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Abstract

We present novel algorithms for compressible flows that are efficient for all Mach
numbers. The approach is based on several ingredients: semi-implicit schemes, the
gauge decomposition of the velocity field and a second order formulation of the
density equation (in the isentropic case) and of the energy equation (in the full
Navier-Stokes case). Additionally, we show that our approach corresponds to a
micro-macro decomposition of the model, where the macro field corresponds to the
incompressible component satisfying a perturbed low Mach number limit equation
and the micro field is the potential component of the velocity. Finally, we also use
the conservative variables in order to obtain a proper conservative formulation of
the equations when the Mach number is order unity. We successively consider the
isentropic case, the full Navier-Stokes case, and the isentropic Navier-Stokes-Poisson
case. In this work, we only concentrate on the question of the time discretization
and show that the proposed method leads to Asymptotic Preserving schemes for
compressible flows in the low Mach number limit.
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Atomique’ under contract N. SAV 34 160 (ASTRE). The second author acknowledges the
support of NSF grant No. DMS-0608720. The third author acknowledges the support of

1



NSF grant No. DMS-0512176. This work was completed during the stay of the second
and third authors in the Institute of Mathematics of Toulouse. The second author was
supported by a grant from ’Centre National de la Recherche Scientifique’ and the third
author was supported by the ’Université Paul Sabatier’.
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1 Introduction

Simulation of Low-Mach number flows has been the subject of a considerable amount of
literature. Low Mach number flows occur in numerous situations in geophysics (such as
atmospheric modeling), industrial processes (e.g. in CVD or Chemical Vapor Deposition),
nuclear reactor engineering (in the water-vapor circuitry) or in every day applications
(such as the air flow around a vehicle), and combustion [45]. However, the search for
numerical algorithms which are efficient uniformly in the Mach number is still highly
desirable since no completely satisfactory solution has been achieved yet.

In this paper, we present novel algorithms for compressible flows that are valid for all
Mach numbers. The approach is based on several ingredients: semi-implicit schemes, the
gauge decomposition of the velocity field and a second order formulation of the density
equation (in the isentropic case) and of the energy equation (in the full Navier-Stokes
case). Additionally, we show that our approach corresponds to a micro-macro decompo-
sition of the model, where the macro field corresponds to the incompressible component
satisfying a perturbed Low-Mach number limit equations and the micro field is the po-
tential component of the velocity. Finally, we also use the conservative variables in order
to obtain a proper conservative formulation of the equations for shock capturing when
the Mach number is of order unity. We successively consider the isentropic case, the full
Navier-Stokes case, and the isentropic Navier-Stokes-Poisson case.

In the literature, many papers are concerned with the low Mach number limit. Only
recently, new approaches have considered algorithms that are expected to be efficient for
all range of Mach numbers. Additionally, most of the early literature on the subject deals
with steady-state computations and are based on preconditioning techniques that are not
consistent with the model in the time-dependent case. The prototype of this approach can
be found in the seminal paper of Chorin [9], where an artificial compressibility approach
was proposed. It was first recognized by Turkel [55] that this approach could be viewed
as a preconditioning technique. These pioneering works have been followed by an abun-
dant literature, see e.g. [2, 8, 13, 40, 56, 34, 51]. Further studies provided the accurate
asymptotic expansions of the numerical fluxes in terms of the Mach number [26, 25].

Then, it was recognized that consistency of the time difference scheme required the
use of implicit schemes and that preconditioning techniques could often be viewed as
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a predictor-corrector version of these schemes. Full backward Euler time integration
schemes have been investigated in [46] and [58]. However, it was soon realized that
taking all fluxes implicit is probably too numerically demanding for a uniform stability
with respect to the Mach number and that only those fluxes which correspond to the
propagation of acoustic waves need to be taken implicitly. For instance, this was achieved
in [1, 27, 38] through splitting methods.

In [21], only the pressure flux in the momentum equation is taken implicitly. In
a number of references, [47, 48, 57, 35, 42, 59, 49], both the mass flux and the pressure
contribution to the momentum fluxes are taken implicitly. In doing so, the convection flux
and pressure flux are treated separately, in the spirit of the earlier Advection Upstream
Splitting Method (AUSM) [43, 41]. In most of the cases, the pressure (or more often, the
perturbation to the hydrostatic pressure) solves an elliptic or Helmholtz equation, which
corresponds to acoustic wave propagation at high speeds. In the low Mach number limit,
the momentum is updated using the perturbation pressure to avoid an ill-conditioning
of the pressure term. In these works, the pressure equation is solved instead of the full
energy one but the use of non-conservative variables may lead to incorrect shock speeds
for finite Mach numbers.

In the present work, we use a similar semi-implicit methodology and a wave-equation
formulation of either the density or the energy equation, which, after time discretization
leads to an elliptic problem for the pressure. However, the rationale is fairly different.
Indeed, we do work in the total pressure (or total energy) variable rather than in the
perturbation pressure variable. The reason for that is that we bypass the ill-conditioned
pressure term by using a gauge (or Hodge) decomposition of the velocity field (actually,
of the momentum variable in order to preserve the conservativity of the scheme). The
solenoidal (divergence-free) component of the velocity is updated using the momentum
conservation equation, in which the total pressure combines with the potential associated
with the irrotational part of the velocity field. In this way, the ill-conditioning of the
pressure term disappears as it becomes only the Lagrange multiplier of the divergence-
free constraint of the solenoidal part of the velocity.

The use of the Hodge decomposition as a projection method in the context of in-
compressible fluids has been proposed in [3, 4, 39] and later used in e.g. [49, 10]. It is
based on an earlier theoretical work of Roberts [53] and Oseledets [50] who introduced a
Velocity-Impulse-Density Formulation for Navier-Stokes equation. Roberts’s primary mo-
tivation was to write the incompressible Euler equations in a Hamiltonian form. Buttke
and Chorin [6] used the impulse density variable as a numerical tool in the computa-
tion of incompressible flows. E and Liu [18] showed that the original velocity-impulse
density formulation of Oseledets is marginally ill-posed for the inviscid flow, and this
has the consequence that some ordinarily stable numerical methods in other formulations
become unstable in the velocity-impulse density formulation. To remove this marginal
ill-posedness, they [18] then introduced a class of numerical method based on a simplified
velocity-impulse density formulation. This class of numerical method was later renamed
as the gauge method [36, 19, 20]. Unconditional stability of the gauge method was shown
by Wang and Liu [60]. Maddocks and Pego [44] also introduced an unconstrained Velocity-
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Impulse-Density/Hamiltonian formulation for incompressible fluid which has better sta-
bility properties. A systematic comparison of different gauge choices in this content was
studied by Russo and Smereka [54].

In the present work, we only concentrate on the question of the time discretization.
Our goal is to show that the combination of a semi-implicit scheme with a second order
formulation of the density or energy equation and, more importantly, with a gauge (Hodge-
like) decomposition of the momentum field, can lead to an Asymptotic Preserving scheme
for compressible flows in the Low-Mach number limit. An Asymptotic Preserving scheme
for a model (Mε) depending on a parameter ε and converging to the limit model (M) as
ε → 0 is a scheme that preserves the discrete analogy of the asymptotic passage from model
(Mε) to model (M). Specifically, the method is a consistent and stable discretization of
(Mε) when the time step ∆t (and possibly the mesh size ∆x) resolve the scales associated
with ε and which is consistent and stable discretization of the limit model (M) when ∆t
(and possibly ∆x) is fixed and ε → 0. The latter situation is called ’underresolved’ in the
sense that ∆t (and ∆x) are unable to resolve the scales associated with ε. Additionally,
if the scheme is stable uniformly with respect to ε, the scheme is said Asymptotically
Stable. Of course, the two concepts are linked, but it may happen that a scheme enjoys
one of the properties without the other one.

If an Asymptotically Stable and Asymptotic Preserving scheme is used, a uniform
accuracy for all range of ε is expected. A rigorous proof of this claim, in the context of
linear transport equation in the diffusive regime, was given in [22]. For transitional values
of ε (i.e. when ε is small without being very small), the uniform stability guarantees that
the discrepancy remains bounded with time. An Asymptotic Preserving scheme enjoys
many advantages compared with a model coupling strategy (i.e. solving model (Mε) where
ε is finite and model (M) where ε is very small). Indeed, a domain decomposition strategy
requires the design of appropriate transmission conditions between the models, together
with a geometric approximation of the interfacial region (which, in many situation, is
moving with time) and a specific adaptive meshing strategy. With an Asymptotically
Stable and Asymptotic Preserving scheme, the scheme itself switches from one model to
the other one when it is needed, without any intervention of the user.

Asymptotic Preserving schemes have been proposed in a variety of contexts, such as
hydrodynamic or diffusion limits of kinetic model [7, 32, 33, 29, 52, 5, 23], relaxation limits
of hyperbolic models [30, 31, 24], quasi-neutral limits of Euler-Poisson or Vlasov-Poisson
systems [11, 12, 17, 14], Dirac-Maxwell systems in the non-relativistic regime [28], fluid
limit of Complex-Ginzburg-Landau equations [15], . . . .

The paper is organized as follows. In section 2, we propose an Asymptotic Preserving
time discretization of the isentropic Navier-Stokes equations, based on a gauge formula-
tion of the model. In passing, we show that the gauge formulation provides the proper
macro-micro decomposition of the model. Indeed, the set of macro variables evolve ac-
cording to a system which corresponds to the limit model, perturbed by small terms
which depend on the micro variables. Here the macro variables are the constant density
and the solenoidal component of the velocity, while the micro variables correspond to the
perturbation density and the potential component of the velocity. In section 3, a similar
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methodology is applied to the full Navier-Stokes equations. Finally, the case of the isen-
tropic Navier-Stokes-Poisson problem is investigated in section 4. A conclusion is drawn
in section 5.

Again, we stress the fact that this paper is devoted to the time-discretization only and
the investigation of its Asymptotic-Preserving property. We defer the investigation of the
space discretization and numerical simulations to future works.

2 Isentropic Navier-Stokes equation

2.1 The model and the Low-Mach number limit

Consider the isentropic Navier-Stokes equations:

∂tρ
ε + ∇ · qε = 0 , (2.1)

∂tq
ε + ∇(

qε ⊗ qε

ρε
) +

1

ε2
∇p(ρε) = ∇(µσ(uε)) , (2.2)

where ρε(x, t) is the volumic mass density, qε = ρεuε(x, t) the volumic momentum density
depending on the position x ∈ R

d (d being the dimension) and the time t > 0, p(ρ) is the
isentropic pressure-density relationship, µ is the viscosity and σ(u) is the rate of strain
tensor:

σ(u) = ∇u + (∇u)T −
2

d
(∇ · u) I.

For scalar, vector and tensor fields ϕ, a and S, we denote by ∇ϕ, ∇ · a and ∇S the
gradient of ϕ, divergence of a and gradient of S respectively. The exponent T denotes
the transpose of a tensor, I, the unit tensor and for two vectors a and b, a ⊗ b denotes
the tensor product of a and b.

Here, the equations have already been put in the scaled form, with ε being the Mach
number. In order to understand the significance of ε, we come back to the system in
dimensional physical quantities

∂t̄ρ̄ + ∇x̄ · q̄ = 0 , (2.3)

∂t̄q̄ + ∇x̄(
q̄ ⊗ q̄

ρ̄
) + ∇x̄p̄(ρ̄) = ∇x̄(µ̄σ̄(ū)) , (2.4)

where the barred quantities denote quantities expressed in physical units. Now, let x0, t0,
ρ0, q0, p0, µ0, u0 be a set of scaling units for the position, time, mass density, momentum
density, pressure, viscosity and velocity respectively. We link these units by the natural
relations u0 = x0/t0, q0 = ρ0u0 and note that σ̄(ū) = σ(u)/t0. Then, the dimensionless
variables are defined by the relations x̄ = x0x, t̄ = t0t, ρ̄ = ρ0ρ, . . . . Using these changes
of variables and unknowns, we find:

∂tρ + ∇ · q = 0 , (2.5)

ρ0u
2
0

p0

(

∂tq + ∇(
q ⊗ q

ρ
)

)

+ ∇p(ρ) =
µ0

p0t0
∇(µσ(u)) . (2.6)
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The first dimensionless parameter ρ0u
2
0/p0 appears as the ratio of the the drift energy

of the fluid to its internal energy (up to a numerical factor). Writing that p0 is up to a
numerical factor equal to the product of the density ρ0 and the square of the speed of
sound c2

s, we can also identify this dimensionless parameter as the square of the Mach
number M = u0/cs. Therefore, we denote this dimensionless parameter by ε2. For the
second dimensionless parameter, we write

µ0

p0t0
=

µ0

ρ0u0x0

ρ0u
2
0

p0

=
µ0

ρ0u0x0

ε2.

The dimensionless quantity µ0

ρ0u0x0

measures the ratio of the strenth of the viscosity term
to that of the transport term. We suppose that this ratio is of order unity i.e. that the
time and space gradients of momentum are balanced by viscosity terms of similar order
of magnitude. Therefore, we take a viscosity scale such that

µ0

ρ0u0x0

= 1.

Now, inserting these values of the parameters into (2.6), we recover the dimensionless
system (2.1), (2.2).

The low-Mach number limit is the regime where ε → 0 [37]. Letting ε → 0, in the
momentum conservation equation (2.2), we get:

∇p(ρ) = 0 . (2.7)

Therefore, the solution of (2.19) is given by:

ρ = ρ0, p(ρ) = p(ρ0) := p0 (2.8)

where ρ0 is a constant (with respect to both space and time) given by the boundary
conditions. That ρ0 is uniform in space is a necessary condition for the existence of a low
Mach number limit. That it is a constant in time is an assumption that we make for the
sake of simplicity, but which can be easily relaxed.

Then, letting ε → 0 in the momentum equation (2.2) again leads to

∂tq + ∇(
q ⊗ q

ρ0

) + ∇P = ∇(µσ(u)) , (2.9)

where P = limε→0 ε−2(p(ρε) − p0) is the hydrostatic pressure. We assume µ is constant.
Then,

∇(µσ(u)) = µ(∆u +
d − 2

d
∇(∇ · u)) (2.10)

In the low-mach number model, P is the Lagrange multiplier of the divergence free con-
straint

∇ · u = 0. (2.11)
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which follows from the limit of the mass conservation eq. (2.1) together with (2.8). Eq.
(2.9) is the incompressible Navier-Stokes equation. Using the incompressibility constraint
(2.11), it can be recast in the more familiar form:

ρ0(∂tu + (u · ∇)u) + ∇P = µ∆u .

Using this form and the fact that ρ0 is uniform, it is easy to see that P satisfies the
following elliptic equation:

−∆P = ∇2 : (ρ0u ⊗ u) . (2.12)

To construct an Asymptotic-Preserving scheme for the density, it suffices to use (2.2)
in conjunction with a backwards Euler scheme. The difficulty with the low mach number
limit is rather the determination of the velocity. To obtain an AP method, we must derive
a scheme for the original model in which, to some extent, the limit eq. (2.9) is built in
the scheme. For that purpose, we use the gauge methodology, which is developed in the
next section.

2.2 Gauge decomposition of the momentum field

We introduce the decomposition of qε into a solenoidal field aε and an irrotational one
∇ϕε:

qε = aε −∇ϕε , ∇ · aε = 0, (2.13)

Introducing (2.13) into (2.2), we get

∂ta
ε + ∇(

qε ⊗ qε

ρε
) + ∇P ε = ∇(µσ(uε)) , (2.14)

where P ε is a ’quasi-hydrostatic pressure’ defined by

P ε =
1

ε2
(p(ρε) − p0) − ∂tϕ

ε . (2.15)

The gauge potential can be determined from the mass conservation equation (2.1): using
that ∇ · qε = −∆ϕε where ∆ denotes the Laplacian operator, we get:

∆ϕε = ∂tρ
ε . (2.16)

On the other hand, the quasi-hydrostatic pressure P ε is obtained by taking the divergence
of (2.14), which gives

−∆P ε = ∇2 : (
qε ⊗ qε

ρε
) −∇2 : (µσ(uε)) . (2.17)

where, for a tensor S we denote by ∇2 : S =
∑

k,l ∂xkxl
Tkl. We assume that ∂nϕ

ε = 0 at
the boundary. This implies that ∂nP

ε = n · ∇(µσ(uε)) at the boundary.
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Before inserting the gauge decomposition into the Navier-Stokes equation, we also
transform the mass conservation equation (2.1) into a wave equation; Indeed, we first
take the time derivative of the mass conservation equation and the divergence of the
momentum conservation equation, and obtain:

∂2
t ρ

ε −∇2 : (
qε ⊗ qε

ρε
) −

1

ε2
∆p(ρε) = −∇2 : (µσ(uε)) , (2.18)

This wave equation formulation will be useful for the design of the numerical scheme,
because, in the limit ε → 0, it reduces to an elliptic equation

∆p(ρ) = 0 , (2.19)

which, with the condition ρ = ρ0 at the boundary, leads to (2.8). Also, taking the
Laplacian term in (2.18) implicit will be easy because ρε will be computed by solving an
elliptic problem.

Then, we transform the compressible isentropic Navier-Stokes equations into the fol-
lowing equivalent system:

∂2
t ρ

ε −∇2 : (
qε ⊗ qε

ρε
) −

1

ε2
∆p(ρε) = −∇2 : (µσ(uε)) , (2.20)

∆ϕε = ∂tρ
ε , (2.21)

∆P ε = −∇2 : (
qε ⊗ qε

ρε
) + ∇2 : (µσ(uε)) , (2.22)

∂ta
ε + ∇(

qε ⊗ qε

ρε
) + ∇P ε = ∇(µσ(uε)) , (2.23)

qε = aε −∇ϕε . (2.24)

Eqs (2.20) to (2.24) have been put in chronological order in an one time-step compu-
tation cycle: we first update ρε using (2.20). Then we compute ϕε and P ε by solving the
elliptic equations (2.21) and (2.22). From P ε, we can update aε with (2.23). Then, we
reconstruct a new momentum qε thanks to (2.24).

We first check that formulation (2.20)-(2.24) is equivalent to the initial one (2.1), (2.2),
provided that ∇ · aε|t=0 = 0. First, taking the divergence of (2.23) and using (2.22), we
obtain that ∂t(∇·aε) = 0, which, with the assumption that the divergence is zero initially,
implies that ∇·aε = 0 for all times. Then, taking the divergence of (2.24) and using (2.21)
leads to the mass conservation equation (2.1). Next, combining (2.20) and (2.22) with
the time derivative of (2.21) leads to

∆

(

∂tϕ
ε −

1

ε2
(p(ρε) − p0) + P ε

)

= 0.

Note that the addition of p0 is possible since it is a constant. By the choice of the boundary
conditions on ϕε and P ε, the quantity inside the Laplacian is zero on the boundary. We
deduce that it is identically zero, and we recover (2.15). Then, (2.15) inserted into (2.23)
with (2.24) leads to the momentum conservation equation (2.2).
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Now, we check that the low-Mach number limit problem is imbedded into formulation
(2.20)-(2.24). More precisely, this formulation corresponds to a micro-macro decomposi-
tion of the problem, where ’microscopic’ refers to the compressible Navier-Stokes equa-
tions while ’macroscopic’ refers to the incompressible one. We develop the micro-macro
formalism in the next section.

2.3 The gauge method viewed as a ’macro-micro’ decomposition

We define ρε
1 and ϕε

1 by

ρε = ρ0 + ε2ρε
1 , ϕε = ε2ϕε

1 . (2.25)

Then

qε = aε − ε2∇ϕε
1 . (2.26)

The pair (ρ0, a
ε) corresponds to the macro-field (or, in the dynamical systems terminology,

the ’slow variables’), whereas (ρε
1,−∇ϕε

1) corresponds to the micro-field or fast variables.
The state of the system i.e. the pair (density, momentum) is constructed as the sum of
the macro and macro field. The micro field is of order ε2 if the macro field is of order 1.

We introduce the scalar pε
1, the tensor Πε

1 and the vectors uε
0 and uε

1 according to

p(ρε) = p0 + ε2pε
1,

qε ⊗ qε

ρε
=

aε ⊗ aε

ρ0

+ ε2Πε
1, (2.27)

uε = uε
0 + ε2uε

1, uε
0 =

aε

ρ0

. (2.28)

All quantities with index ’1’ are O(1) and, due to the prefactor ε2, the corresponding
terms in the expansions are O(ε2). In (2.27), (2.28), the leading order terms only depend
on the macro variables, while the O(ε2) terms depend on both the macro and the micro
variables:

pε
1 = pε

1(ρ0; ρ
ε
1), Πε

1 = Πε
1(ρ0, a

ε; ρε
1, ϕ

ε
1), uε

1 = uε
1(ρ0, a

ε; ρε
1, ϕ

ε
1).

We insist on the fact that eqs. (2.27), (2.28) are exact and not approximations. They are
the relations defining the index ’1’ quantities .

Now, eq. (2.23) can be written as

∂ta
ε + ∇(

aε ⊗ aε

ρ0

) + ∇P ε −∇(µσ(uε
0)) = ε2[−∇Πε

1 + ∇(µσ(uε
1))] , (2.29)

∇ · aε = 0 . (2.30)

If the order O(ε2) terms at the right-hand side of (2.26) and (2.29) are omitted, we find
the low Mach number equations (2.9), (2.11). Now, the right-hand side of (2.29) depends
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on the micro variables (ρε
1, ϕ

ε
1) via eqs. (2.20), (2.21). More precisely, (ρε

1, ϕ
ε
1) are solutions

of

−∆pε
1 −∇2 : (

aε ⊗ aε

ρ0

) + ∇2 : (µσ(uε
0)) = ε2[−∂2

t ρ
ε
1 + Πε

1 −∇2 : (µσ(uε
1))] , (2.31)

−∆ϕε
1 = −∂tρ

ε
1 . (2.32)

We note from (2.32) that ϕε
1 is actually an O(1) quantity, which was not completely

obvious from the scaling (2.25).
This remark a posteriori justifies all previous considerations about the magnitude of

the various terms. Now, when ε → 0 in (2.26), (2.31), we deduce that

∆(pε
1 − P ε) → 0.

Since both pε
1 and P ε vanish at the boundary, we deduce that

pε
1 − P ε → 0

and that pε
1 → P , the hydrostatic pressure. This is a known fact about the low-Mach

number limit, that the first-order perturbation of the pressure to the constant pressure
converges to the hydrostatic pressure as the Mach number goes to zero. As a by-product
of (2.27), we obtain that p(ρε) → p0, which implies that ρε → ρ0.

To summarize, the pair (ρ0, a
ε) is the macro-field and eqs. (2.22), (2.23) provide the

evolution of this macro-field. When ε is finite, this evolution depends (at the order O(ε2))
on the micro variables (ρε

1, ϕ
ε
1) which are determined by eqs. (2.20), (2.21). Therefore,

system (2.20)-(2.24) provides a micro-macro decomposition, which will be the starting
point of our numerical methodology. Again, we point out that these equations are exact
and not approximations of the original problem. In particular, they are equivalent to the
original problem whatever the value of ε, be it small or not.

Now, we propose an Asymptotic-Preserving time-discretization of system (2.20)-(2.24).
Indeed, in designing AP-schemes, the crucial issue is that of the time-discretization. Once
a proper time-discretization is defined, the question of the space-discretization is a tech-
nical one. In particular, for hyperbolic systems, it can be any standard shock capturing
method [30]. The issue of spatial discretization is outside the scope of the present work.

2.4 Asymptotic-Preserving time-discretization of the gauge for-

mulation

The key point is an implicit time-discretization of eq. (2.20) which, in the limit ε → 0,
leads to an approximation of the Lapace equation (2.19). Let ∆t be the time-step. For
any time dependent quantity f(t), an approximation at time tm = m∆t is defined by fm.
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Then, we propose the following time-discretization of system (2.20)-(2.24):

1

∆t2
(ρε,m+1 − 2ρε,m + ρε,m−1) −∇2 : (

qε,m ⊗ qε,m

ρε,m
) −

1

ε2
∆p(ρε,m+1) =

= −∇2 : (µσ(uε,m)) , (2.33)

∆ϕε,m+1 =
1

∆t
(ρε,m+1 − ρε,m) , (2.34)

∆P ε,m+1 = −∇2 : (
qε,m ⊗ qε,m

ρε,m
) + ∇2 : (µσ(uε,m)) , (2.35)

1

∆t
(aε,m+1 − aε,m) + ∇(

qε,m ⊗ qε,m

ρε,m
) + ∇P ε,m+1 = ∇(µσ(uε,m)) , (2.36)

qε,m+1 = aε,m+1 −∇ϕε,m+1 . (2.37)

We make a few comments about this discretization procedure. First, we notice that
(2.33) can be obtained from the following semi-implicit discretization of the original for-
mulation (2.1), (2.2):

1

∆t
(ρε,m+1 − ρε,m) + ∇ · qε,m+1 = 0 , (2.38)

1

∆t
(qε,m+1 − qε,m) + ∇(

qε,m ⊗ qε,m

ρε,m
) +

1

ε2
∇p(ρε,m+1) = ∇(µσ(uε,m)) . (2.39)

Indeed, taking the time difference of eq. (2.38) at steps m + 1 and m and combining it
with the divergence of (2.39) leads to (2.33). Then, (2.35) for P ε,m+1 follows from the
application of the constraint ∇ · aε,m+1 = 0 to (2.36). Similarly, (2.34) follows from the
insertion of the decomposition (2.37) into (2.38). Therefore, we find that the scheme
(2.33)-(2.37) is a mere application of the gauge decomposition to the conservative semi-
implicit scheme (2.38), (2.39).

We now show that, in the limit ε → 0, this scheme gives a consistent approximation of
the Low-Mach number equations (2.8), (2.9), (2.11). We drop the exponent ε to indicate
that we have taken the limit. We proceed by induction and suppose that at time step m,
we already have proven that ρm = ρ0 and ϕm = 0. The latter implies that qm = am and
consequently that ∇ · am = ∇ · qm = 0. First, the limit ε → 0 in (2.33) gives

∆p(ρm+1) = 0, (2.40)

which, with the condition ρ = ρ0 at the boundary gives ρm+1 = ρ0. Then, the limit ε → 0
in (2.34) leads to

−∆ϕm+1 = 0 . (2.41)

Again, with the condition ∂nϕ
m+1 = 0 at the boundary, we get ϕm+1 = 0. Then, we

deduce from (2.37) that qm+1 = am+1. Eqs. (2.35) and (2.36) are formally unchanged in
the limit ε → 0 but eq. (2.35) inserted into (2.36) ensures that ∇ · am+1 = ∇ · am = 0.
Eq. (2.36) then appears as a time discretization of the Low-Mach number eq. (2.9).
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Compared to a straightforward explicit discretization of (2.1), (2.2), the computation
of one time step using (2.33), (2.37) involves considerably more computational work.
Indeed, it requires the inversion of three elliptic equations: eq. (2.33) for finding ρε,m+1,
eq. (2.34) for ϕε,m+1 and eq. (2.35) for P ε,m+1. Additionally, eq. (2.33) is nonlinear
and requires inner iterations. This is the price to pay for a scheme whose time step does
not collapse to zero as ε → 0. One way to make it more efficient is to use the upscaling
technique which was designed in [16] for the coupling of Boltzmann and Euler models.
This technique allows to switch from a standard scheme when the Mach number is of
order unity or large to this AP scheme when the Mach number has values significantly
below unity. The development of such a strategy will be the subject of future work.

An important remark is about the conservativity of the scheme when ε is finite. Indeed,
when ε is finite, discontinuous solutions in the form of shock waves can appear. The use
of non-conservative variables, i.e. variables other than the mass and momentum densities,
may lead to incorrect shock speeds. Here, the scheme uses the conservative variables and
is not subject to this problem. However, a question remains about whether the various
transformations used to pass from the classical formulation (2.1), (2.2) to the gauge
formulation (2.20)-(2.24) will not alter this property. In fact, the best way of having
the final scheme (with time and space both discrete) satisfy the conservation property
is to derive it from a usual shock capturing methodology (such as a Godunov or a Roe
scheme). To this aim, one must start from the semi-implicit discretization (2.38), (2.39)
of the original fomulation (2.1), (2.2) and reproduce the same computations as those used
in the derivation of the gauge formulation of the continuous model. Indeed, we have seen
that in the time-semi discrete case, the scheme (2.33)-(2.37) is a mere application of the
gauge decomposition to the conservative semi-implicit scheme (2.38), (2.39). Using the
same methodology for a fully discrete scheme will produce a gauge decomposed version
of a fully conservative scheme. The resulting scheme will therefore produce the correct
shock speeds. We shall not pursue this direction however and refer to future works for
the details. Instead, we would like to show how the methodology can be extended to
more complex models. In the section 3, we will discuss the case of the full Navier-Stokes
equations.

Finally, we note that a variant to the second order (in time) formulation (2.33) can be
found, within the framework of a first order (in time) formulation. Indeed, we can merely
eliminate qε,m+1 from (2.38) using (2.39) and get

1

∆t
(ρε,m+1 − ρε,m) + ∇ · qε,m

+∆t

{

∇2 : (
qε,m ⊗ qε,m

ρε,m
) +

1

ε2
∆p(ρε,m+1) −∇2 : (µσ(uε,m))

}

= 0 . (2.42)

This also leads to an elliptic equation for ρε,m+1.
Also,another observation is that the nonlinearity in the elliptic operator can be lin-

earized by using the approximation:

∆p(ρε,m+1) ≈ ∇ · (p′(ρε,m)∇ρε,m+1),

without altering the AP character of the scheme.
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3 Full compressible Navier-Stokes equations

3.1 The model and the low Mach number limit

In this section, we consider the full compressible Navier-Stokes equations

∂tρ
ε + ∇ · qε = 0 , (3.1)

∂tq
ε + ∇(

qε ⊗ qε

ρε
) +

1

ε2
∇pε = ∇(µεσ(uε)) , (3.2)

∂tW
ε + ∇ · ((W ε + pε)uε) = ε2∇ · (µεσ(uε)uε) + ε2∇ · (κε∇T ε) , (3.3)

W ε =
1

2
ε2ρε|uε|2 + eε, eε =

1

γ − 1
pε, pε = ρεT ε. (3.4)

The functions ρε, qε, pε and uε, having the same meaning as in the previous section, are
respectively the mass density, momentum density, pressure and velocity. In addition, we
also have the total energy density W ε, the internal energy density eε and the temperature
T ε. The viscosity µε and the heat conductivity κε are generally functions of ρε and T ε,
and are indexed by ε. γ is the ratio of specific heats and is a given constant, equal to
5/3 for a perfect gas. Again, ε is a measure of the Mach number, the ratio of the typical
velocity of the fluid to the typical velocity of sound.

We justify this scaling by going back to the physical variables. In addition to eqs (2.3),
(2.4) (where p̄ is now a function of ρ̄ and T̄ ), we have

∂t̄W̄ + ∇x̄ · ((W̄ + p̄)ū) = ∇x̄ · (µ̄σ̄(ū)ū) + ∇x̄ · (κ̄∇x̄T̄ ) , (3.5)

W̄ =
1

2
ρ̄|ū|2 + ē, ē =

1

γ − 1
p̄, p̄ = ρ̄

kBT̄

m
, (3.6)

where kB is the Boltzmann constant and m is the particle mass. We introduce an addi-
tional set of scaling units W0, e0 and T0 for the total and internal energies and the tem-
perature respectively and link them by the natural relations W0 = e0 = p0 = ρ0kBT0/m.
Then, after passage to the dimensionless variables, (3.5), (3.6) lead to (3.4) and to

∂tW + ∇ · ((W + p)u) = ε2∇ · (µσ(u)u) +
κ0T0

p0x0u0

∇ · (κ∇T ) . (3.7)

The dimensionless parameter κ0T0

p0x0u0

measures the ratio of the heat diffusion term compared

to the energy transport term. We suppose that this ratio is of order ε2, i.e. that in the
limit ε → 0, we obtain pure transport of the energy. We note that the term corresponding
to the work of the viscosity force (the first term at the right-hand side) is of order ε2 with
the chosen scaling of the momentum equation.

To find the low Mach number limit, we expand pε = p+ ε2P + o(ε2). At leading order
in ε, eq. (3.2) leads to

∇p = 0 , (3.8)
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which implies that

p = ρT = p0 , (3.9)

where p0 is a constant which is independent of space and which we also take independent
of time for simplicity. Therefore, ρ and T are now linked together. At the next order in
ε, eq. (3.2) leads to

∂tq + ∇(
q ⊗ q

ρ
) + ∇P = ∇(µσ(u)) , (3.10)

and P is the hydrostatic pressure.
Next, we need to find the constraint which allows to compute P . For that purpose,

we use a classical procedure to rewrite the energy equation (3.3) into an equation for the
pressure pε. Of course, this manipulation is only valid for smooth solutions but in the
limit ε → 0, we do not expect shocks to appear. This equation is written as follows:

1

γ − 1
(∂tp

ε + uε · ∇pε) +
γ

γ − 1
pε(∇ · uε) = ε2µε

2
|σ(uε)|2 + ε2∇ · (κε∇T ε) , (3.11)

where for a tensor A, we denote by |A|2 = A : A, the contracted product of A with itself.
Letting ε → 0 and using that p0 is a constant in time and space, we find

∇ · u = 0 , (3.12)

Finally, because of (3.12), the mass conservation eq. (3.1) can be written as a transport
equation at the limit:

∂tρ + u · ∇ρ = 0 . (3.13)

The incompressible model consists of eqs. (3.9), (3.10), (3.12) and (3.13). The mo-
mentum equation (3.10) is equivalent to

ρ(∂tu + (u · ∇)u) + ∇P = ∇(µσ(u)) . (3.14)

But, because ρ is no more constant in space, the equation for the hydrostatic pressure P
is more complicated than in the isentropic case and is given by:

−∇ ·

(

1

ρ
∇P

)

= ∇ ·

(

1

ρ
(u · ∇)u

)

−∇ ·

(

1

ρ
∇(µσ(u))

)

. (3.15)

Finally, the energy has the following expansion

W ε =
p0

γ − 1
+ ε2(

1

2
ρ|u|2 + P ) + o(ε2) . (3.16)
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3.2 Gauge decomposition of the momentum field

The gauge decomposition of qε is modified as compared with the isentropic case, to take
into account the fact that now the leading order density is no more a constant. We
introduce a pseudo-solenoidal field aε and an irrotational one ∇ϕε according to

qε = aε −∇ϕε , ∇ ·

(

aε

ρε

)

= 0, (3.17)

Introducing (3.17) into (3.2), we get

∂ta
ε + ∇(

qε ⊗ qε

ρε
) + ∇P ε = ∇(µεσ(uε)) , (3.18)

where P ε is a ’quasi-hydrostatic pressure’ defined by

P ε =
1

ε2
(pε − p0) − ∂tϕ

ε . (3.19)

The mass conservation equation (3.1) is no longer useful to compute ϕε and will
actually determine ρε. We shall see below how to determine ϕε. In doing so, we need to
transform ∇·( 1

ρε ∂ta
ε). First, using the second equation of (3.17) and the mass conservation

equation (3.1) in the following way:

∇ ·

(

1

ρε
∂ta

ε

)

= −∇ ·

(

aε∂t

(

1

ρε

))

. (3.20)

We do not develop the time derivative of 1/ρε using the mass conservation equation (3.1)
because 1/ρε is not a conservative variable and the resulting equation would not be valid
for discontinuous solutions. The quasi-hydrostatic pressure P ε is obtained by multiplying
1/ρε to the momentum equation (2.14), and then taking the divergence by using 3.20 to
get

−∇ ·

(

1

ρε
∇P ε

)

= −∇ ·

(

aε∂t

(

1

ρε

))

+

+∇ ·

(

1

ρε
∇(

qε ⊗ qε

ρε
)

)

−∇ ·

(

1

ρε
∇(µεσ(uε))

)

. (3.21)

We still assume that ∂nϕ
ε = 0 at the boundary and with (3.19), this implies that P ε ==

µn · ∆uε + µ

3
∂n(∇ · uε) at the boundary.

Like in the case of the isentropic model, we need to find a second order formulation
which reduces the low Mach number limit problem to an elliptic problem. But, by contrast
to the isentropic case, this second order formulation involves the energy and not the mass
density.

Taking the time derivative of the energy equation (3.3), we obtain

∂2
ttW

ε + ∇ · (hε ∂tq
ε) + ∇ · (∂th

εqε) =

= ε2∇ · (∂t(µ
εσ(uε)uε)) + ε2∇ · (∂t(κ

ε∇T ε)) ,(3.22)
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where we have defined the enthalpy

hε =
W ε + pε

ρε
. (3.23)

On the other hand, using the momentum equation (3.2) to eliminate the time derivative
of qε in (3.22) and using (3.4) to express the pressure in terms of the total energy, we get:

∂2
ttW

ε −
γ − 1

ε2
∇ · (hε ∇W ε) +

γ − 1

2
∇ ·

(

hε ∇(ρε|uε|2)
)

−∇ ·

(

hε ∇(
qε ⊗ qε

ρε
)

)

+ ∇ · (∂th
ε qε) + ∇ · (hε ∇(µεσ(uε)))

= ε2 [∇ · (∂t(µ
εσ(uε)uε)) + ∇ · (∂t(κ

ε∇T ε))] . (3.24)

Incidentally, we check that the limit of (3.24) when ε → 0 leads to a constant pressure,
as it should in the Low-Mach number limit. Indeed, in the limit ε → 0, we formally find
that W = p/(γ − 1) from (3.4), and h = γp

(γ−1)ρ
satisfy:

−(γ − 1)∇ · (h∇W ) = −γ∇ ·

(

p

ρ
∇p

)

= 0 . (3.25)

Assuming that p = p0 at the boundary where p0 is uniform in space along the boundary
and constant in time (for convenience), the solution of this equation is

p = p0 . (3.26)

Indeed, since p0 is a constant, it is a solution (even if ρ is not a constant) and since
the elliptic problem is well-posed, it is the unique one. Therefore, (3.24) gives the right
Low-Mach number limit for the energy.

Now, to find ϕε, we use the original, first-order formulation of the energy eq. (3.3),
which we rewrite:

∂tW
ε + ∇ · (hε (aε −∇ϕε)) = ε2∇ · (µεσ(uε)uε) + ε2∇ · (κε∇T ε) . (3.27)

Knowing W ε, this equation can be recast into an equation for ϕε:

−∇ · (hε ∇ϕε) = −∂tW
ε −∇ · (hε aε) + ε2∇ · (µεσ(uε)uε) + ε2∇ · (κε∇T ε) . (3.28)

To summarize, the full-Navier-Stokes problem is formally equivalent to the following
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gauge formulation:

∂2
t W

ε −
γ − 1

ε2
∇ · (hε ∇W ε) +

γ − 1

2
∇ ·

(

hε ∇(ρε|uε|2)
)

−∇ ·

(

hε ∇(
qε ⊗ qε

ρε
)

)

+ ∇ · (∂th
ε qε) + ∇ · (hε ∇(µεσ(uε)))

= ε2 [∇ · (∂t(µ
εσ(uε)uε)) + ∇ · (∂t(κ

ε∇T ε))] , (3.29)

∂tρ
ε + ∇ · qε = 0 , (3.30)

−∇ ·

(

1

ρε
∇P ε

)

= −∇ ·

(

aε∂t

(

1

ρε

))

+

+∇ ·

(

1

ρε
∇(

qε ⊗ qε

ρε
)

)

−∇ ·

(

1

ρε
∇(µεσ(uε))

)

, (3.31)

∂ta
ε + ∇(

qε ⊗ qε

ρε
) + ∇P ε = ∇(µεσ(uε)) , (3.32)

−∇ · (hε ∇ϕε) = −∂tW
ε −∇ · (hε aε) + ε2∇ · (µεσ(uε)uε) + ε2∇ · (κε∇T ε) , (3.33)

qε = aε −∇ϕε . (3.34)

Again, we have listed these equations in the natural order of a time-step loop, as we will
see later on.

3.3 The gauge method viewed as a ’macro-micro’ decomposition

Again, we introduce the following definitions: we define the macro-scale density ρε
0 as the

solution of

∂tρ
ε
0 + ∇ · aε = 0 . (3.35)

The quantitiy W0 = p0/(γ − 1) is the macro-scale energy, and is a constant. The macro-
scale velocity uε

0 and temperature T ε
0 are defined by uε

0 = aε/ρε
0, T ε

0 = p0/ρ
ε
0.

We now define a set of micro-scale quantities. First, let

ϕε = ε2ϕε
1 . (3.36)

We shall see below why ϕε is actually an O(ε2) quantity, which justifies defining ϕε
1 this

way. Then, of course, the relation

qε = aε − ε2∇ϕε
1 (3.37)

defines a macro-micro decomposition of qε.
Similarly, we define the micro-components of the pressure pε

1, density ρε
1, energy W ε

1 ,
temperature T ε

1 , velocity uε
1, according to

pε = pε
0 + ε2∇pε

1, ρε = ρε
0 + ε2∇ρε

1, etc. . (3.38)
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Here

W ε
1 =

1

2
ρε|uε|2 +

1

γ − 1
pε

1 . (3.39)

We also introduce the decompositions of the enthalpy hε and of the specific volume τ ε =
1/ρε:

hε = hε
0 + ε2hε

1, hε
0 =

W0 + p0

ρε
0

=
γ

γ − 1

p0

ρε
0

, (3.40)

τ ε = τ ε
0 + ε2τ ε

1 , τ ε
0 =

1

ρε
0

. (3.41)

Finally, we introduce auxiliary expansion terms, such as the tensors Πε
1 and (µσ(u))ε

1

defined by:

qε ⊗ qε

ρε
=

aε ⊗ aε

ρε
0

+ ε2Πε
1, µεσ(uε) = µε

0σ(uε
0) + ε2(µσ(u))ε

1, µε
0 = µ(ρε

0, T
ε
0 ) .(3.42)

The independent (conservative) variable being the mass, momentum and energy den-
sities written as a single vector U ε = (ρε, qε,W ε), the macroscopic field is given by U ε

0 =
(ρε

0, a
ε,W0) and the microscopic one is U ε

1 = (ρε
1,−∇ϕε

1,W
ε
1 ). Obviously, U ε = U ε

0 + ε2U ε
1

and this relation is exact and not an approximation.
Now, we show that formulation (3.29)-(3.30) can be put in a form such that the

dependence of the macroscopic variables on the microscopic ones only appear in O(ε2).
Indeed, one can easily write the momentum conservation equations together with the
definition (3.35) as

∂ta
ε + ∇(

aε ⊗ aε

ρε
0

) + ∇P ε −∇(µε
0σ(uε

0)) = ε2 [−∇Πε
1 −∇(µσ(u))ε

1] , (3.43)

∇ ·

(

aε

ρε
0

)

= −ε2∇ · (aετ ε
1 ) , (3.44)

∂tρ
ε
0 + ∇ · aε = 0 . (3.45)

Eq. (3.44) is nothing but the constraint (3.17) in which the decomposition of (3.41) has
been used. We recall that the constraint (3.17) is easily deduced from (3.31) as soon as
the constraint is satisfied initially. Now, we see that the macroscopic variables evolve
according to equations in which the microscopic variables only enter the O(ε2) terms.

Now, we turn to the microscopic variables equations and begin with ϕε
1. Noting that

∇ · (hε aε) =
γp0

γ − 1
∇ ·

(

aε

ρε
0

)

+ ε2∇ · (hε
1 aε)

= −ε2 γp0

γ − 1
∇ · (τ ε

1aε) + ε2∇ · (hε
1 aε) , (3.46)
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by using (3.44). Inserting the definitions of the macro and micro variables into eq. (3.33)
yields

−∇ · (hε∇ϕε
1)

= −∂tW
ε
1 −

γp0

γ − 1
∇ · (τ ε

1aε) −∇ · (hε
1 aε) + ∇ · (µεσ(uε)uε) + ∇ · (κε∇T ε) .(3.47)

The equation for ρε
1 is deduced from (3.30), (3.45) and the decompositions (3.37), (3.38)

and is given by

∂tρ
ε
1 − ∆ϕε

1 = 0 . (3.48)

Then, the equation for W ε
1 follows from (3.29), which can be written equivalently as

∂2
t W

ε −
1

ε2
∇ · (hε ∇pε) −∇ ·

(

hε ∇(
qε ⊗ qε

ρε
)

)

+ ∇ · (∂th
ε qε) +

+∇ · (hε ∇(µεσ(uε))) = ε2 [∇ · (∂t(µ
εσ(uε)uε)) + ∇ · (∂t(κ

ε∇T ε))] , (3.49)

Inserting the decomposition (3.38) as well as (3.40), (3.42), we find that eq. (3.49) is
equivalent to:

−∇ · (hε ∇pε
1) −∇ ·

(

hε ∇(
qε ⊗ qε

ρε
)

)

+ ∇ · (∂th
ε qε) + ∇ · (hε ∇(µεσ(uε))) =

= ε2
[

−∂2
t W

ε
1 + ∇ · (∂t(µ

εσ(uε)uε)) + ∇ · (∂t(κ
ε∇T ε))

]

, (3.50)

and gives an equation for pε
1. Then, W ε

1 is deduced through (3.39).
To summarize, the macroscopic equations (equations for the macroscopic variables

U ε
0 = (ρε

0, a
ε,W0)) are (3.43), (3.44) and (3.45) (remember, W0 is a constant and is

given by the boundary conditions), while the microscopic equations (equations for the
microscopic variables U ε

1 = (ρε
1,−∇ϕε

1,W
ε
1 )) are (3.47), (3.48) and (3.50). From these

considerations, the low Mach number limit is obvious. First we see that the equations
for the microscopic variables involve terms of order 1 or order ε2 but no term of order
ε−2. Consequently, the microscopic variables stay bounded as ε → 0. Consequently, in
the limit ε → 0, it is legitimate to merely drop the order O(ε2) terms in the macroscopic
equations (3.43), (3.44) and (3.45), which leads to the Low-Mach number limit system.

It is interesting to investigate the limit of pε
1 when ε → 0. To this aim, we further

transform eq. (3.50) by using (3.40) and (3.37) and we find

−∇ ·

(

1

ρε
∇pε

1

)

−∇ ·

(

1

ρε
∇(

qε ⊗ qε

ρε
)

)

+ ∇ ·

(

∂t

(

1

ρε

)

aε

)

+

+∇ ·

(

1

ρε
∇(µεσ(uε))

)

= O(ε2), (3.51)

Comparing with (3.31), we find that:

−∇ ·

(

1

ρε
∇(pε

1 − P ε)

)

= O(ε2), (3.52)
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which shows that

P ε = pε
1 + O(ε2). (3.53)

Therefore, the quasi-hydrostatic pressure is, with an error of order O(ε2), equal to the first
order corrector of the fluid pressure. But where no simple elliptic equation for the pressure
corrector is found, a nice elliptic equation for the quasi-hydrostatic pressure exists. An
additional remark is that, since P ε → P as ε → 0, we similarly have pε

1 → P . This is
again a known fact that the pressure corrector converges to the hydrostatic pressure in
the low Mach number limit.

For practical applications and in particular, for numerical discretizations, it is prefer-
able to use the set of equations (3.29)-(3.30) which is more compact. In the next section,
we propose an Asymptotic-Preserving time-discretization of system (3.29)-(3.30). Again,
we will only focus on the time-discretization.

3.4 Asymptotic-Preserving time-discretization of the gauge for-

mulation

Following the same ideas as in section 2.4, we propose the following scheme:

1

∆t2
(W ε,m+1 − 2W ε,m + W ε,m−1) −

γ − 1

ε2
∇ ·

(

hε,m ∇W ε,m+1
)

+

+
γ − 1

2
∇ ·

(

hε,m ∇(ρε,m|uε,m|2)
)

−∇ ·

(

hε,m ∇(
qε,m ⊗ qε,m

ρε,m
)

)

+∇ ·

(

1

∆t
(hε,m − hε,m−1) qε,m

)

+ ∇ · (hε,m ∇(µε,mσ(uε,m)))

= ε2

[

∇ · (
1

∆t
(µε,mσ(uε,m)uε,m − µε,m−1σ(uε,m−1)uε,m−1))

+∇ · (
1

∆t
(κε,m∇T ε,m − κε,m−1∇T ε,m−1))

]

, (3.54)

1

∆t
(ρε,m+1 − ρε,m) + ∇ · qε,m = 0 , (3.55)

−∇ ·

(

1

ρε,m+1
∇P ε,m+1

)

= −∇ ·

(

aε,m 1

∆t

(

1

ρε,m+1
−

1

ρε,m

))

−

+∇ ·

(

1

ρε,m+1
∇(

qε,m ⊗ qε,m

ρε,m
)

)

−∇ ·

(

1

ρε,m+1
∇(µε,mσ(uε,m))

)

, (3.56)

1

∆t
(aε,m+1 − aε,m) + ∇(

qε,m ⊗ qε,m

ρε,m
) + ∇P ε,m+1 = ∇(µε,mσ(uε,m)) , (3.57)

−∇ ·
(

hε,m ∇ϕε,m+1
)

= −
1

∆t
(W ε,m+1 − W ε,m) −∇ ·

(

hε,m aε,m+1
)

+

+ε2∇ · (µε,mσ(uε,m)uε,m) + ε2∇ · (κε,m∇T ε,m) , (3.58)

qε,m+1 = aε,m+1 −∇ϕε,m+1 . (3.59)
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We have note hε,m = (W ε,m + pε,m)/ρε,m.
Now, we make some comments about this scheme. First, (3.54) can be deduced from

the following scheme for the first order formulation of the momentum and energy equations
(the mass equation scheme (3.55) is already of the time discretization of the first order
equation (3.1)):

1

∆t
(qε,m+1 − qε,m) + ∇(

qε,m ⊗ qε,m

ρε,m
) +

γ − 1

ε2
∇W ε,m+1 −

−
γ − 1

2
∇(ρε,m|uε,m|2) = ∇(µε,mσ(uε,m)) , (3.60)

1

∆t
(W ε,m+1 − W ε,m) + ∇ · (hε,mqε,m+1) =

= ε2∇ · (µε,mσ(uε,m)uε,m) + ε2∇ · (κε,m∇T ε,m) . (3.61)

Indeed, taking the difference of (3.61) at time m + 1 and at time m and combining with
the divergence of (3.60) leads to (3.54). We see that this scheme is based on taking the
energy flux implicit by taking the momentum implicit and the enthalpy explicit, on the
one hand, and implicit the part of the momentum flux which corresponds to the gradient
of the energy on the other hand. As in the isentropic case, this scheme is based on taking
an appropriate selection of flux terms implicitly. By contrast to the isentropic case, the
mass flux term is taken explicitly in (3.1).

Next, we easily see that (3.56) follows from applying the constraint ∇·aε,m+1/ρε,m+1 =
0 to (3.57). Finally, (3.58) is obtained by inserting the decomposition (3.59) into the first
order formulation (3.61). Therefore, the whole scheme is based on a gauge decomposition
of the semi-implicit scheme (3.55), (3.60), (3.61).

Now, we show that, in the limit ε → 0, this scheme gives a consistent approximation
of the low Mach number equations (3.9), (3.10), (3.12), (3.13). We drop the exponent
ε to indicate that we have taken the limit. We proceed by induction and suppose that
at time step m, we already have proven that Wm = p0/(γ − 1) and ϕm = 0. The latter
implies that qm = am and consequently that ∇ · (am/ρm) = ∇ · (qm/ρm) = 0.

First, let ε → 0 in (3.54) and find

γp0∇ ·

(

1

ρ
∇Wm+1

)

= 0 . (3.62)

Since Wm+1 = p0/(γ − 1) at the boundary and that p0 is uniform along the boundary
and constant in time, we deduce that Wm+1 = p0/(γ − 1) everywhere. Indeed, beeing
a constant, this function satisfies both eq. (3.62) inside the domain and the boundary
condition. Similarly, the limit ε → 0 in (3.58) leads to:

−
γp0

γ − 1
∇ ·

(

1

ρ
∇ϕm+1

)

= 0 . (3.63)

Since ∂nϕ
m+1 = 0 along the boundary, we have ϕm+1 = 0 everywhere. Then, qm+1 =

am+1 and eq. (3.56) is just equivalent to saying that ∇ · (am+1/ρm+1) = 0, as soon as
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∇· (am/ρm) = 0 which is the case by induction hypothesis. Therefore, the scheme (3.54)-
(3.59) reduces to the only equations (3.55), (3.56) and (3.57) with qε,m ≡ aε,m for all m,
and is obviouslyl consistent with the Low-Mach number model when ε → 0.

About the numerical cost of this scheme, the same remarks as in the isentropic case
can be made. The computational cost involves the inversion of three elliptic operators:
one in (3.54) for finding W ε,m+1, one in (3.56) for finding P ε,m+1 and one in (3.58) for
finding ϕε,m+1. By contrast to the isentropic case, the diffusion coefficients of these elliptic
operators change in the course of time. However, two of the three operators have the same
diffusion coefficient hε,m and the third diffusion coefficient is ρε,m, which, when ε ¿ 1,
is nearly proportional to hε,m. Beside the inversion of these three elliptic operators,
this scheme leads to explicit computations, since the various unknowns can be computed
recursively, following the order of exposition of the equations in (3.54)-(3.59). This is a big
advantage over other implicit approaches leading to more complex nonlinear iterations.

Finally, we remark that, like in the isentropic case, the conservativity of the scheme is
enforced by the use of the conservative variables (ρε, qε,W ε) and the use of the conservative
scheme (3.60), (3.61). To be more specific about this point, one needs to use a shock
capturing based discretization. The investigation of the space discretization will be the
subject to future work.

Also, like in the isentropic case, the second order (in time) formulation (3.54) can be
replaced by a first order formulation by eliminating qε,m+1 from (3.61) using (3.60). We
leave this computation to the reader.

In the next section, we investigate another example of this methodology, the isentropic
Navier-Stokes-Poisson system.

4 Isentropic Navier-Stokes-Poisson system

4.1 The model and the small Mach number / Debye length lim-

its

The isentropic Navier-Stokes-Poisson system is written:

∂tρ
ε,λ + ∇ · qε,λ = 0 , (4.1)

∂tq
ε,λ + ∇(

qε,λ ⊗ qε,λ

ρε,λ
) +

1

ε2
∇p(ρε,λ) = −

1

ε2
ρε,λ∇φε,λ + ∇(µσ(uε,λ)) , (4.2)

−λ2∆φε,λ = ρε,λ − ρB , (4.3)

where φε,λ(x, t) is the potential energy, ρB(x, t) ≥ 0 is a given non-negative neutralizing
background density and λ2 is a dimensionless parameter representing the square of the
ratio of the Debye length to the characteristic length. For instance, the considered species
are electrons, the dimensionless electric potential is −φε,λ and the neutralizing species are
positive ions.
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The scaling of this system repeats many of the considerations of section 2.1 and we
refer to that section for the notations. The equations in physical variables are written

∂t̄ρ̄ + ∇x̄ · q̄ = 0 , (4.4)

∂t̄q̄ + ∇x̄(
q̄ ⊗ q̄

ρ̄
) + ∇x̄p̄(ρ̄) = −

ρ̄

m
∇x̄φ̄ + ∇x̄(µ̄σ̄(ū)) , (4.5)

−∆x̄φ̄ =
q

ε0

(
qρ̄

m
−

qbρ̄B

mB

) . (4.6)

where q is the charge of the considered particle species and m is its mass, while qB and
mB are the charge and mass of the neutralizing background species.

In section 2.1, we supposed that the scales are related by the relations:

u0 =
x0

t0
, q0 = ρ0u0, ρ0u

2
0/p0 = ε2,

µ0

ρ0u0x0

= 1. (4.7)

Now, we introduce a potential scale φ0. Using section 2.1, the scaling of (4.4), (4.5), (4.6)
leads to

∂tρ + ∇ · q = 0 , (4.8)

∂tq + ∇(
q ⊗ q

ρ
) +

1

ε2
∇p(ρ) = −

(

φ0

mu2
0

)

ρ∇φ + ∇(µσ(u)) , (4.9)

−

(

ε0φ0m

ρ0q2x2
0

)

∆φ = ρ − ρB , (4.10)

where ρB = qmB

qBm
ρ̄B. In doing so, we assume that q/qB and mρ̄B/(mBρ0) are order unity.

That q/qB is of order unity is not restrictive in general, because the charge levels of
the ions are generally just a few unities above the electron charge. Similarly, the ratio
mρ̄B/(mBρ0) is close to one in all cases close to quasineutrality, which encompasses a
large number of situations in plasma physics.

Now, we discuss the values of the two other dimensionless parameters. We assume
that the electric potential energy scale is equal to the thermal energy scale: φ0 = mp0/ρ0.
This implies that

φ0

mu2
0

=
φ0ρ0

mp0

p0

ρ0u2
0

=
1

ε2
. (4.11)

The second parameter can be written

ε0φ0m

ρ0q2x2
0

=
ε0φ0

n0q2

1

x2
0

=
λ2

D

x2
0

, (4.12)

where we have introduced the density scale n0 = ρ0/m and recognized the definition of

the Debye length λD = ε0φ0

n0q2 . Setting λ2 =
λ2

D

x2

0

, we find system (4.1)-(4.3).

In all what follows, we want to derive an Asymptotic Preserving scheme with respect to
both limits ε → 0 and λ → 0. The limit ε → 0 alone was investigated in a series of papers
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[11], [12], [17]. These papers deal with the Euler case but they can be straightforwardly
extended to the Navier-Stokes case.

We now investigate the successive limits ε → 0 (low Mach number limit) and λ → 0
(Quasineutral limit) in both orders.

First case: λ → 0 then ε → 0: When λ → 0 first, we get the following system:

∂tρB + ∇ · qε = 0 , (4.13)

∂tq
ε + ∇(

qε ⊗ qε

ρB

) +
1

ε2
∇p(ρB) = −

1

ε2
ρB∇φε + ∇(µσ(uε)) , (4.14)

ρε = ρB , (4.15)

In this limit, we find that the particle density ρε is everywhere equal to the background
density ρB. Then, the mass equation (4.13) becomes a divergence constraint for the
momentum qε while φε appears as the Lagrange multiplier of this constraint.

We note that in the simple case where ρB is a constant, independent of position and
time (say ρB = 1 to make it easier) the model simplifies into

∇ · qε = 0 , (4.16)

∂tq
ε + ∇(qε ⊗ qε) = −

1

ε2
∇φε + ∇(µσ(uε)) , (4.17)

and we recoqnize the incompressible Navier-Stokes equation with hydrostatic pressure P =
1
ε2 φ

ε. It is interesting to note that the rescaling φ̃ε = 1
ε2 φ

ε makes the model independent
of ε and thus it coincides with its limit ε → 0.

A similar feature holds in the case of a non-constant ρB. To see this, we introduce
the enthalpy function h(ρ) such that h′(ρ) = p′(ρ)/ρ and we define ψε = 1

ε2 (φ
ε + h(ρB))

Then, the model can be written:

∂tρB + ∇ · qε = 0 , (4.18)

∂tq
ε + ∇(

qε ⊗ qε

ρB

) = −ρB∇ψε + ∇(µσ(uε)) . (4.19)

This is actually not the incompressible Navier-Stokes equation (with non-constant density
ρB) because of the pressure term replaced by ρB∇ψε. In some sense, the projection of
the momentum equation onto the divergence free fields is not the same as in the true
Navier-Stokes equation but nonetheless bears a strong similarity. Like in the constant ρB

case, the model does not depend on ε and coincides with its limit ε → 0.
The pseudo-pressure term ψε can be computed by taking the divergence of (4.19) and

using (4.18) to eliminate ∇ · qε, which leads to

∇ · (ρB∇ψε) = −∂2
t ρB + ∇2 : (

qε ⊗ qε

ρB

) −∇(µσ(uε)) , (4.20)

Second case: ε → 0 then λ → 0: To derive the ε → 0 limit, we rewrite the momentum
equation (4.2) using the enthalpy function and get

∂tq
ε,λ + ∇(

qε,λ ⊗ qε,λ

ρε,λ
) +

1

ε2
ρε,λ∇(h(ρε,λ) + φε,λ) = ∇(µσ(uε,λ)) , (4.21)
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Therefore, when ε → 0, we get at leading order that

h(ρλ) + φλ = 0 , (4.22)

We assume that ρ → h(ρ) is an increasing function from R+ into R+ and denote by h−1

its inverse function. Then, ρλ = h−1(−φλ) and the Poisson equation becomes:

−λ2∆φλ − h−1(−φλ) = −ρB , (4.23)

This is a nonlinear elliptic equation. The nonlinearity −h−1(−φλ) being an increasing
function of φλ, this problem is well-posed, provided appropriate boundary conditions are
given, which we shall leave unspecified here. In the limit ε → 0, the mass equation (4.1)
remains unchanged, but becomes a constraint for qλ since ρλ is specified by (4.22). To
find an equation for qλ, we look at the next order in ε of the momentum equation (4.2)
and we find:

∂tq
λ + ∇(

qλ ⊗ qλ

ρλ
) + ρλ∇ψλ = ∇(µσ(uλ)) , (4.24)

where ψλ = limε→0
1
ε2 (h(ρε,λ) + φε,λ).

To summarize, the low Mach number limit ε → 0 of the Navier-Stokes-Poisson system
(4.1)-(4.3) is the following system:

∂tρ
λ + ∇ · qλ = 0 , (4.25)

∂tq
λ + ∇(

qλ ⊗ qλ

ρλ
) + ρλ∇ψλ = ∇(µσ(uλ)) , (4.26)

−λ2∆φλ − h−1(−φλ) = −ρB , (4.27)

ρλ = h−1(−φλ) . (4.28)

Again, we find a kind of incompressible Navier-Stokes system but with an unusual projec-
tion ρλ∇ψλ to the divergence constraint. The divergence constraint involves a non-zero
right-hand side which is found via the resolution of a nonlinear elliptic problem.

In the limit λ → 0 of this system, we find the same modified incompressible Navier-
Stokes problem (4.18)

∂tρB + ∇ · q = 0 , (4.29)

∂tq + ∇(
q ⊗ q

ρB

) = −ρB∇ψ + ∇(µσ(u)) , (4.30)

ρ = ρB, φ = −h(ρB) . (4.31)

4.2 Gauge methodology

Here, the momentum field already satisfies the right gauge. Indeed, in either limits
λ → 0 or ε → 0 or both, the momentum field satisfies the constraint given by the mass
conservation equation (4.1). Therefore, there is no need to decompose the momentum
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field in a gauge satisfying field and a small remainder, which in the previous cases was
a gradient field. However, we will borrow from the gauge methodology that we shall
interpret the mass equation as a gauge constraint for the momentum equation. More
precisely, we shall write them

∂tρ
ε,λ + ∇ · qε,λ = 0 , (4.32)

∂tq
ε,λ + ∇(

qε,λ ⊗ qε,λ

ρε,λ
) + ρε,λ∇ψε,λ = ∇(µσ(uε,λ)) (4.33)

with the gauge pressure defined as

ψε,λ =
1

ε2
(h(ρε,λ) + φε,λ) . (4.34)

Then, if the mass conservation equation is used as a gauge, we need another equation
to find ρε,λ. For this purpose, we derive a wave-equation formulation of the system by
taking the time derivative of (4.1) and the divergence of (4.2) and subtracting them, and
using the following identity, which follows from Poisson’s equation (4.3):

∇ · (ρε,λ∇φε,λ) = ∇ρε,λ · ∇φε,λ −
1

λ2
ρε,λ(ρε,λ − ρB) , (4.35)

we find

λ2
[

ε2
(

∂2
t ρ

ε,λ −∇2 : (
qε,λ ⊗ qε,λ

ρε,λ
) + ∇(µσ(uε,λ))

)

−∇ · (ρε,λh′(ρε,λ)∇ρε,λ) −∇ρε,λ · ∇φε,λ
]

+ ρε,λ(ρε,λ − ρB) = 0 , (4.36)

Then, of course, knowing ψε,λ and ρε,λ, we recover φε,λ thanks to (4.34), i.e.

φε,λ = −h(ρε,λ) + ε2ψε,λ , (4.37)

To summarize, our gauge method is based on the following formulation:

λ2
[

ε2
(

∂2
t ρ

ε,λ −∇2 : (
qε,λ ⊗ qε,λ

ρε,λ
) + ∇(µσ(uε,λ))

)

−∇ · (ρε,λh′(ρε,λ)∇ρε,λ) −∇ρε,λ · ∇φε,λ
]

+ ρε,λ(ρε,λ − ρB) = 0 , (4.38)

∂tρ
ε,λ + ∇ · qε,λ = 0 , (4.39)

∂tq
ε,λ + ∇(

qε,λ ⊗ qε,λ

ρε,λ
) + ρε,λ∇ψε,λ = ∇(µσ(uε,λ)) . (4.40)

φε,λ = −h(ρε,λ) + ε2ψε,λ , (4.41)

We will not develop the viewpoint of the macro-micro decomposition. Indeed, there are
two parameters, and we should develop such an approach for each parameter separately,
which would be cumbersome. But this is not very difficult and this point is left to the
reader. In the next section, we propose an Asymptotic Preserving discretization with
respect to both limits ε → 0 and λ → 0.
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4.3 Asymptotic-Preserving time-discretization of the gauge for-

mulation

We propose the following time-discretization scheme of the formulation (4.38)-(4.41):

λ2
[

ε2
( 1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1) −∇2 : (

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) +

+∇(µσ(uε,λ,m))
)

−∇ · (ρε,λ,mh′(ρε,λ,m)∇ρε,λ,m+1) −∇ρε,λ,m · ∇φε,λ,m
]

+

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.42)

1

∆t
(ρε,λ,m+1 − ρε,λ,m) + ∇ · qε,λ,m+1 = 0 , (4.43)

1

∆t
(qε,λ,m+1 − qε,λ,m) + ∇(

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) + ρε,λ,m∇ψε,λ,m+1 = ∇(µσ(uε,λ,m)) . (4.44)

φε,λ,m+1 = −h(ρε,λ,m+1) + ε2ψε,λ,m+1 , (4.45)

In fact, we show that this scheme is derived from the following scheme for the standard
formulation:

1

∆t
(ρε,λ,m+1 − ρε,λ,m) + ∇ · qε,λ,m+1 = 0 , (4.46)

1

∆t
(qε,λ,m+1 − qε,λ,m) + ∇(

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) + ρε,λ,m∇ψε,λ,m+1 = ∇(µσ(uε,λ,m)) . (4.47)

−λ2∆φε,λ,m+1 = ρε,λ,m+1 − ρm+1
B , (4.48)

φε,λ,m+1 = −h(ρε,λ,m+1) + ε2ψε,λ,m+1 , (4.49)

Indeed, by taking the time difference of the mass equation (4.46) at times m + 1 and m
and combining with the divergence of (4.47), using (4.49) and the identity (4.35), we find

λ2
[

ε2
( 1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1) −∇2 : (

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) +

+∇(µσ(uε,λ,m))
)

−∇ · (ρε,λ,mh′(ρε,λ,m+1)∇ρε,λ,m+1) −∇ρε,λ,m · ∇φε,λ,m+1
]

+

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.50)

The difference between (4.50) and (4.42) is a time shift by one time step in two terms,
the second one on the second line (inside the function h) and the third one of the second
line (inside the ∇φ).

Going backwards, we easily deduce that the scheme (4.42)-(4.45) is consistent with
the Poisson equation up to terms of order O(λ2∆t). More precisely, from (4.42) and the
combination of (4.43), (4.44), we get

λ2
[

ε2 ∇ · (ρε,λ,m∇ψε,λ,m+1) −∇ · (ρε,λ,mh′(ρε,λ,m)∇ρε,λ,m+1) −∇ρε,λ,m · ∇φε,λ,m
]

+

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.51)
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which we can equivalently write:

λ2
[

ε2 ∇ · (ρε,λ,m∇ψε,λ,m+1) −∇ · (ρε,λ,m∇h(ρε,λ,m+1)) −∇ρε,λ,m · ∇φε,λ,m+1
]

+

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) +

+λ2
[

−∇ · (ρε,λ,m(h′(ρε,λ,m) − h′(ρε,λ,m+1))∇ρε,λ,m+1) −

−∇ρε,λ,m · (∇φε,λ,m −∇φε,λ,m+1)
]

= 0 . (4.52)

Then, using (4.45), we find

λ2
[

−∇ · (ρε,λ,m∇φε,λ,m+1) −∇ρε,λ,m · ∇φε,λ,m+1
]

+ ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) +

+λ2
[

−∇ · (ρε,λ,m(h′(ρε,λ,m) − h′(ρε,λ,m+1))∇ρε,λ,m+1) −

−∇ρε,λ,m · (∇φε,λ,m −∇φε,λ,m+1)
]

= 0 , (4.53)

or

ρε,λ,m(λ2∆φε,λ,m+1 + ρε,λ,m+1 − ρm+1
B ) +

+λ2
[

−∇ · (ρε,λ,m(h′(ρε,λ,m) − h′(ρε,λ,m+1))∇ρε,λ,m+1) −

−∇ρε,λ,m · (∇φε,λ,m −∇φε,λ,m+1)
]

= 0 . (4.54)

Now, the last two lines are of order O(λ2∆t). Therefore, we find that φε,λ,m+1 satisfies a
Laplace equation of the form

ρε,λ,m(λ2∆φε,λ,m+1 + ρε,λ,m+1 − ρm+1
B ) = O(λ2∆t) . (4.55)

We see that the potential is all the more close to a solution of the Poisson equation than
λ is small, i.e. that we are close to the quasineutral regime. We also see that the potential
equation is independent of ε and that it remains true in the limit ε → 0.

Now, we investigate the limits λ → 0 and ε → 0 of this scheme.

First case: λ → 0 then ε → 0: When λ → 0 first, (4.56) leads to

ρε,m(ρε,m+1 − ρm+1
B ) = 0 , (4.56)

while the other equations remain unchanged. Clearly, this means that

ρε,m+1 = ρm+1
B , (4.57)

unless ρε,m = 0, a situation in which all equations degenerate anyhow, and which we shall
disregard. Then, we clearly get a scheme consistent with (4.18), (4.19). We also keep
relation (4.45) which we gives us the value of the electric potential. However, since the
electric potential is no longer coupled with the other variables, and that the equations
(4.43), (4.44) for the momentum and the gauge potential ψ are independent of ε, the
scheme is also obviously AP in the limit ε → 0.

28



Second case: ε → 0 then λ → 0: When ε → 0, we get

λ2
[

−∇ · (ρλ,mh′(ρλ,m)∇ρλ,m+1) −∇ρλ,m · ∇φλ,m
]

+ ρλ,m(ρλ,m+1 − ρm+1
B ) = 0 , (4.58)

φλ,m+1 = −h(ρλ,m+1) , (4.59)

while equations (4.43), (4.44) stay unchanged. To see that this scheme is consistent with
system (4.25)-(4.28), it remains to show that (4.58) is consistent with Poisson’s equation
(4.27). But the approximate Poisson equation (4.54) which was derived previously from
the scheme with finite ε does not depend on ε and is therefore also true for its limit ε → 0.
This shows that Asymptotic Preserving character of the scheme in the limit ε → 0.

Then, the limit λ → 0 is obvious and leads to (4.57) (provided ρε,m 6= 0), which shows
that the resulting scheme is also consistent with the limit λ → 0 performed after the limit
ε → 0.

The computational complexity of this scheme involves the inversion of two elliptic
operators. The first one is needed for the computation of ρε,λ,m+1 by means of (4.42).
The elliptic operator to be inverted is

Aρε,λ,m+1 := −∇ · (p′(ρε,λ,m)∇ρε,λ,m+1) +

(

λ2ε2

∆t2
+ ρε,λ,m

)

ρε,λ,m+1 , (4.60)

and is well-posed, provided boundary conditions for ρε,λ,m+1 are provided. The second
one concerns the computation of ψε,λ,m+1. The equation for ψε,λ,m+1 is obtained by taking
the divergence of (4.44) and eliminating ∇· qε,λ,m+1 by using the mass equation (4.43). It
leads to:

−∇ · (ρε,λ,m∇ψε,λ,m+1) = −
1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1) +

+∇2 : (
qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) −∇(µσ(uε,λ,m)) , (4.61)

Again, this elliptic equation is well-posed. The boundary conditions in the low mach
number limit should be such that ψε,λ,m+1 stays of order O(1) otherwise the Low-Mach
number limit is not valid.

The fact that the scheme does not satisfy exactly the Poisson equation can be viewed
as a drawback in the cases where accuracy in the computation of the electrostatic inter-
action is important. In the next section, we propose a variant of this scheme with exact
enforcement of the Poisson equation.

4.4 A variant with exact enforcement of the Poisson equation

This variant is based on a reformulation (in a gauge like framework) of the scheme (4.46),
(4.49) in which we slightly modify the gauge equation (4.49) into

∇φε,λ,m+1 = −h′(ρε,λ,m)∇ρε,λ,m+1 + ε2∇ψε,λ,m+1 . (4.62)
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Indeed, only the gradients of these quantities are needed and this gauge equation is an
order ∆t approximation of (4.49). In this scheme, we are not going to compute the density
first, like in the first one, but the electrostatic potential. Since the direct use (4.48) does
not lead to an AP scheme when λ → 0, we need to reformulate the Poisson equation. We
perform it in the spirit of what has already been proposed in [11], [12], [17].

For that purpose, we take the time difference of the mass equations (4.46) at time m+1
and m, take the divergence of the momentum equation (4.47) and subtract the resulting
equations but, instead of using (4.35) to transform the term ∇ · (ρε,λ,m∇φε,λ,m+1) like we
did in the derivation of (4.50), we just directly use Poisson’s equation (4.48) to eliminate
ρε,λ,m+1 in favor of φε,λ,m+1. This leads to the following scheme:

λ2∇ · (p′(ρε,λ,m)∇∆φε,λ,m+1) −
λ2ε2

∆t2
∆φε,λ,m+1 −∇ · (ρε,λ,m∇φε,λ,m+1) +

+ε2
( 1

∆t2
(ρm+1

B − 2ρε,λ,m + ρε,λ,m−1) −∇2 : (
qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) +

+∇(µσ(uε,λ,m))
)

−∇ · (p′(ρε,λ,m)∇ρm+1
B ) = 0 , (4.63)

This equation is a fourth order elliptic equation which allows us to find φε,λ,m+1 as a
function of known data. It is completely equivalent to the scheme (4.46), (4.48) with
modified gauge equation (4.62). Once φε,λ,m+1 is known, ρε,λ,m+1 can be computed by
using the Poisson equation (4.48) directly. However, this operation might be unstable
because of the laplacian of φε,λ,m+1 in the source term. Also, it is not possible to extend
the method to the multispecies case. We prefer to use the wave-like reformulation (4.50),
which, because of the gauge change, takes the form

λ2
[

ε2
( 1

∆t2
(ρε,λ,m+1 − 2ρε,λ,m + ρε,λ,m−1) −∇2 : (

qε,λ,m ⊗ qε,λ,m

ρε,λ,m
) +

+∇(µσ(uε,λ,m))
)

−∇ · (p′(ρε,λ,m)∇ρε,λ,m+1) −∇ρε,λ,m · ∇φε,λ,m+1
]

+

+ρε,λ,m(ρε,λ,m+1 − ρm+1
B ) = 0 , (4.64)

The only change with (4.42) is that last term of the second line involves φε,λ,m+1, which
is known from the previous step, and not φε,λ,m. Again, this equation for ρε,λ,m+1 is
completely equivalent to the scheme (4.46), (4.48) with modified gauge equation (4.62).
Once ρε,λ,m+1 is known, we can solve for qε,λ,m+1 and ψε,λ,m+1 like previously.

This scheme enforces the Poisson exactly. It is AP when ε → 0 and/or λ → 0 in either
order, as can be easily seen (this point is left to the reader). However, this scheme is more
complicated because it involves the resolution of three elliptic problems instead of two:
problem (4.63) for φε,λ,m+1, problem (4.64) for ρε,λ,m+1 and problem (4.61) for ψε,λ,m+1. It
also involves the resolution of a fourth order elliptic problem (problem (4.63) for φε,λ,m+1).
Finally, it bears a slight inconsistency in the gauge equation, because it is impossible to
satisfy the gauge condition (4.62) unless ρε,λ,m is a function of ρε,λ,m+1, which is obviously
not true. However, we note that we never use this gauge condition explicitly. Also, it is
an approximation to the true gauge condition (4.49) (of order O(∆t)). We note that the
use of the true gauge condition (4.49) is possible but transforms both problems (4.63) and
(4.64) into nonlinear elliptic problems (the first one being fourth order).
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5 Conclusion

In this paper, we have proposed new semi-implicit time discretizations for the compressible
Navier-Stokes equations. These schemes are Asymptotic-Preserving in the low Mach
number limit, i.e. they are consistent with the compressible Navier-Stokes equations
when the Mach number is finite and are consistent with the incompressible equations
(or Low-Mach number limit of the compressible Navier-Stokes equations) when the Mach
number is small. To achieve Asymptotic-Preservation, we use a gauge decomposition of
the momentum field which can be interpreted as a macro-micro decomposition of the
problem. Additionally, a second order formulation in time is used for the density or
the energy, giving rise to an easy numerical resolution of the implicitness, through the
inversion of elliptic operators. A similar approach has been applied to the isentropic
Navier-Stokes-Poisson system. In future work, we will investigate the effect of the space
discretization and search for solvers which have good properties respective to the chosen
time-stepping strategies. For this purpose, intensive numerical simulations will be carried
out.
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