
Define
u�;m
eu ðt; x; y; nÞ ¼ amðt; y; nÞvm n;

x
�

� �
eiTmðt;x;y;nÞ=�; ð3:22Þ
where
Tmðt; x; y; nÞ ¼ Smðt; y; nÞ þ nðx� yÞ þ 1
2

Mmðt; y; nÞðx� yÞ2;
then the Eulerian beam summation formula corresponding to (3.16) is given by (cf. [23])
U�
euðt; xÞ ¼

X1
m¼1

Z
R

Z
R

1ffiffiffiffiffiffiffiffiffi
2p�
p rhðx� yÞu�;m

eu ðt; x; y; nÞdðRe½/m
Þdndy: ð3:23Þ
Remark 3.1. Eq. (3.23) could be solved by a discretized delta function integral method [39] or a local semi-Lagrangian
method introduced in [23, Section 3.3] which is an improved version of the semi-Lagrangian method designed in [26].

Remark 3.2. The curve integration method for the computation of phase S from a given multivalued velocity u ¼ @xS intro-
duced in [9,24] cannot be used here since the integration constant, which cannot be ignored when evaluating (3.23), is dif-
ferent for different bands. Therefore we use the inhomogeneous Liouville Eq. (3.18) to compute the phase function directly,
as in [26].

Remark 3.3. Although the Liouville equations are defined in the phase-space, thus the computational dimension is doubled
than a direct computation of the Schrödinger Eq. (1.1), one only needs to solve the Liouville equations locally in the vicinity of
a co-dimensional zero level curve of Reð/mÞ [31,33,28], hence with a mesh size of Oð

ffiffiffi
�
p
Þ, the overall cost of this method is

much smaller than a full simulation by directly solving (1.1) when � is small. For cost analysis of the Eulerian Gaussian beam
method see [23].
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Fig. 1. The eigenvalues EmðkÞ; m ¼ 1; . . . ;8 of the Mathieu’s model.



Fig. 2. The modulus of the eigenfunctions vmðk; zÞ
�� ��2; m ¼ 1; . . . ;8 of the Mathieu’s model.

Table 1
The l2 errors of Bloch decomposition for the initial data (4.1).

M 6 8 10 12

� ¼ 1=128 5:49� 10�4 9:85� 10�6 1:10� 10�7 8:37� 10�10

� ¼ 1=512 5:49� 10�4 9:85� 10�6 1:10� 10�7 8:30� 10�10

� ¼ 1=2048 5:48� 10�4 9:53� 10�6 1:10� 10�7 8:31� 10�10

Table 2
The l2 errors of Bloch decomposition for the initial data (4.2).

M 6 8 10 12

� ¼ 1=128 3:83� 10�3 1:15� 10�4 1:94� 10�6 2:07� 10�8

� ¼ 1=512 3:83� 10�3 1:15� 10�4 1:94� 10�6 2:07� 10�8

� ¼ 1=2048 3:83� 10�3 1:15� 10�4 1:94� 10�6 2:07� 10�8

Table 3
The l2 errors of wave function for Example 2.

� 1=128 1=512 1=2048

kU�GB �W�k2 6:41� 10�2 2:17� 10�2 9:92� 10�3

S. Jin et al. / Journal of Computational Physics 229 (2010) 4869–4883 4875



Fig. 3. Example 2, the Schrödinger solution jW�j versus the Gaussian beams solution jU�
GBj at � ¼ 1

128 ;
1

512 ;
1

2048. The left figures are the comparisons of the
wave amplitude at t ¼ 0:2; the right figures plot the errors W� �U�

GB

�� ��.
Table 4
The l2 errors of wave function for Example 3.

� 1=128 1=512 1=2048

kU�GB �W�k2 4:85� 10�2 1:43� 10�2 6:86� 10�3
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4. Numerical examples

In this section, we test the accuracy of the Bloch decomposition-based Gaussian beam method by several numerical exam-
ples. The ‘true’ solution of the Schrödinger equation with periodic potentials is solved by the Strang splitting spectral method



Fig. 4. Example 3, the Schrödinger solution jW�j versus the Gaussian beams solution jU�
GBj at � ¼ 1

128 ;
1

512 ;
1

2048. The left figures are the comparisons of the
wave amplitude at t ¼ 0:2; the right figures plot the errors W� �U�

GB

�� ��.
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[3] using small enough mesh sizes and time steps (both of oð�Þ). In the first two subsections, we study the Mathieu’s model
with the periodic potential VCðzÞ ¼ cos z. In the last subsection, an insulator example is studied. In all the numerical examples
of Sections 4.2 and 4.3, the truncation parameter h in (3.23) is chosen fairly large so that the cut-off error is almost zero.

4.1. Approximations of the Bloch decomposition

We first look at the eigenvalues fEmðkÞg1m¼1 and eigenfunctions fvmðk; zÞg
1
m¼1 of the shifted Hamiltonian (2.1) for Mathieu’s

model. The first eight eigenvalues and modulus of eigenfunctions are shown in Figs. 1 and 2, which are computed by the algo-
rithm described in Section 2.3. We notice that in Fig. 1 some of the eigenvalues around k ¼ 0; �0:5 are very close to each other
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Fig. 5. The eigenvalues EmðkÞ; m ¼ 1; . . . ;8 of the insulator example with VCðzÞ ¼ e�20ðz�pÞ2 .
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which may numerically cause band crossing. The issue of band crossing is itself an interesting topic which will not be studied in
this paper. To avoid unnecessary numerical complication, we do not put mesh points around the singular points ðk ¼ 0; �0:5Þ.

Example 1. We test the accuracy of the Bloch decomposition by the following two initial conditions
2
ð1Þ A0ðx; zÞ ¼ e�50ðxþ0:5Þ ; S0ðxÞ ¼ 0:3xþ 0:1 sin x; x 2 ½�1;0
; ð4:1Þ

ð2Þ A0ðx; zÞ ¼ e�50ðxþ0:5Þ2 cos z; S0ðxÞ ¼ 0:3xþ 0:1 sin x; x 2 ½�1;0
: ð4:2Þ
The l2 errors of the Bloch decomposition with different � are given in Tables 1 and 2. As one can see, the errors are basi-
cally independent of � and the accuracy is good even for small number of bands.

4.2. The Gaussian beam approximations

In this subsection, we conduct numerical experiments to show the efficiency and accuracy of the Bloch decomposition-
based Gaussian beam method. We take the external potential UðxÞ ¼ 0 for all the examples. This is not necessary for the
numerical method, but is convenient for us to stay away from the singularity points of the Bloch eigenfunctions
(k ¼ 0; �0:5). The solutions of the Liouville Eqs. (3.17)–(3.19) can be obtained using the method of characteristics:
/mðt; y; nÞ ¼ �iðy� E0mðnÞtÞ þ n� S00ðy� E0mðnÞtÞ;
Smðt; y; nÞ ¼ S0ðy� E0mðnÞtÞ þ E0mðnÞnt � EmðnÞt;

amðt; y; nÞ ¼
a0

mðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iþ S000ðy� E0mðnÞtÞ

� �
E00mðnÞt

q :
We will denote the Eulerian Gaussian beam solution given by (3.23) as U�
GB. The grids are taken as Dy ¼ Dn ¼ 1=Ny where

Ny will be specified in each example.

Example 2. In this example, we take (4.1) as the initial data for the Schrödinger Eq. (1.1). The l2 errors between the solution
of the Schrödinger equation W� and that of the Gaussian beam method U�GB are given in Table 3. Here we take time t ¼ 0:2,
the number of Bloch bands M ¼ 8, the number of Gaussian beams Ny ¼ 32 (which is enough for numerical accuracy and
shows the efficiency for small values of �). The convergence rate in � is of order 0:6730 in the l2 norm. We plot the wave
amplitudes and absolute errors for different � in Fig. 3.
Example 3. In this example, the same experiments are carried out for initial data (4.2). With the same numerical parameters
as in Example 2, the l2 errors between the solution of the Schrödinger equation W� and that of the Gaussian beam method U�

GB

are given in Table 4. The convergence rate in � is of order 0.7054 in the l2 norm. We plot the wave amplitudes and absolute
errors for different � in Fig. 4.
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Fig. 6. Example 4, at time t ¼ 0:5. Top: The wave amplitude for the ‘exact’ solution W� with different �. Bottom: The errors between the ‘exact’ solution W�

and the Gaussian beam solution U�
GB .

Table 5
The l2 errors of wave function for Example 4.

ð�;NyÞ ð1=128:24Þ ð1=256:32Þ ð1=512:48Þ ð1=1024:64Þ

kU�GB �W�k2 8:34� 10�2 4:27� 10�2 1:71� 10�2 7:25� 10�3
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4.3. An application in the insulators

In this subsection, we study an insulator example where VCðzÞ ¼ e�20ðz�pÞ2 [8]. This gives a band structure shown in Fig. 5.
Since it is an insulator, the band gap is of Oð1Þ and does not allow the band crossing phenomenon to occur.

We use the semi-Lagrangian method introduced in [26] to compute w�;meu . We take (3.17) for instance to illustrate the main
idea. In order to get /m at the mesh point ðyj; nkÞ (or the points needed around caustic points), one traces ðyj; nkÞ back to the
initial position ðyj

0; n
k
0Þ by solving (3.3) and (3.4) with t ! �t numerically, which are the time-backward bi-characteristics of

(3.17). Then one simply has /mðt; yj; nkÞ ¼ /mð0; yj
0; n

k
0Þ. (3.18) and (3.19) are treated similarly by changing Lm ! d=dt and

solving them along the time-backward bi-characteristics. We comment that one can still, for example, use the finite differ-
ence method to solve the Liouville Eqs. (3.17)–(3.19), but since we use the improved semi-Lagrangian method in Remark 3.1
to take care of the beam summation (3.23) around caustics, it will be more natural and convenient to also use this method to
compute (3.17)–(3.19). The grids are taken as Dy ¼ Dn ¼ 1=Ny and Dt ¼

ffiffiffi
�
p

=45 where Ny will be specified in each case of �.
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Example 4. We consider the external harmonic potential UðxÞ ¼ 1
2 x2 and the initial conditions
A0ðx; zÞ ¼ e�50ðxþpÞ2 cos z; S0ðxÞ ¼ 0:3� 0:3 sin x: ð4:3Þ
In this example, one caustic forms at time t ¼ 0:5 which corresponding to the peaks around x ¼ �0:75 in Fig. 6. We choose
½�3p;p
 as the computational domain which is large enough so that the zero boundary condition could be applied. We take
the number of Bloch bands M ¼ 8 and the number of Gaussian beams Ny � ��

1
2 as discussed in [23]. The l2 errors between the

‘exact’ solution W� and the Gaussian beam solution U�
GB are given in Table 5, and plotted in Fig. 6. The convergence rate in � is

of order 1:17 in the l2 norm.
5. Conclusion

In this paper, we developed an efficient Eulerian computational method for the linear Schrödinger equation with periodic
potentials. Using the Bloch decomposition, we generalize the Gaussian beam method introduced in [23] to solve the problem
with periodic potentials asymptotically with an error of Oð

ffiffiffi
�
p
Þ, where � is the small semiclassical parameter. While the clas-

sical numerical method, such as the recently developed Bloch decomposition based time-splitting spectral method, for the
original Schrödinger equation requires the mesh size to be of Oð�Þ, this new method requires the mesh size to be merely of
Oð

ffiffiffi
�
p
Þ. Several numerical examples are given to demonstrate the accuracy and effectiveness of this Bloch decomposition-

based Gaussian beam method.
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Appendix A

In this appendix, we give the detailed derivation of the Lagrangian formulation for the Bloch decomposition-based Gauss-
ian beam method.

For convenience we drop the index m and denote the modified WKB ansatz as
W�ðt; x; yÞ ¼ aðt; yÞ~v Tx;
x
�

� �
eiT=�; ðA:1Þ
where y ¼ yðt; y0Þ; ~v Tx; z :¼ x
�

� �
is v k; z :¼ x

�

� �
with the real-valued k replaced by the complex-valued Tx and T ¼ Tðt; x; yÞ is gi-

ven by
Tðt; x; yÞ ¼ Sðt; yÞ þ pðt; yÞðx� yÞ þ 1
2

Mðt; yÞðx� yÞ2: ðA:2Þ
Note that when x ¼ y; Tx ¼ pðt; yÞ 2 R, which implies ~vðTx; zÞ ¼ vðTx; zÞ. The properties of the eigenfunction ~vðk; zÞ for com-
plex k could be found in an early work of Kohn [25].

Since in the two-scale expansion dx ! @x þ 1
� @z, one has
W�
t ¼

da
dt

~vþ a~vk
dTx

dt
þ i
�

a~vdT
dt


 �
eiT=�

dxW
� ¼ a~vkTxx þ

1
�

a~vz þ
i
�

a~vTx


 �
eiT=�;

d2
xW

� ¼ a~vkkT2
xx þ

2
�

a~vkzTxx þ a~vkTxxx þ
2i
�

a~vkTxxTx


 �
eiT=� þ 1

�2 a~vzz þ
2i
�2 a~vzTx �

1
�2 a~vT2

x þ
i
�

a~vTxx


 �
eiT=�:
Plugging them into (1.1) and matching the leading order asymptotic coefficient give
ðTt þ ytTyÞ~v�
1
2

~vzz � iTx ~vz þ
1
2

T2
x
~vþ VC~vþ U~v ¼ 0;
which can be written as
½Tt þ ytTy þ UðxÞ
~v ¼ 1
2
ð@z þ iTxÞ2 ~v� VCðzÞ~v: ðA:3Þ
Evaluating (A.3) at x ¼ y gives
½St þ ytðSy � pÞ þ UðyÞ
v ¼ 1
2
ð@z þ ipÞ2v� VCðzÞv;
where we have used the fact that when x ¼ y; Tx ¼ pðt; yÞ 2 R, which implies ~vðTx; zÞ ¼ vðTx; zÞ. This fact will be used again
later.
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Making use of the Bloch eigenvalue problem (2.1)–(2.3), one has
½St þ ytðSy � pÞ þ UðyÞ
v ¼ �Hðp; zÞv ¼ �EðpÞv;
which is equivalent to
St þ ytSy � pyt þ EðpÞ þ UðyÞ ¼ 0: ðA:4Þ
Taking derivative with respect to x of (A.3) gives
ðTxt þ ytTxy þ UxÞ~vþ ðTt þ ytTy þ UÞ~vkTxx ¼ iTxxð@z þ iTxÞ~vþ
1
2
ð@z þ iTxÞ2 � VCðzÞ


 �
~vkTxx: ðA:5Þ
Evaluating (A.5) at x ¼ y yields
ðpt þ ytðpy �MÞ þ UyÞvþ ðSt þ ytðSy � pÞ þ UÞMvk ¼ iMð@z þ ipÞvþ 1
2
ð@z þ ipÞ2 � VCðzÞ


 �
Mvk:
After simplification and taking inner product with v of the above equation,
pt þ ytpy þ Uy ¼ ½yt � pþ ihvz;vi
M þ hðE� HÞvk;viM: ðA:6Þ
We introduce a theorem below which helps our further derivation.

Theorem A.1. The derivatives of the Bloch eigenfunction EðkÞ satisfy the following relations
E0ðkÞ ¼ k� iu3;

E00ðkÞ ¼ 1þ 2iu2 þ 2iu1u3;
where
u1ðkÞ ¼ hvk;vi;
u2ðkÞ ¼ hvk;vzi ¼ �hvkz;vi;
u3ðkÞ ¼ hvz;vi:
Moreover, we have the equalities
hðE� HÞvk;vi ¼ 0;
hðE� HÞvkk;vi ¼ 0;
u2 þ u2 þ 2u1u3 ¼ 0:
Proof. By taking derivatives of (2.2) with respect to k, we have
Hkvþ Hvk ¼ E0vþ Evk:
Taking inner product with v, one gets
E0 ¼ hHkv;vi þ hðH � EÞvk;vi
The first term of the right-hand side above gives k� iu3 because
Hk ¼ �i@z þ k;
and the second term is zero since H is self-adjoint,
hðH � EÞvk;vi ¼ hvk; ðH � EÞvi ¼ 0:
Hence we have
E0ðkÞ ¼ k� iu3:
The other equalities could be easily proved similarly. h

Using these equalities, (A.6) becomes
pt þ ytpy þ Uy ¼ ðyt � E0ðpÞÞM: ðA:7Þ
Taking derivative with respect to x of (A.5), we have
ðTxxt þ ytTxxy þ UxxÞ~vþ 2ðTxt þ ytTxy þ UxÞ~vkTxx þ ðTt þ ytTy þ UÞ ~vkkT2
xx þ ~vkTxxx

� �
¼ iTxxxð@z þ iTxÞ~v� T2

xx
~vþ 2iTxxð@z þ iTxÞ~vkTxx þ

1
2
ð@z þ iTxÞ2 � VCðzÞ


 �
~vkkT2

xx þ ~vkTxxx

� �
:



4882 S. Jin et al. / Journal of Computational Physics 229 (2010) 4869–4883
Evaluating the last equation at x ¼ y produces
ðMt þ ytMy þ UyyÞvþ 2ðyt � E0ðpÞÞvkM2 ¼ ð2ytvk � vþ 2ivkz � 2pvkÞM
2 þ ðE� HÞvkkM2:
Taking inner product with v and simplifying it lead to
ðMt þ ytMy þ UyyÞ þ 2ðyt � E0ðpÞÞM2u1 ¼ ð2ytu1 � 1� 2iu2 � 2pu1ÞM
2: ðA:8Þ
By matching the next order in the asymptotic expansion, one has,
ðat þ ytayÞ~vþ a~vkðTxt þ ytTxyÞ � ia~vkzTxx þ a~vkTxxTx þ
1
2

a~vTxx ¼ 0:
Evaluating it at x ¼ y gives
ðat þ ytayÞv� avkUy þ avkðyt � E0ðpÞÞM þ �vkyt � ivkz þ vkpþ 1
2


 �
aM ¼ 0:
By taking the inner product with v and simplifying it, one has
ðat þ ytayÞ � au1Uy þ au1ðyt � E0ðpÞÞM þ �u1yt þ iu2 þ u1pþ 1
2


 �
aM ¼ 0: ðA:9Þ
Considering the y-trajectory defined by
dy
dt
¼ E0ðpÞ;
and using the equalities
2ytu1 � 1� 2iu2 � 2pu1 ¼ 2E0u1 � 1� 2iu2 � 2pu1 ¼ 2u1ðE0 � pÞ � 1� 2iu2 ¼ �2u1u3 � 1� 2iu2 ¼ �E00;
(A.4), (A.7)–(A.9) can be written as a set of ODEs:
dy
dt
¼ E0ðpÞ; ðA:10Þ

dp
dt
¼ �Uy; ðA:11Þ

dS
dt
¼ pE0ðpÞ � EðpÞ � U; ðA:12Þ

dM
dt
¼ �E00M2 � Uyy; ðA:13Þ

da
dt
¼ au1Uy �

1
2

E00aM: ðA:14Þ
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