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Abstract. Objective functions in large-scale machine-learning and ar-
tificial intelligence applications often live in high dimensions with strong
non-convexity and massive local minima. First-order methods, such
as the stochastic gradient method and Adam [12], are often used to
find global minima. Recently, the consensus-based optimization (CBO)
method has been introduced as one of the gradient-free optimization
methods and its convergence is proven with dimension-dependent pa-
rameters, which may suffer from the curse of dimensionality. By re-
placing the isotropic geometric Brownian motion with the component-
wise one, the latest improvement of the CBO method [6] is guaranteed
to converge to the global minimizer with dimension-independent pa-
rameters [9], although the initial data need to be well-chosen. In this
paper, based on the CBO method and Adam, we propose a consensus-
based global optimization method with adaptive momentum estimation
(Adam-CBO). Advantages of the Adam-CBO method include: (1) capa-
ble of finding global minima of non-convex objective functions with high
success rates and low costs; (2) can handle non-differentiable activation
functions and thus approximate low-regularity functions with better ac-
curacy. The former is verified by approximating the 1000 dimensional
Rastrigin function with 100% success rate at a cost only growing lin-
early with respect to the dimensionality. The latter is confirmed by
solving a machine learning task for partial differential equations with
low-regularity solutions where the Adam-CBO method provides better
results than the state-of-the-art method Adam. A linear stability analy-
sis is provided to understand the asymptotic behavior of the Adam-CBO
method.

1. Introduction

The goal of this work is developing consensus-based global optimization
methods to solve high dimensional unconstrained optimization problems

x∗ = arg min
x∈Rd

f(x),

where the target function (loss function) f(x) defined in Rd achieves a unique
global minimizer.
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A high-dimensional nonlinear, non-convex optimization is an essential
part of machine learning problems, with the target function defined in gen-
eral as

f(x) =
1

n

n∑
i=1

‖Nx(x̂)− ŷ‖,

where x is the parameter vector and Nx represents a neural network repre-
sentation1. (x̂i, ŷi)

n
i=1 is a set of labeled data, and ‖ · ‖ is the L2 distance

between a predicted data point and the corresponding labeled data point.
The gradient descent method, most frequently used method in optimiza-

tion, often updates the parameters by the iteration scheme

xt+1 = xt − α∇f(xt)

with α being the learning rate. However, for a big labeled data set, i.e., n is
tremendously big, computing f in each iteration is time consuming, and the
iterations often get stuck at local minima. The stochastic gradient descent
(SGD) method [2, 3] instead computes f on a randomly selected subset of the
labeled data set, by choosing m points randomly from the labeled data set
with m� n (The subset needs to be updated at each iteration). The SGD
method with momentum term [17] damps oscillations in the SGD method
by introducing exponentially weighted moving average as the momentum

xt+1 = xt −mt,

mt = −γmt−1 + α∇f(xt).

The momentum term increases for dimensions whose gradients point toward
the same direction and decreases for dimensions whose gradients change di-
rections. Adding the momentum leads to a faster convergence than the SGD
method and shows higher possibility to jump out of local minima. Howev-
er, if the momentum is added too much, the global minimizer will be most
likely missed. The iterator typically rolls past the global minimizer, and
then rolls backwards but misses it again. Thus, adding too much momen-
tum often generates a sequence that swings back and forward between local
minima. Later, the adaptive momentum method (Adam) [12] also adds the
estimation of the second order momentum

xt+1 = xt − γ m̂t

√
v̂t + ε

,

mt = β1m
t−1 + (1− β1)∇f(xt), m̂t =

mt

1− βt1
,

vt = β2v
t−1 + (1− β2)∇2f(xt), v̂t =

vt
1− βt1

,

where 0 < β1, β2 < 1. The second order momentum here provides an adap-
tive adjustment of the learning rate, which has been used in AdaGrad [7],
AdaDelta [23], and RMSprop. By combining the advantages of AdaGrad for

1Parameters in a neural network are commonly denoted by θ instead in Section 4.2.
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dealing with sparse gradients and RMSProp for dealing with non-stationary
objectives, the Adam method has been widely used.

However, in many cases the objective function is not differentiable and
the training of deep neural networks has the issue of gradient explosion or
vanishing [1]. In general, gradient-based methods do not offer a guarantee
of global convergence in high dimensional and non-convex problems. Long
before machine learning becomes popular, no-convex and nonlinear opti-
mization problems have been considered in some evolutionary computation
methods, including the Nelder-Mead method [14, 15], the genetic algorithm
[21, 10], the simulated annealing method [19, 13], and the particle swarm
optimization [16, 11]. Despite the tremendous empirical success of these
techniques, it is often difficult to provide guarantees of robust convergence
to the global minimizer.

The focus of the current work is the CBO method, where a particle system
consisting of N particles, labeled as Xi

t , i = 1, · · ·N , is considered. During
the dynamic evolution, the particle system tends to their weighted average,
and meanwhile undergoes some fluctuation due to the random noise, such
as the isotropic geometric Brownian motion [16, 4]. Ideally, these particles
are expected to gather at the global minimizer of the objective function
associated to the system. Mathematically, such a convergence was proved
in [4] with exponential rate in time under dimension-dependent condition-
s, i.e., the learning rate depends on the dimension. Therefore, the CBO
method may suffer from the curse of dimensionality. To overcome this issue,
in [6], Carrillo, Jin, Li, and Zhu proposed to replace the isotropic geometric
Brownian motion with the component-wise one. Such a modification leads
to the convergence to the global minimizer with dimension-independent pa-
rameters, as proved in [9] for well-chosen initial data. From the perspective
of efficiency, the idea of random mini-batch is used for quantities involv-
ing the summation of individual particle contribution [6], which reduces the
computational complexity from O(N) to O(NM ) with M being the number
of particles in each batch. For extremely high dimensional problems, these
method require very well-chosen initial data which may be difficult for prac-
tical problems.

In this work, we improve the CBO method [6] by adding first and second
order momentum terms to damp the oscillation and accelerate the con-
vergence. In general, we emphasize that the Adam-CBO method has the
ability to handle non-differentiable object functions, and has the improved
possibility to find the global minimizer of high-dimensional and non-convex
functions at a cost only growing linearly with respect to the dimensionality.
This will be demonstrated by various numerical experiments.

The article is organized by the following structure. In Section 2, we pro-
pose the Adam-CBO method together with a brief introduction of the CBO
method for completeness. In Section 3, using the example of Rastrigin func-
tion, we find that the Adam-CBO method performs better than the CBO
method with a higher possibility to find the global minimizer with the same
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cost. In Section 4, using the Adam-CBO method to approximate function-
s, we find that the Adam-CBO method also has the spectral bias [18], or
the Frequency principle [22], which is similar to the first-order methods. In
addition, the Adam-CBO method is used to solve partial differential equa-
tions (PDEs) with low-regularity solutions. By using activation functions
that cannot take gradients, the Adam-CBO outperforms Adam in terms of
approximation accuracy. The conclusion is drawn in Section 5.

2. A consensus based optimization method with adaptive
momentum estimation

In this section, we provide a detailed discussion on the Adam-CBO method
and give some theoretical insights on its convergence. For completeness, we
first give a brief introduction to the CBO method.

2.1. The CBO method. The CBO method considers a stochastic inter-
acting system of N particles with position Xi

t = (xi1, · · · , xid)T ∈ Rd, whose
dynamics can be described as a first order system [5, 4, 6]

Ẋi
t = −λ(Xi

t − x∗) + σ(Xi
t − x∗)Ẇ i

t , 1 ≤ i ≤ N,(1)

where λ represents the learning rate, N is the number of particles, and M
is the number of particles in each batch. Here

x∗ =

N∑
i=1

Xi
t

ωαf (Xi
t)∑N

j=1 ω
α
f (Xj

t )
,

where ωαf is a weight function and can be taken as mode ωαf = exp(−αf(x))

for some appropriately chosen α > 0, and f(x) is a given (possibly non-

convex) function to be optimized. Ẋ denotes the temporal derivative of
X.

We discretize the system (1) with stepsize 1, and obtain

Xi
t+1 = Xi

t − λ(Xi
t − x∗) + σ(Xi

t − x∗)dW i
t ,(2)

The component-wise geometric Brownian motion W i
t is used to replace the

noise in the numerical implementation. Details of the algorithm can be
found in Algorithm 1. Without loss of generality, we assume N//M . Note
that tN represents the maximum number of temporal steps, or the final time
due to the stepsize 1. If necessary, one can choose a stopping criterion, like
maxi |Xi

t − x∗| < e to stop the update ahead of the final time t = tN .

2.2. The Adam-CBO method. By introducing an additional momentum
M i
t , we rewrite the first order system (1) in Section 2.1 into

Ẋi
t = −λM i

t + σtẆ i
t , i = 1, · · · , N,(3)

M i
t = Xi

t − x∗.(4)

Note that the stochastic term in (3) is isotropic since it is found that such
a modification leads to a better numerical performance in the Adam-CBO
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Algorithm 1: Consensus-based global optimization method.

Input: λ, N , M , tN
/* λ represents the learning rate, N is the number of

particles, M is the number of particles in each batch

and tN is the number of iterations. */

1 Initial Xi
0, i = 1, · · ·N ;

2 for t = 0 to tN do
3 Generate an index set Pk by random permutation of {1, 2, · · · , N};
4 Generate batch sets of particles in the order of Pk as B1, · · ·B

N
M

with each batch having M particles;
5 for j = 1 to N

M do

6 Update x∗ =
∑
k∈Bj

Xk
t µ

k
t∑

i∈Bj
µit

, where µit = ωαf (Xi
t);

7 Update Xi
t for j ∈ Bj as follows

8 Xi
t+1 = Xi

t − λγk,θ(Xi
t − x∗) + σk,θ

√
γk,θ

d∑
k=1

~ek(X
i
t − x∗)zi zi ∼

N(0, 1).
/* ek is the unit vector along the k-th dimension.

*/
9 end

10 end

Output: Xi
tN
, i = 1 · · ·N

method, while the anisotropic stochastic term in the CBO method performs
better with theoretical guarantees [9]. Discretization of (3) yields

(5) Xi
t+1 = Xi

t − λM i
t + σtdW i

t .

By definition (4), we have

M i
t+1 = Xi

t+1 − x∗ = (Xi
t+1 −Xi

t) +M i
t

= (1− λ)M i
t + σtdW i

t .

To update the momentum M i
t adaptively, we borrow the idea from the Adam

method [12]. In the asymptotic sense, as t→ +∞, σtdW i
t can be represented

by λM i
t+1. Thus the above equation can be rewritten as

(6) M i
t+1 = β1M

i
t + (1− β1)(Xi

t+1 − x∗)

with β1 = 1− λ.
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We now show the relationship betweenM i
t and the first moment ofXi

t−x∗.
Using (6) recursively, one gets

M i
t = β1M

i
t−1 + (1− β1)(Xi

t − x∗)
= β1(β1M

i
t−2 + (1− β1)(Xi

t−1 − x∗)) + (1− β1)(Xi
t − x∗)

= · · ·

= (1− β1)

t∑
k=0

βt−k1 (Xi
k − x∗).

Assume that Xi
k − x∗ is stationary, i.e., they have the same distribution for

different k, then

E[M i
t ] = (1− β1)E[

t∑
k=0

βt−k1 (Xi
k − x∗)]

= (1− β1)E[Xi
t − x∗]

t∑
k=0

βt−k1

= (1− βt1)E[Xi
t − x∗].

Therefore, M i
t gives an estimation of the first moment of (Xi

k−x∗) as t→∞.
To get an unbiased estimation of (Xi

k − x∗) for small t as well, we rescale

M i
t by (1−βt1) and denote by M̂ i

t in Algorithm 2. This argument provides
a connection between (5) and (2).

For the second order moment E(|Xi
t − x∗|2)2, we define

(7) V i
t = β2V

i
t−1 + (1− β2)|Xi

t − x∗|2.

Application of the same argument for E[Xi
t ] yields

(8) E[V i
t ] = (1− βt2)E[|Xi

t − x∗|2],

and V̂ i
t =

V i
t

1−βt
2

is an unbiased estimation of E[|Xi
t − x∗|2]. Therefore, we

modify (5) by

(9) Xi
t+1 = Xi

t −
λM̂ i

t+1√
V̂ i
t+1 + ε

+ σtdW i
t ,

where ε is a small number and typically takes the value 1e− 8 to avoid the
vanishing of the denominator. Combining (9), (6), and (7) gives Algorithm
2. Although β1 = 1− λ in the above derivation, β1 and β2 are chosen to be
independent of λ. In practice, we set β1 = 0.9 and β2 = 0.99.

The Adam-CBO method differs from the CBO method in the following

aspects. First, it adds estimations of first momentum M i
t (M̂ i

t ) and second

momentum V i
t (V̂ i

t ) into the algorithm without increasing much computa-
tional costs. Second, the component-wise geometric Brownian motion term

2The square here is defined in the element-wise sense.
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d∑
k=1

~ek(X
i
t − x∗)zi is replaced by

∑d
k=1 ~ekzi, which puts stochastic effects in

different dimensions on equal footing. In the case that Xi
t can converge to

x∗ quickly, so the Adam-CBO method shall have the stronger ability to ex-
plore the landscape of the loss function. Note that σt in Algorithm 2 is a
decreasing function of t, so the method is expected to converge at the finial
time. Typically, σt = 0.99t/10 or σt = 0.99t/100 is used in practice.

Algorithm 2: Consensus-based global optimization method with adap-
tive momentum estimation.
Input: λ, N , M , tN , β1, β2

/* λ represents the learning rate, and β1, β2 are the

exponential decay rates for the first and the second

order moment estimation, respectively. */

1 Initialize Xi
0, i = 1, · · ·N by the uniform distribution;

2 Initial M i
0, V

i
0 = 0; /* Initialize first order and second order

moments. */

3 for t = 0 to tN do
4 Generate a random permutation of index {1, 2, · · · , N} to form set

Pk;

5 Generate batch set of particles in order of Pk as B1, · · ·B
N
M with

each batch having M particles;
6 for j = 0 to N

M do

7 Update x∗ =
∑
k∈Bj

Xk
t µ

k
t∑

i∈Bj
µit

, where µit = ωαf (Xi
t);

8 Update Xi
t for j ∈ Bj as follows

9 M i
t+1 = β1M

i
t + (1− β1)(Xi

t − x∗) M̂ i
t+1 = M i

t+1/(1− βt1);

10 V i
t+1 = β2V

i
t + (1− β2)(Xi

t − x∗)2 V̂ i
t+1 = V i

t+1/(1− βt2);

11 Xi
t+1 =

Xi
t − λM̂ i

t/(

√
V̂ i
t + ε) + σt

∑d
k=1 ~ekzi zi is a random variable.

12 end

13 end

Output: Xi
tN
, i = 1 · · ·N

Note that the Adam-CBO method is designed to be adaptive by choos-
ing the learning rate (step size) λ automatically rather than empirically. It
adapts the learning rate to the parameters, and performs smaller updates
(low learning rates) for parameters associated with frequently occurring fea-
tures, and larger updates (high learning rates) for parameters associated
with infrequent features.

2.3. A linear stability analysis of the Adam-CBO method. To un-
derstand the algorithmic performance, we consider the linearized problems
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of both methods at the continuous level and prove their convergences. Note
that this does not prove the convergence of the Adam-CBO method, but
provides an intuitive understanding of it. We first rewrite Algorithm 2
into a continuous form and ignore the stochastic term

ṁ = (β1 − 1)m+ (1− β1)(x− x̄),(10)

v̇ = (β2 − 1)v + (1− β2)(x− x̄)2,(11)

m̂ =
m

1− βt1
v̂ =

v

1− βt2
,(12)

ẋ = −λ m̂√
v̂ + ε

,(13)

where x̄ is the optimal solution (constant). We shall prove x → x̄ with
a convergence rate independent of λ when x is close to x̄ by the linear
stability analysis. Denote x̃ = x − x̄. Linearizing the system (10)-(13)
around m = 0, x = x̄, v = 0, we have

ṁ = −(1− β1)m+ (1− β1)x̃,(14)

v̇ = −(1− β2)v,(15)

˙̃x = − λ

(1− βt1)ε
m→ −λ

ε
m = −µm (t→∞)(16)

with µ = λ/ε, and in a vector form,

(17) ∂t

mv
x̃

 =

−(1− β1) 0 1− β1

0 −(1− β2) 0
−µ 0 0

mv
x̃

 .

Theorem 1. Algorithm 2 generates a sequence that converges to the op-
timal solution with rates independent of the learning rate λ.

Proof. Eigenvalues of the matrix on the right-hand side are β2 − 1 and
1
2(β1 − 1 ± i

√
1− β1

√
β1 − 1 + 4µ) (typically 1 − β1 � 4µ), respectively.

Thus, m, v, x̃ decay to 0 exponentially with rate β2 − 1 when β1 > 2β2 + 1
and with rate 1

2(β1 − 1) when β1 < 2β2 + 1 in an oscillatory way. �

The CBO method without random noise can be written into a continuous
form

(18) ẋ = −λ(x− x̄).

The ODE can be solved analytically with a decay rate e−λt towards the
stationary point. Therefore, the decay rate of the CBO method depends
exponentially on the learning rate λ.

Remark 1. Although the above analysis indicates that the decay rate of the
Adam-CBO method is independent of λ, λ does control the oscillatory behav-
ior during the iteration. Therefore, we argue that during the initial training
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stage, a large λ is favored to make particles oscillate and escape local min-
ima. During the finial training stage, to make the particles converge to the
global minimizer faster, we often set a smaller λ to control the oscillations.

3. The Rastrigin function

In this section, we demonstrate the advantage of the Adam-CBO method
by finding the global minimizer of the Rastrigin function

(19) f(x) =
1

d

d∑
i=1

[
(xi −B)2 − 10 cos(2π(xi −B)) + 10

]
+ C

with B = arg min f(x) and C = min f(x). Figure 1 is a visualization of (19)
when d = 2 and B = C = 0.

Figure 1. The landscape of the rastrigin function in two
dimension with x ∈ [−3, 3]2 and B = C = 0.

Number of local minima of the rastrigin function in terms of dimension
when B = C = 0 and x ∈ (−3, 3) is listed in Table 1. The number of local
minima is 5d, which grows exponentially fast in term of the dimensionality.
When d = 1000, the number of minima is 51000, approximately 10690.

d 1 2 30 100 1000
Number of local minima 5 52 530 5100 51000

Table 1. Number of local minima for the Rastrigin function
in terms of dimension.

Results of CBO and Adam-CBO methods with several random processes,
including uniform, Gaussian, and Levy processes are recorded in Table 2. In
all numerical examples, β1 = 0.9 and β2 = 0.99 in the Adam-CBO method.
Here B in (19) is set to be a value between [−3, 3] and Xi

0, i = 1, · · · , N are
initialized between [−3, 3]. For each case, we run the algorithm 100 times
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d N M
CBO

N (0, 1) U(−1, 1) Wiener process
2 50 40 100% 100% 99%
10 50 40 100% 100% 2%
20 50 40 98% 22% 0%
20 50 20 66% 2% 0%
30 50 40 26% 0% 0%
30 500 5 0% 0% 0%

d N M
Adam-CBO

N (0, 1) U(−1, 1) Wiener process
30 500 5 99% 100% 0%
100 5000 5 100% 100% 0%
1000 8000 50 92% 20% 0%

Table 2. Comparison of CBO and Adam-CBO methods
with different random processes. Setup of parameters are:
λ = 1, γ = 0.01, σ = 5.1 in the CBO method with N (0, 1);
λ = 0.01, γ = 0.1, σ = 3 in the CBO method with U(−1, 1);
λ = 0.5, γ = 0.1, σ = 0.1 in the CBO method with Wiener
process. In the Adam-CBO method, we set λ = 0.1 and

σt = 0.99
t
20 in all cases. For each random process, hyper-

parameters have been optimized in order to get the best suc-
cess rate.

and check the success rate. It is found that the CBO method fails to find
the global minimizer when the dimension is over 30, but the Adam-CBO
method still has high success rates even when the dimension reaches 1000.
Moreover, it is found that the Poisson process almost always has higher
success rates than uniform and Levy processes.

Next, we compare the dependence of success rates on the batch number of
particles in Table 3. It is observed that the Adam-CBO method usually has
higher success rates when the particle batch size M becomes smaller and has
higher success rates as the total number of particles grows. Table 4 records
the success rate in terms of the number of particles N . As N grows, the
success rate increases. One may doubt that the Adam-CBO method shall be
sensitive to the initialization. To check this point, instead of choosing initial
data randomly, we set initial Xi

t to be 0, i.e., all particles are initially set
to be 0. Table 5 shows that the Adam-CBO method still has high success
rates.

It is worth mentioning that different choices of stochastic terms are used
in CBO and Adam-CBO methods. These choices are purely based on numer-
ical experiences. For the Rastrigin function in high dimensions, we observe

that the component-wise geometric Brownian motion term
d∑

k=1

~ek(X
i
t−x∗)zi
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d N M
Adam-CBO

N M
Adam-CBO

N (0, 1) U(−1, 1) N (0, 1) U(−1, 1)
100 1000 5 87% 39% 5000 5 100% 84%
100 1000 10 94% 60% 5000 10 100% 100%
100 1000 20 87% 49% 5000 20 100% 100%
100 1000 25 77% 53% 5000 25 100% 100%
100 1000 50 45% 8% 5000 50 100% 100%
100 1000 100 2% 0% 5000 100 100% 100%

Table 3. Comparison of success rates for different batch
numbers when the dimension is 100, λ = 0.1, and σt =

0.99
t
20 .

d N M
Adam-CBO

N (0, 1) U(−1, 1)
1000 8000 50 92% 20%
1000 10000 50 100% 28%
1000 12000 50 100% 28%
1000 14000 50 100% 32%
1000 16000 50 100% 32%

Table 4. Comparison of success rates for different numbers
of particles when the dimension is 1000, λ = 0.1, and σt =

0.99
t
20 .

d N M
Adam-CBO

N (0, 1) U(−1, 1)
30 500 5 94% 100%
100 5000 5 100% 94%
1000 10000 50 100% 11%

Table 5. Comparison of success rates for different dimen-
sions when Xi

t is initialized by 0 (Xi
0 = 0), λ = 0.1, and

σt = 0.99
t
20 .

in Algorithm 1 provides better results for the CBO method, while the ter-

m
∑d

k=1 ~ekzi in Algorithm 2 provides better results for the Adam-CBO
method. Similar results are observed when applying both methods to neural
networks.

4. Application of the Adam-CBO method on neural networks

In this section we will apply the Adam-CBO method to deep neural net-
works. For completeness, we briefly introduce deep neural networks (DNNs)
and its two applications: approximating functions and solving PDEs. A
DNN is constructed by a composition of some basic units which contain
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activation function σ(x) and linear transform Wx + b. More precisely, we
define the simplest network

(20) D(x; θ) = Nm(Nm−1(· · ·N1(x))),

where Ni(x) = σ(W ix + bi). The linear transform W ix + bi can transfer a
vector x to any dimension, so the output dimension of Ni can be different.
Typically, for x ∈ Rd, we fix the width by choosing W 1 ∈ Rn,d, W i ∈ Rn,n
for i = 2, · · ·m−1, and Wm ∈ R1,n. Therefore, we denote m as the network
depth and n as the network width. The parameter set θ consists of W i and
bi for i = 1, · · · ,m, which will be optimized by an optimization method.

For function approximations, we consider to approximate a target func-
tion u(x) by a DNN D(x) over domain Ω. The objective function is defined
as

(21) f(θ) = ‖D(x; θ)− u(x)‖2L2(Ω).

For a Poisson equation, the target solution u(x) is not given in advance,
but it satisfies

(22)

{ −∆u = f x ∈ Ω

u = g x ∈ ∂Ω
.

By using the Deep Ritz method [20], we define the loss function as

(23) f(θ) =

∫
Ω

1

2
|∇D(x; θ)|2 − f(x)D(x; θ)dx+ η

∫
∂Ω

(D(x; θ)− g(x))2dx.

For (21) and (23), the goal is to find the global minimizer of the following
problem

(24) arg min
θ
f(θ).

4.1. Approximating functions. In this section, we will demonstrate that
the Adam-CBO method share the property of spectral bias, or frequency
principle as gradient-based methods do [18, 22], i.e., it approximates low-
frequency properties of the target function first and high-frequency proper-
ties later. Consider two functions

u(x) = sin(2πx) + sin(8πx2),(25)

u(x) =

 1 x < −7
8 , x >

7
8 ,−

1
8 < x < 1

8
−1 3

8 < x < 5
8 ,−

5
8 < x < −3

8
0 otherwise

,(26)

where the first function is smooth while the second one is not. Here we
use the sigmoid function σ(x) = 1

1+exp(−x) as the activation function. The

training process of the Adam-CBO method is visualized in Figure 2 for
(25) and in Figure 3 for (26). Clearly, the low-frequency information is
approximated first and the high-frequency one is captured later.
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Figure 2. Approximating function (25) using a network
with n = 50, m = 3, and 2701 parameters in total. The
learning rate is λ = 0.2. N = 500 particles and M = 5
particles for each batch are used in the first 50000 iterations.
After that, the random term is ignored and M = 10 is used
for faster convergence to the optimal solution.

4.2. Deep neural networks. The commonly used gradient-based method
has the issue of gradient vanishing or gradient explosion when the network
depth increases. At the formal level, the Adam-CBO method is independent
of the gradient of the loss function with respect to the parameters. Thus
it is interesting to check its performance for deeper neural networks. We
use DNNs with a fixed width 10 and different depths to approximate the
function

(27) u(x) = sin(kπxk).

Set N = 500 particles, M = 5 particles for each batch, and the learning
rate λ = 0.2 in the first 30000 epochsiterations. Between 30000 epochs to
80000 epochs, we set M = 20 and ignore the random term to accelerate
the convergence. Between 80000 epochs to 150000 epochs, we set M = 100.
After 150000 epochs, we set the learning rate λ = 1e − 2 to minimize the
oscillations. Numerical results are shown in Table 6. For networks with
depths 4, 7, 12, 22, the Adam-CBO method keeps converging to the exact
solution. In the implementation, the training process stops after 2 × 106

iterationss. Since the gradient-free method (Adam-CBO) converges slower
than the gradient-based method (SGD or Adam), parameters in the neural
network fall around the optimal solution but converge to it slowly at the end



14 JINGRUN CHEN, SHI JIN, AND LIYAO LYU

−1.0 −0.5 0.0 0.5 1.0−2

−1

0

1

2 epoch: 2000

−1.0 −0.5 0.0 0.5 1.0−2

−1

0

1

2 epoch: 3000

−1.0 −0.5 0.0 0.5 1.0−2

−1

0

1

2 epoch: 5000

−1.0 −0.5 0.0 0.5 1.0−2

−1

0

1

2 epoch: 8000

Figure 3. Approximating function (26) using a network
with n = 50, m = 3, and 2701 parameters in total. The
learning rate is λ = 0.2. N = 500 particles and M = 5
particles for each batch are used in the first 50000 iterations.
After that, the random term is ignored and M = 10 is used
for faster convergence to the optimal solution.

depth Num of parameters k = 2 k = 3 k = 4
4 141 6.62 e-03 1.32 e-02 1.71 e-01
7 471 4.78 e-03 1.42 e-02 7.54 e-03
12 1021 7.44 e-03 1.30 e-02 5.32 e-02
22 2121 1.00 e-02 1.01 e-02 1.21 e-01

Table 6. Dependence of approximation error measured in
absolute L2 norm in terms of network depth for (27) when
k = 2, 3, 4.

of the training process. Therefore, it is difficult to obtain the convergence
rate of the approximation accuracy in terms of the network depth. How-
ever, if SGD or Adam is used with parameters initialized by the uniform
distribution, neither method converges well (with final error around 0.3 in
absolute L2 norm) when the network depth is 4 and 10, respectively.

4.3. Solving PDEs with low-regularity solutions. In this section, we
will use the Adam-CBO method to solve PDEs with low-regularity solutions.
There has an increasing interest in the development of machine-learning
method for solving PDEs; see [8] for review and references therein. For the
purpose of low-regularity solutions, we adopt the Deep Ritz method (DRM)
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[20], which is based on the variational formulation associated to the PDE.
Consider an elliptic PDE

(28)


−∇ · (A(x)∇u) = −

d∑
i=1

δ(xi) x ∈ Ω = [−1, 1]d

u(x) = g(x) x ∈ ∂Ω

with

(29) A(x) =

(x2
1)

1
4

. . .

(x2
d)

1
4

 .
The exact solution u(x) =

∑d
i=1 |xi|

1
2 . One can see that the solution is only

in H1/2(Ω) and has singularities when evaluating its derivative at xi = 0.
The loss function in DRM reads as
(30)

I[u] =

∫
Ω

1

2
(∇u)TA(x)∇u(x)dx+

d∑
i=1

∫ 1

−1
δ(xi)u(x)dxi+η

∫
∂Ω

(u(x)−g(x))2dx,

where η = 500 is the penalty parameter for the boundary condition.
Activation functions used in Adam include ReLu (max{x, 0}), ReQu ((max{x, 0})2),

and sigmoid ( 1
1+exp(−x)). Since the Adam-CBO method is a gradient-free

method, to demonstrate its advantage, we use |x|
1
2 as the activation func-

tion. Another reason for choosing this activation function is its low regulari-
ty, which leads to superior approximation accuracy in this case. Note that a
loss function including this activation function is not differentiable and thus
gradient-based methods are not applicable. Numerical results are shown
in Table 7. The training process is shown in Figure 4. One-dimensional
solution profiles at the intersection where other coordinates are set to be
0 are visualized in Figure 5. It is found that the Adam-CBO method pro-
vides better results than Adam with different activation functions. This at-
tributes to the usage of non-differentiable activation functions which better
approximate low-regularity PDEs. Moreover, the |x|0.5 activation function
approximates the low-regularity solution better than any other activation
functions near the singularity.

5. Conclustion

In this work, we propose a consensus-based global optimization method
with adaptive momentum estimation based on the consensus-based glob-
al optimization method and the adaptive momentum estimation. It shows
strong abilities to find global minima for high dimensional problems, includ-
ing given functions in high dimensions and approximation of low-regularity
solutions to PDEs by deep neural networks. The computational complexity
is found to grow linearly with respect to the dimension of the parameter
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d n m Activation-Optimizer L2 error L∞ error

2 20 2

ReLu-Adam 1.23 e-02 9.91 e-02
ReQu-Adam 2.22 e-02 4.21 e-01

sigmoid-Adam 2.19 e-02 3.14 e-01
|x|0.5 - Adam-CBO 3.96 e-03 2.09 e-02

4 40 2

ReLu-Adam 6.72 e-03 3.70 e-01
ReQu-Adam 1.43 e-02 1.10 e -00

sigmoid-Adam 7.90 e-03 7.66 e -02
|x|0.5 -Adam-CBO 3.13 e-03 9.52 e -02

Table 7. Errors measured in L2 and L∞ norms for (28) by
Adam and Adam-CBO methods.
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(a) L∞ error
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ReLu
ReQu

(b) L2 error

Figure 4. Training process of Adam and Adam-CBO meth-
ods for (28) when the dimension is 4. (a) L∞ error; (b) L2

error.

space. Since it is free of gradient, the Adam-CBO method is a suitable
choice for problems where derivatives with respect to parameters do not
exist. Therefore, it will be of great interest to find the application of the
Adam-CBO method for machine learning tasks where non-differentiable ac-
tivation functions are needed and the dimensionality of parameter space is
high.
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(c) x1 = x2 = x4 = 0
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Figure 5. One-dimensional solution profiles at the intersec-
tion. (a) x2 = x3 = x4 = 0; (b) x1 = x3 = x4 = 0; (c)
x1 = x2 = x4 = 0; (d) x1 = x2 = x3 = 0.
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