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Abstract. We present a local sensitivity analysis in Landau damping for the kinetic
Kuramoto equation with random inputs. The kinetic Kuramoto equation governs the
temporal-phase dynamics of the one-oscillator distribution function for an infinite ensem-
ble of Kuramoto oscillators. When random inputs are absent in the coupling strength and
initial data, it is well known that the incoherent state is nonlinearly stable in a subscritical
regime where the coupling strength is below the critical coupling strength which is deter-
mined by the geometric shape of the distribution function for natural frequency. More pre-
cisely, Kuramoto order parameter measuring the fluctuations around the incoherent state
tends to zero asymptotically and its decay mode depends on the regularity(smoothness) of
natural frequency distribution function and initial datum. This phenomenon is called as
Landau damping in the Kuramoto model in analogy with Landau damping arising from
plasma physics. Our analytical results show that Landau damping is structurally robust
with respect to random inputs at least in subscritical regime. As in the deterministic
setting, the decay mode for the derivatives of the order parameter in random space can
be either algebraic or exponential depending on the regularities of the initial datum and
natural frequency distribution, respectively, and the smoothness for the order parameter
in random space is determined by the smoothness of the coupling strength

1. Introduction

Synchronization of a weakly coupled oscillators is ubiquitous in classical and quantum
oscillatory systems, for example, flashing of fireflies, beating of cardiac pacemaker cells,
array of Josephson junctions, etc. (see [1, 3, 8, 17, 36, 39, 43, 44]). Recently, due to
possible applications in the decentralized control of drones, robots, collective behavior of
multi-agent systems has received lots of attention from diverse scientific and engineering
disciplines. After Winfree and Kuramoto’s seminal works in [35, 44], several models for
synchronization were proposed in literature [1, 36]. Among others, our main interest lies on
the Kuramoto model and its kinetic model with random inputs [23, 24]. Next, we briefly
introduce our governing models with random inputs. Let z be a random input taking
a value in Ω ⊂ Rd. Since the dimension of random space is irrelevent in the following
local sensitivity analysis, for simplicity we assume that it is one-dimensional, although the
dimension of the random parameters can cause computational challenges, so called ”curse
of dimension”. Let θi = θi(t, z) be a phase process of the i-th Kuramoto oscillator with
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uncertainty z. Then, the dynamics of the phase process is governed by the following Cauchy
problem [23, 35] for the random Kuramoto model (in short RKM):

(1.1)


∂tθi(t, z) = νi +

κ(z)

N

N∑
j=1

sin(θj(t, z)− θi(t, z)), t > 0, i = 1, · · · , N,

θi(0, z) = θini (z),

where νi is the natural (intrinsic) natural frequency of the i-th oscillator whose probability
density function is given by g = g(ν), and κ = κ(z) is a uniform coupling strength between
oscillators with random inputs z. Now we consider a large ensemble with N � 1. In
this case, it is well known from the kinetic theory [1, 30] that the dynamics of the large
ensemble can be effectively described by the corresponding mean-field kinetic equation.
More precisely, let T = R/(2πZ), and F = F (t, θ, ν, z) be a one-oscillator distribution
function at phase θ, with the natural frequency ν at time t. Then, the dynamics of F
is governed by the Cauchy problem to the random kinetic Kuramoto equation (in short
RKKE) [24]:

(1.2)



∂tF + ∂θ(V [F ]F ) = 0, (θ, ν, z) ∈ T× R× Ω, t > 0,

V [F ](t, θ, ν, z) = ν − κ(z)

∫
T×R

sin(θ − θ∗)F (t, θ∗, ν∗, z)dν∗dθ∗,

F (0, θ, ν, z) = F in(θ, ν, z), F in(θ, ν, z) = F in(θ + 2π, ν, z) and∫
T
F in(θ, ν, z)dθ = g(ν).

Note that in the absence of random inputs(parameters), global well-posedness and asymp-
totic dynamic of (1.1) and (1.2) have been extensively studied in literature [7, 9, 12, 13, 14,
15, 16, 18, 19, 20, 25, 30, 31, 32, 33, 41, 42]. Moreover, the local sensitivity analysis for the
Kuramoto models (1.1) and (1.2) with random input were also introduced in [23, 24] and
the asymptotic dynamics of the z-derivatives of F has been studied in a sufficiently large
coupling regime κ(z)� 1 where the complete synchronization estimates can be guaranteed
for a generic initial data [25].

In this paper, we are interested in the dynamic features of the random kinetic Kuramoto
equation (1.2) in a small coupling regime such as the random input effect on the nonlinear

stability of the coherent solution Fe = g(ν)
2π , which corresponds to the uniform distribution

on the unit circle. In the absence of random inputs, for a subcritical coupling strength
κ < κc (where κc is the threshold coupling strength depending on g (see [1])), the order
parameter R(t) defined in (1.7) measuring the fluctuations of the incoherent state tends to
zero, as t goes to infinity, whereas it becomes unstable for a super-scritical coupling strength
κ > κc. More precisely, under the assumption that g = g(ν) is even and non-increasing,
Mirollo and Strogatz [33] studied the linear stability of the incoherent solution. Their linear
stability results showed that the incoherent solution is unstable for κ > κc = 2

πg(0) , but

neutrally stable for κ < κc. Later, in [31], they made complete analysis of the spectrum of
the linearized evolution equation for the fixed states and proved that the fully locked special
positive states are linearly stable, however the partially locked special positive states are
only neutrally stable. This phenomenon was pioneered by Strogatz-Mirollo-Mattews [40]
and it is coined as Landau damping for the Kuramoto model in analogy with Landau
damping [4, 5, 34, 38] in plasma physics, and it becomes a recent hot topic in applied
PDE community [6, 11, 18, 14, 26, 27]. Now, we return to the random kinetic Kuramoto
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equation. For the simplicity of presentation, it is more convenient to work with a conditional
probability density function f = f(t, θ, ν, z) defined by the relation:

(1.3) F (t, θ, ν, z) = f(t, θ, ν, z)g(ν).

Then, we substitute the ansatz (1.3) into (1.2)1 to get an equation for f :
(1.4)

∂tf + ∂θ(V [f ]f) = 0, (θ, ν, z) ∈ T× R× Ω, t > 0,

V [f ](t, θ, ν, z) := ν − κ(z)

∫
T×R

sin(θ − θ∗)f(t, θ∗, ν∗, z)g(ν∗)dν∗dθ∗,

f(0, θ, ν, z) = f in(θ, ν, z), f in(θ, ν, z) = f in(θ + 2π, ν, z),

∫
T
f in(θ, ν, z)dθ = 1.

Since we are mainly interested in the asymptotic stability of fe := 1
2π , we introduce a

perturbation ρ:

(1.5) f(t, θ, ν, z) :=
1

2π
+ ρ(t, θ, ν, z), ∀ (θ, ν, z) ∈ T× R× Ω.

Again, we substitute the ansatz (1.5) into (1.4) to obtain the equation for ρ:

(1.6)


∂tρ+ ∂θ

[
V [ρ]

( 1

2π
+ ρ
)]

= 0, (θ, ν, z) ∈ T× R× Ω, t > 0,

V [ρ](t, θ, ν, z) = ν − κ(z)

∫
T×R

sin(θ − θ∗)ρ(t, θ∗, ν∗, z)g(ν∗)dν∗dθ∗,

ρ(0, θ, ν, z) = ρin(θ, ν, z),

∫
T
ρin(θ, ν, z)dθ = 0.

For the local sensitivity analysis for the Landau damping in a small coupling regime, we
introduce local order parameters with random inputs as quantities of interest(QoI) (see
[37]):

(1.7) R(t, z) =

∫
T1×R

eiθf(t, θ, ν, z)g(ν)dθdν,

where f is a solution to (1.6).

For a brief introduction to the local sensitivity analysis, we refer to survey papers by
the third author [28, 29], and some related works [2, 10, 21, 22] on the synthesis of the
collective dynamics and uncertainty quantification(UQ). Up to now, the existing literature
for the Kuramoto models deals with mostly deterministic case except [23, 24]. However, as
one can easily conceive, the presence of uncertainties are unavoidable in the realistic mod-
eling. Uncertainties can result from diverse sources, e.g., measuring errors of the domain,
data and transport coefficients etc. Therefore, it is important to see the sensitivity of QoI
with respect to the random input parameters, and to study the uncertainty propagation
and how it affects the evolution of the solution asymptotically, etc. This kind of uncertainly
quantification (UQ) analysis will help to improve and calibrate the physical models. In
this paper, we consider the uncertainty from the initial data ρin(θ, ν, z) and the coupling
strength κ(z).

The main novelty of this paper is two-fold. First, we consider the asymptotic decay of z-
variations of R(t, z) in (1.7) as t→∞ in a smooth framework where the coupling strength,
the natural frequency distribution and initial datum are sufficiently smooth in θ, ν and
z-variables. More precisely, if the coupling strength κ is in CM , and natural frequency
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distribution g, initial datum ρin are in Cn with n ≥ 4, then the z-variations of R decay to
zero algebraically fast with the same decay rate t−n (see Theorem 2.2):

|∂mz R(t, z)| = O(t−n), as t→∞ for each z ∈ Ω and 0 ≤ m ≤M,

where M is the highest regularity of the coupling strength in z-variable. As a direct appli-
cation of the first result, we also derive a scattering type estimate, which means that the ρ
along the particle path tends to some stationary profile in lower Sobolev norm Hn−2 (see
Corollary 2.2).

Second, we revisit a local sensitivity analysis for the random kinetic Kuramoto equation
in analytical framework where the coupling strength, natural frequency distribution and
initial datum are analytic. In this case, we show that the z-variations of R decay to zero
exponentially fast (see Theorem 2.4): there exists a positive constant Λ such that

|∂mz R(t, z)| = O(e−Λt), as t→∞ for each z ∈ Ω and and 0 ≤ m ≤M,

where M is the highest differentiability of the coupling strength. We also obtain a scattering
type estimate as well.

The rest of this paper is organized as follows. In Section 2, we briefly discuss the ba-
sic properties of the RKKE, and discuss two frameworks. In each framework, we briefly
summarize our main results on the asymptotic decay of ∂mz R in two different frameworks
(smooth and analytic frameworks). In Section 3, we present a local sensitivity analysis for
the RKKE in a smooth framework where the natural frequency distribution and initial
data are sufficiently smooth. In Section 4, we also present a local sensitivity analysis for
the RKKE in an analytical framework where the natural frequency distribution and initial
data are analytical. Finally Section 5 is devoted to a brief summary of our main results and
discussion on remaining issues in connection with UQ for the RKKE.

2. Frameworks and main results

In this section, we briefly present two main frameworks. In each framework, we review
the previous results for the deterministic case, and state our main local sensitivity estimate
without proofs. The detailed proofs will be given in the subsequent sections.

Before we discuss main frameworks, we first study a conservation law and order parameter
measuring the degree of collective behavior of the Kuramoto ensemble.

Lemma 2.1. For a given T ∈ (0,∞], let F = F (t, θ, ν, z) be a 2π-periodic in θ, nonnegative
classical solution to (1.2) in the time-interval [0, T ) with a nonnegative initial datum F in:∫

T
F in(θ, ν, z)dθ = g(ν),

where (θ, ν, z) ∈ T× R× Ω. Then, we have∫
T
F (t, θ, ν, z)dθ = g(ν), (θ, ν, z) ∈ T× R× Ω, t ≥ 0.

Proof. We use the 2π-periodicity of F in the θ-variable and (1.2) to get

∂t

∫
T
F (t, θ, ν, z)dθ =

∫
T
∂tF (t, θ, ν, z)dθ = −

∫
T
∂θ(Ṽ [F ]F )(t, θ, ν, z)dθ = 0,

which yields the desired result. �
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Remark 2.1. Note that since

(2.1) F (t, θ, ν, z) =
g(ν)

2π
+ ρ(t, θ, ν, z)g(ν),

Lemma 2.1 and (1.6)3 yield∫
T
ρ(t, θ, ν, z)dθ =

∫
T
ρin(θ, ν, z)dθ = 0.

Next, we introduce an order parameter measuring the collective behaviors of an infinite
Kuramoto ensemble.

Definition 2.1. Let F be a solution to (1.2). Then, the complex order parameter R is
defined by the following relation: for (t, z) ∈ R+ × Ω,

(2.2) R(t, z) :=

∫
T×R

eiθ∗F (t, θ∗, ν∗, z)dν∗dθ∗.

Remark 2.2. 1. For a Kuramoto ensemble {θi}Ni=1 with finite size, the complex order
parameter r is also defined by the relation:

r(t, z) =
1

N

N∑
i=1

eiθi(t,z).

2. We subsitute the ansatz (2.1) into (2.2) to get

(2.3) R(t, z) =

∫
T×R

eiθ∗ρ(t, θ∗, ν∗, z)g(ν∗)dν∗dθ∗.

3. The nonlocal velocity V [ρ] in (1.6) can be rewritten in terms of |R| and average phase φ
i.e., (R = |R|eiφ). For this, we first divide the relation (2.3) by eiθ and take an imaginary
part to get

|R(t, z)| sin(φ(t, z)− θ) =

∫
T×R

sin(θ∗ − θ)ρ(t, θ∗, ν∗, z)g(ν∗, z)dν∗dθ∗.

Hence, the nonlocal velocity V [ρ] becomes

V [ρ](t, θ, ν, z) = ν(z)− κ(z)|R(t, z)| sin(θ − φ(t, z)).

Next, we discuss two frameworks for our local sensitivity analysis.

2.1. A smooth framework. Before we depict our smooth Cn-framework, we recall the
Fourier transform and the Sobolev norm.

Definition 2.2. (1) Let u = u(x) be a real-valued L1-function defined on R. Then, its
Fourier transform is defined as follows.

û(τ) :=

∫
R
u(x)e−iτxdx, for τ ∈ R.

Moreover, if u = u(x) ∈ Cn(R), its weighted Sobolev norm || · ||Hn is defined as
follows.

||u||2Hn :=
n∑
k=0

||〈x〉u(k)||2L2(R),

where 〈x〉 :=
√

1 + |x|2 and u(k) denotes the k-th derivative of u.
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(2) Let u = u(θ, ν) be an L1-function defined on the infinite cylinder T1 ×R. Then, its
Fourier transform is defined as follows.

(2.4) ûk(τ) :=

∫
T1×R

u(θ, ν)e−i(θ,ν)·(k,τ)dθdν, for (k, τ) ∈ Z× R.

Moreover, if u ∈ Cn(T1 × R), its weighted Sobolev norm || · ||Hn is also defined by

(2.5) ||u||2Hn :=
∑

kθ,kν>0, kθ+kν6n

||〈ν〉∂kθθ ∂
kν
ν u||2L2(T×R).

2.1.1. The deterministic setting. In this part, we review previous results in [18] on the
Landau damping for the deterministic kinetic Kuramoto equation:

(2.6)


∂tρ+ ∂θ

(
V [ρ](ρ+

1

2π
)
)

= 0, (θ, ν) ∈ T× R, t > 0,

V [ρ](t, θ, ν) = ν − κ
∫
T×R

sin(θ − θ∗)ρ(t, θ∗, ν∗)g(ν∗)dν∗dθ∗,

ρ(0, θ, ν) = ρin(θ, ν),

∫
T
ρin(θ, ν)dθ = 0.

For a smooth initial datum ρin ∈ Cn(T1×R), it is easy to show that Cauchy problem (2.6)
has a unique global solution ρ ∈ Cn(R+×T1×R) by the standard method of characteristics.
Now, we discuss the Landau damping for (2.6), which corresponds to the decay of the order
parameter R.

For this, we set

Π− := {ξ = x+ iy : x ∈ R, y ∈ R−}
to be the lower half complex plane consisting of complex numbers with negative imaginary
part. Then, for any L1-function f = f(t),∫

R+

f(t)e−iξtdt is finite for every ξ ∈ Π−.

Now, we are ready to recall a Landau damping type result in a smooth framework.

Theorem 2.1. [18] Suppose that the distribution function g = g(ν) and its Fourier trans-
form satisfy the following conditions: for some n > 4,

(2.7) g ∈ Cn(R), ||g||Hn <∞, ĝ ∈ L1(R+) and

∫
R+

τn|ĝ(τ)|dτ <∞.

Then, for every κ > 0 such that

(2.8) 1− κ

2

∫
R+

ĝ(τ)e−iξτdt 6= 0, ∀ ξ ∈ Π−,

there exists εκ > 0 such that for any initial datum ρin:

ρin ∈ Cn(T1 × R) and ||ρing||Hn 6 εκ,

then the order parameter decays to zero algebraically fast:

R(t) = O(t−n), as t→∞.

Remark 2.3. The decay rate n of R is equal to the maximal regularity of the distribution
function g.
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As a direct application of Theorem 2.1, one has the following scattering type result for
ρ.

Corollary 2.1. [18] Suppose that (2.7) and (2.8) in Theorem 2.1 hold, and initial datum
ρin satisfies

||ρin · g||Hn < εκ.

Then, there exists a function ρ∞ defined on the cylinder with ||ρ∞ · g||Hn−2 <∞ such that

ρ(t, θ + tν, ν)g(ν)→ ρ∞(θ, ν)g in Hn−2 as t→∞.

Remark 2.4. Note that condition (2.8) is a stability criterion which was discussed in
Section 3.2 of [18].

For a later use in Section 3, we state some estimates, without proof, on the solution of
the integral equation:

(2.9) U(t) = S(t) +

∫ t

0
G(t− s)U(s)ds, for all t ∈ R+,

where G is a complex-valued kernel.

Proposition 2.1. [18] For n ∈ N, let G ∈ (L1 ∩ L∞)(R+) be a complex-valued function
satisfying ∫

R+

t4|G(t)|2dt <∞,
∫
R+

tn|G(t)|dt <∞ and DG

∣∣∣
Π−
6= 0,

where

DG := 1−
∫
R+

G(t)e−iξtdt, for all ξ ∈ R ∪Π−.

Then, there exists a positive constant Cn,G ∈ R+ such that for every complex-valued function
F defined on R+, the solution of the Volterra equation (2.9) satisfies the following estimate:
for any T > 0,

sup
0≤t≤T

(1 + t)n|U(t)| 6 Cn,G sup
0≤t≤T

(1 + t)n|S(t)|, for all t ∈ R+.

Proof. A proof can be found in Proposition 4.1 of [18]. �

2.1.2. The random uncertainty setting. In this subsection, we consider the UQ setting,
namely, random parameters z are incorporated into the initial data and the coupling
strength:

ρin = ρin(θ, ν, z), κ = κ(z).

In this setting, ρ is governed by the random kinetic Kuramoto equation:

(2.10)


∂tρ+ ∂θ

[
V [ρ]

(
ρ+

1

2π

)]
= 0, (θ, ν, z) ∈ T× R× Ω, t > 0,

V [ρ](t, θ, ν, z) = ν − κ(z)

∫
T×R

sin(θ − θ∗)ρ(t, θ∗, ν∗, z)g(ν∗)dν∗dθ∗,

ρ(0, θ, ν, z) = ρin(θ, ν, z),

∫
T
ρin(θ, ν, z)dθ = 0.

Our first result says that the deterministic Landau damping is robust with respect to random
inputs z.
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Theorem 2.2. Let n ≥ 4 and M ≥ 1 be positive integers, and for each z ∈ Ω, we assume
that κ and g satisfy conditions (2.7) and (2.8), and the extra conditions:

(i) max
06m6M

|∂mz κ(z)| ≤ C, for all 0 6 m 6M.

(ii) g ∈ Cn(R), ||g||Hn <∞, ĝ ∈ L1(R+),

∫
R+

τn|ĝ(τ)|dτ <∞.
(2.11)

Then, there exists εC > 0 such that for any initial datum ρin ∈ Cn(T1 × R × Ω) such that
||∂mz (ρing)||Hn 6 εC for all 0 6 m 6M , the order parameter associated with (2.10) satisfies

|∂mz R(t, z)| = O(t−n), as t→∞ for all 0 6 m 6M and z ∈ Ω.

Remark 2.5. Note that n is the maximal regularities of g and ρin, whereas M is the
maximal regularity of κ in z.

As a direct application of Theorem 2.2, we have the following asymptotic behavior of ρ.

Corollary 2.2. Under the same conditions (2.11) of Theorem 2.2, for any initial datum
ρin with ||∂mz (ρing)||Hn 6 εC for all 0 6 m 6 M , there exists a stationary profile ρ∞ =
ρ∞(θ, ν, z) in the cylinder with ||∂mz (ρ∞g)||Hn−2 < ∞ for all 0 6 m 6 M such that the
solution ρ(t) to equation (2.10) satisfies a scattering type result:

ρ(t, θ + tν, ν, z)g(ν) → ρ∞(θ, ν, z))g(ν) in Hn−2-norm as t→∞.

Remark 2.6. 1. Note that if we have higher regularity of z in initial datum and natural
frequency, then we can see that the same regularity of z propagates in the solution and its
order parameter’s derivative in z-variable will also decay to zero algebraically with the same
decay rate as in the deterministic case.

2. In the proofs of Theorem 2.2 and Corolllary 2.2 in next section, we will see that, when
|∂mz κ(z)| becomes small (i.e., upper bound C becomes small), εC can become large, and it
turns out if we fix ε and we can find κ(z) and corresponding bound Cε to make the results
still valid.

2.2. The analytic framework. In this part, we consider the kinetic Kuramoto equation
in the analytic framework. As before, we begin with the notations:

〈t〉 := (1 + t2)
1
2 and 〈k, τ〉 := (1 + k2 + τ2)

1
2 .

Note that 〈 · 〉 satisfies the triangular inequality:

〈k1 + k2, τ1 + τ2〉 6 〈k1, τ1〉+ 〈k2, τ2〉.
For an analytic function u defined on T1 × R, its Fourier transform can be defined as in
Definition 2.2. Next, we introduce a weight and a norm:

Aλ,pk (τ) := eλ〈k,τ〉〈k, τ〉p, ||u||λ,p := sup
k∈Z,τ∈R

Aλ,pk (τ)|ûk(τ)|, Xλ,p := {u : ||u||λ,p <∞}.

Then, the space Xλ,p is a complete metric space. We also define a quantity to control the
real order parameter |R(t)|:
(2.12) Rλ,p(t) := eλt〈t〉p|R(t)|.
Finally, we define an important norm to be frequently used in the sequel.
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Let λ0 > 0 and a be positive constants such that

0 < a <
2λ0

π
,

and for t > 0 and λ < λ0, we define the weight βa and three analytic norms with γ > 3:

βa(t, λ) := λ0 − λ− a arctan t, |||h|||a,p := sup
λ,t:βa(t,λ)>0

β1/2
a (t, λ)||h||λ,p,

|||h|||a := |||h|||a,1 + |||h(·)/〈·〉|||a,γ , ||||R||||a := sup
λ,t:βa(t,λ)>0

Rλ,γ(t),
(2.13)

where the first two norms in (2.13) apply to functions of three variable u = u(t, θ, ν) that
are analytic with (θ, ν) ∈ T1×R and continuous with t ∈ R+. The third norm is applied to
R(t) ∈ C(R+;C), which is mainly used to control the order parameter |R(t)|. We denote
the Banach spaces generated by the norms |||h|||a,p < ∞ and |||h|||a < ∞ by Ba,p and Ba,
respectively.

2.2.1. The deterministic setting. In this subsection, we review the previous results in [6] to
be extended to the uncertain setting. In next theorem, we recall the previous result relevant
to our second main result in analytical framework.

Theorem 2.3. [6] Suppose that for λ0 > 0 and γ > 3, the initial data and coupling strength
satisfy

||ρing||λ0,γ <∞ and 0 < κ� 1,

and let ρ be a solution to (2.6) with initial datum ρin. Then, there exits a positive constant
C such that

(i) |||ρ(t, θ + tν, ν)g(ν)|||a < C and |||R|||a < C.
(ii) R(t)→ 0 exponentially fast.
(iii) ∃ ρ∞(θ, ν) satisfying ||ρ∞g||λ̄,γ <∞, for some λ̄ > 0, such that

ρ(t, θ + tν, ν)→ ρ∞(θ, ν) exponentially fast.

Remark 2.7. Note that the main difference of this theorem compared with the smooth case
is that the initial data and natural frequency are analytic so that we can get exponential
decay and convergence.

2.2.2. The random setting. Next, we return to our kinetic Kuramoto equation with random
inputs (2.10).

Theorem 2.4. Let M ≥ 1 be a positive integer, and suppose that for λ0 > 0 and γ > 3,
the initial datum, natural frequency distribution and the coupling strength satisfy

(2.14) ||∂mz (ρing)||λ0,γ <∞ and |∂mz κ(z)| 6 C � 1 for all 0 6 m 6M,

and let ρ = ρ(t, θ, ν, z) be a solution to (2.10) with initial datum ρin. Then, for 0 6 m 6M ,
there exists a positive constant C such that

(i) |||∂mz (ρ(t, θ + tν, ν, z)g(ν))|||a < C and |||∂mz R|||a < C.
(ii) |∂mz R(t)| → 0 exponentially fast.
(iii) ∃ ρ∞(θ, ν, z) such that ||∂mz (ρ∞g)||λ̄,γ <∞, for some λ̄ > 0 such that

∂mz ρ(t, θ + tν, ν, z)→ ∂mz ρ∞(θ, ν, z) exponentially fast.

In the following two sections, we will provide proofs for Theorem 2.2 and Theorem 2.4
respectively.
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3. A local sensitivity analysis in the smooth framework

In this section, we provide a proof of Theorem 2.2 on the local sensitivity analysis for
Landau damping in a smooth framework.

3.1. An integral equation for the scaled order parameter. In this subsection, we
derive a Volterra integral equation (2.9) for the rescaled order parameter, and using this in-
tegral equation, we find a upper bound estimate for sup

0≤t≤T
(1+t)n|R(t)| using Proposition 3.1.

From Theorem 2.2, we need the condition that ||∂mz (ρing)||Hn 6 εC , but we want to
normalize this and see ε in the equation. Therefore, we first introduce rescaled quantities
(u, U): For a given ε > 0,

uε(t, θ, ν, z) :=
ρ(t, θ, ν, z)

ε
, U ε(t, z) :=

R(t, z)

ε
.

In the sequel, as long as there is no confusion, we suppress ε dependence in uε and U ε:

u = uε, U = U ε.

Then, it follows from (1.5) and (2.2) that or all t ∈ R+,

f(t, θ, ν, z) =
1

2π
+ εu(t, θ, ν, z),

|U(t, z)|eiφ(t,z) =

∫
T1×R

eiθu(t, θ, ν, z)g(ν)dθdν.

From now on, we call U(t, z) as the rescaled (Kuramoto) order parameter. Recall that our
immediate goal is to show that the quantity ∂mz U(t, z) decays to zero algebraically fast for
0 6 m 6M . For this, we introduce a rescaled Lagrangian density evaluated along the free
path:

p(t, θ, ν, z) := u(t, θ + tν, ν, z)g(ν).

Now, substitute the above ansatz into (1.4) to derive an equation for p: for all (θ, ν, z) ∈
T1 × R× Ω and t > 0,

(3.1)


∂tp(t, θ, ν, z) + ε∂θp(t, θ, ν, z)W [p](θ + tν, z)

+

(
g(ν)

2π
+ εp(t, θ, ν, z)

)
∂θW [p](θ + tν, z) = 0,

W [p](t, θ, z) = κ(z)

∫
T×R

sin(θ′ + tν − θ)p(t, θ′, ν, z)dθ′dν.

Then, it is easy to see from (2.4) and
∫
T1 ρ(t, θ, ν, z)dθ = 0 that

U(t, z) = p̂1(t, t, z) and p̂0(t, τ, z) = 0.

Multiplying both sides of (3.1) by ekθ+τν and replacing sin(θ′ + tν − θ) by eθ
′+tν−θ, then

doing integration, one gets

(3.2)


∂tp̂k(t, τ, z) +

kκ(z)

2

[
U(t, z)(ĝ(τ + t)δk,−1 + εp̂k+1(t, τ + t, z))

−U(t, z)(ĝ(τ − t)δk,1 + εp̂k−1(t, τ − t, z))
]

= 0, (k, τ, z) ∈ Z× R× Ω, t > 0,

p̂k(0, τ, z) = ̂(u(0)g)k(τ, z) =
f̂(0)k(τ, z)

ε
,
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where δk,j is the Kronecker delta function. (See formula (4.2) in [18] for detailed derivation
of (3.2)).
Let k = 1 and τ = t, we can get a desired equation for U :

(3.3)


U(t, z)− κ(z)

2

∫ t

0
ĝ(t− s)U(s, z)ds = F (t, z), ∀t ∈ R+,

F (t, z) = p̂1(0, t, z)− εκ(z)

2

∫ t

0
p̂2(s, t+ s, z)U(s, z)ds.

.

If we regard the term F (t, z) as an autonomous input signal, equation (3.3) appears to be a
Volterra equation of the second kind, and one can apply Proposition 2.1 on it if ĝ satisfies
the conditions in Theorem 2.1, which is the main method [18] used to prove Theorem 2.1.

Remark 3.1. It follows from Corollary 4.2 in [18] that, if g and κ satisfy the conditions of
Theorem 2.1, then κ

2 ĝ(τ) satisfies the condition of Proposition 2.1.

3.2. Proof of Theorem 2.2. In this subsection, we first present a key ingredient without
proof and then by using this ingredient, we provide a proof of Theorem 2.2. First, we apply
a differential operator ∂mz to both sides of equations (3.1) and (3.3) to get

(3.4)

∂t∂
m
z p(t, θ, ν, z) +

g(ν)

2π
∂θ∂

m
z W [p](t, θ + tν, z)

+ ε
m∑
j=0

(
m

j

)[
∂θ∂

j
zp(t, θ, ν, z)∂

m−j
z W [p](t, θ + tν, z)

+ ∂jzp(t, θ, ν, z)∂θ∂
m−j
z W [p](t, θ + tν, z)

]
= 0,

and

(3.5)



∂mz U(t, z)−
m∑

m′=0

(
m

m′

)
∂m−m

′
z κ(z)

2

∫ t

0
ĝ(t− s)∂m′z U(s, z)ds = ∂mz F (t, z),

∂mz F (t, z) = ∂mz p̂1(0, t, z)

− ε
m∑

m′=0

(
m

m′

)
∂m−m

′
z κ(z)

2

∫ t

0

m′∑
j=0

(
m′

j

)
∂jz p̂2(s, t+ s, z)∂m

′−j
z U(s, z)ds.

As in [18], given n ∈ N, a solution ∂mz p of equation (3.4) and T > 0, we consider the

quantity Q
(m)
n,T (p) for 0 6 m 6M :

Q
(m)
n,T (p, z)

:= max

{
sup
t∈[0,T ]

(1 + t)n|∂mz U(t, z)|, sup
t∈[0,T ]

||∂mz p(t, z)||Hn

1 + t
, sup
t∈[0,T ]

||∂mz p(t, z)||Hn−2

}
.

(3.6)

Next, we provide a key ingredient for the proof of Theorem 2.2.

Proposition 3.1. Let n ≥ 4 and M ≥ 1 be positive integers, and suppose that κ = κ(z)
and g = g(ν) satisfy the following conditions (2.11). Then there exists Q∗ > 0, and for
every Q > Q∗, there exists εC,Q such that for every ε ∈ (0, εC,Q), if p = p(t, θ, ν, z) is a
solution to (3.1) with initial datum pin(z) satisfying

||∂mz pin(z)||Hn 6 1 for all 0 6 m 6M,
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and for every T > 0,

Q
(m)
n,T (p) 6 Q, for all 0 6 m 6M,

Then, we have

Q
(m)
n,T (p) 6

Q

2
for all 0 6 m 6M .

Proof. Since the proof is quite lengthy, we complete it in the following two subsections for
the cases of M = 1 and M > 1 respectively. �

Proof of Theorem 2.2: In the sequel, we provide a proof of our first main result using
Proposition 3.1. First note that initial condition

||∂mz pin(z)||Hn = ||∂mz
(
uin(z)

)
· g||Hn 6 1,

Then, by (2.5) and (3.1) we can estimate

|∂mz U(0, z)| 6
∫
T×R
|∂mz pin(z)e−iθ|dθdν 6 || 〈v〉 ∂mz pin(z)||L2(T×R)|| 〈v〉−1 ||L2(T×R) 6 π

√
2.

This implies

Q
(m)
n,0 (p) 6 max{|∂mz U(0, z)|, 1} 6 π

√
2, for all 0 6 m 6M,

where the second inequality follows from Cauchy-Schwarz inequality. LetQ > max{Q∗, π
√

2}
and for any ε ∈ (0, εC,Q) and z ∈ Ω, by the standard existence theorem ∂mz p(t, θ, ν, z) is

continuous as a function of t → Cn(T1 × R). Then Q
(m)
n,T (p) is continuous in T . By the

initial condition Q
(m)
n,0 (p) 6 Q, we use Proposition 3.1 to get

Q
(m)
n,0 (p) 6

Q

2
< Q.

As a result, we can conclude for all T > 0,

Q
(m)
n,T (p) 6

Q

2
.

If not, we can define

(3.7) T ∗ := sup
T>0
{Q(m)

n,T (p) < Q}.

If T ∗ < ∞, then by continuity, we have Q
(m)
n,T ∗(p) 6 Q. Thus, it follows from Proposition

3.1 that

Q
(m)
n,T ∗(p) 6

Q

2
< Q.

Then again by continuity, there must exists a T ∗∗ > T ∗ such that Q
(m)
n,T ∗∗(p) < Q, which

contradicts to definition of T ∗ in (3.7). This implies that for any ρin(θ, ν, z) and g(ν)
satisfying

||∂mz (ρin(z) · g(ν))||Hn = ||∂mz pin(z)||Hn 6 ε for all 0 6 m 6M,

we have

(1 + t)n|∂mz R(t, z)| = ε(1 + t)n|∂mz U(t, z)| < εQ for all t > 0 and 0 6 m 6M.

�
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Remark 3.2. We can see in this proposition, Q∗ is uniform. In the following proof, we like
to choose different Q, and it turns out that if we can prove that proposition is true for M ,
then QM , εM can be used to make some conditions and conclusion automatically satisfied
for m 6M in the case of M + 1, we only need to estimate M + 1 term by induction.

3.3. Proof of Proposition 3.1 for M = 1. In this subsection, we provide a proof of
Proposition 3.1 with M = 1 following the presentation of Proposition 5.1 in [18] which
corresponds to the case M = m = 0. We use a similar method to prove that assertion in
Proposition 3.1 holds for M = 1, and then by induction we can prove it for all M > 0. In
the remaining part of this subsection, the constant C denotes the constant from Theorem
2.2. Now, we estimate supt∈[0,T ](1 + t)n|∂zU(t)| via several technical lemmas.

Lemma 3.1. Let n ≥ 4 be a positive integer, and suppose that κ = κ(z) and g = g(ν)
satisfy conditions (2.11) with M = 1. Then, there exists Q∗ > 0, and for every Q > Q∗,
there exists ε1,C,Q such that for every ε ∈ (0, ε1,C,Q), if p = p(t, θ, ν, z) is a solution to (3.1)
with initial datum pin(z) satisfying

||∂mz pin(z)||Hn 6 1 for all 0 6 m 6 1,

and for every T > 0,

Q
(m)
n,T (p) 6 Q, for all 0 6 m 6 1.(3.8)

Then, we have

sup
t∈[0,T ]

(1 + t)n|∂mz U(t, z)| 6 Q

2
for all 0 6 m 6 1.(3.9)

Proof. To estimate |U(t, z)|, we first deal with the deterministic case and relate ||p(s)||Hj

to τ j |p̂k(s, τ)|. By definition of p̂k(s, τ), we can see that τ j p̂k(s, τ) = (−i)j ∂̂jνpk(s, τ), which
is defined by

∂̂jνpk(s, τ) =

∫
T1×R

∂jνp(s, θ, ν)e−i(kθ+τν)dθdν, ∀(k, τ) ∈ Z× R.

We use definition of Hn-norm and the Cauchy-Schwarz inequality to see∫
T1×R

|∂jνpe−i(kθ+τν)|dθdν 6
∫
T1×R

〈ν〉−1〈ν〉|∂jνp|dθdν

6

(∫
T1×R

〈ν〉−2dθdν

)1/2(∫
T1×R

|〈ν〉∂jνp|2dθdν
)1/2

6
√

2π||p||Hj .

Therefore, we can easily get the following estimate: for all k ∈ Z and s, τ ∈ R+,

τ j |p̂k(s, τ)| 6
√

2π||p(s)||Hj , sup
τ∈R+

(1 + τ)n|p̂k(s, τ)| 6 2n
√

2π||p(s)||Hj .

For the uncertain case, similarly, we have

τ j |∂z p̂k(s, τ, z)| 6
√

2π||∂zp(s, z)||Hj ,

sup
τ∈R+

(1 + τ)n|∂z p̂k(s, τ, z)| 6 2n
√

2π||∂zp(s, z)||Hj .
(3.10)
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It follows from Proposition 5.1 [18] that we can find Q0, ε0 such that for every ε ∈ (0, ε0)
and every initial condition pin(z) satisfying ||pin(z)||Hn 6 1, we have

Qn,T (p) 6
Q0

2
.(3.11)

Now we will see how to choose Q1 and ε1 to obtain the result. Suppose that Q and ε satisfy
the condition:

Q > Q0, ε < ε0 and Q
(1)
n,T (p) 6 Q.

Consider equation (3.5) with m = 1:

(3.12)



∂zU(t, z)− κ(z)

2

∫ t

0
ĝ(t− s)∂zU(s, z)ds = F1(t, z) + F2(t, z),

F1(t, z) = ∂z p̂1(0, t, z)

−εκ(z)

2

∫ t

0

(
∂z p̂2(s, t+ s, z)U(s, z) + p̂2(s, t+ s, z)∂zU(s, z)

)
ds,

F2(t, z) =
∂zκ(z)

2

∫ t

0
ĝ(t− s)U(s, z)ds− ε∂zκ(z)

2

∫ t

0
p̂2(s, t+ s, z)U(s, z)ds.

By Proposition 2.1 and Remark 3.1, we have

(3.13) sup
t∈[0,T ]

(1 + t)n|∂zU(t, z)| 6 Dn,C sup
t∈[0,T ]

(1 + t)n
∣∣∣F1(t, z) + F2(t, z)

∣∣∣,
where Dn,C is a constant depending on n,C from Theorem 2.2. Next, we estimate the
R.H.S. of (3.13).

• (First term of R.H.S. of (3.13)): To deal with the term involving |F1(t, z)|, we use (3.12)
to consider the two terms separately:

(3.14) |(1 + t)n∂z p̂
in
1 (t, z)| 6 2n

√
2π||∂zpin(z)||Hn 6 2n

√
2π.

By conditions of Lemma 3.1 and (3.11), we have

(1 + t)n
∫ t

0
|∂z p̂2(s, t+ s, z)U(s, z)|ds 6 Q0

2
(1 + t)n

∫ t

0

|∂z p̂2(s, t+ s, z)|
(1 + s)n

ds

6
2n
√

2πQ0

2
(1 + t)n

∫ t

0

||∂zp(s, z)||Hn

(1 + t+ s)n(1 + s)n
ds 6

C ′Q0Q

2

∫ t

0

1

(1 + s)n−1
ds

6
C ′′Q0Q

2(n− 2)
,

(3.15)

where the second inequality is due to (3.10) and first and third equalities are due to definition
of Q0 and (3.8)). Similar estimate can be applied to obtain

(3.16) (1 + t)n
∫ t

0
|p̂2(s, t+ s, z)∂zU(s, z)|ds 6 C ′′Q0Q

2(n− 2)
.
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• (Second term of R.H.S. of (3.13)): To estimate the term involving |F2(t, z)| in (3.12), we
use almost the same method as in (3.15) and (3.16) to get∫ t

0
|ĝ(t− s)U(s, z)|ds 6 C ′Q0

∫ ∞
0
|(1 + s)nĝ(s)|ds 6 C ′′Q0,∫ t

0
|p̂2(s, t+ s, z)U(s, z)|ds 6 C ′′Q2

0

2(n− 2)
.

(3.17)

Finally, we combine all estimates (3.14), (3.15), (3.16), (3.17) and use (3.13)

|∂mz κ(z)| 6 C for 0 6 m 6 1

to obtain

(3.18) sup
t∈[0,T ]

(1 + t)n|∂zU(t, z)| 6 D′n,C
(

2n
√

2π + ε
Q0Q+Q2

0

(n− 2)
+Q0

)
,

where D′n,C is a constant depending on n,C from Theorem 2.2 and (3.13). Therefore, it is
obvious that one can first make Q larger such that

sup
t∈[0,T ]

(1 + t)n|∂zU(t, z)| 6 D′n,Cε
2Q0Q

(n− 2)
,

and then choose ε enough small to make it less than Q
2 .

Define

Q1 := max{Q0, Q} and ε1,C,Q := min{ε0, ε},

with Q and ε satisfying the above condition. Then we can get that for every ε′ ∈ (0, ε1,C,Q)
and every initial condition pin(z) satisfying

||∂mz pin(z)||Hn 6 1 for m = 0, 1,

one has

Qn,T (p) 6
Q0

2
<
Q1

2
.

This implies the condition (3.8) and the further estimation (3.9) for m = 0 are automatically

satisfied. By the above estimate, if we further have Q
(1)
n,T (p) 6 Q1, we can get

sup
t∈[0,T ]

(1 + t)n|∂zU(t, z)| 6 Q1

2
.

�

Remark 3.3. By looking carefully into Lemma 3.1 and its proof, one sees that there is
no need to pick two different Q0, Q1, but it is more convenient and clear to make them
different. Actually, it’s not hard to see that the different case is equivalent to the identical
case, that’s why in Proposition 3.1, we have only one Q∗.
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Lemma 3.2. Given l > 1, there exists a constant C ′l > 0 such that for all t > 0

d||∂zp||Hl

dt
6 C ′l

[ 1∑
m=0

m∑
m′=0

(
1

m

)(
m

m′

)
|∂m′z U(t, z)||∂m−m′z κ(z)|

×
(

(1 + t)l(||g||Hlδm,1 + ε||∂1−m
z p||H0) + ε(1 + t)

l∑
j=1

tl−j ||∂1−m
z p||Hj

)]
.

(3.19)

Proof. Since the proof is similar to that of Lemma 5.3 in [18], we omit some details here.
By definition of || · ||Hl , we need to control

(3.20)
d

dt
||〈ν〉∂kθθ ∂

kν
ν ∂zp||2L2 = 2

∫
T1×R

〈ν〉2(∂t∂
kθ
θ ∂

kν
ν ∂zp)(∂

kθ
θ ∂

kν
ν ∂zp)dθdν.

Now, we apply ∂kθθ ∂
kν
ν for equation (3.4) with m = 1. Then, we need to consider three

terms:

∂kθθ ∂
kν
ν

(
g(ν)

2π
∂θ∂

1
zW [p](t, θ + tν, z)

)
,

1∑
j=0

(
1

j

)
∂kθθ ∂

kν
ν (∂jzp(θ, ν, z)∂θ∂

1−j
z W [p](t, θ + tν, z))),

1∑
j=0

(
1

j

)
∂kθθ ∂

kν
ν (∂θ∂

j
zp(t, θ, ν, z)∂

1−j
z W [p](t, θ + tν, z)).

(3.21)

We use definition of W [p](t, θ, z) (3.1) to find

∂jθθ ∂
jν
ν ∂

J
zW [p](t, θ + tν, z)

=

J∑
j

(
J

j

)
−i∂J−jz κ(z)tjν

2

(
(−i)jθ+jνe−i(θ+tν)∂jzU(t, z)− (i)jθ+jνei(θ+tν)∂jzU(t, z)

)
.

(3.22)

• (Estimate of the first term in (3.21)): We substitute this into the first term with ∂z on
W to obtain

I11 =

∫
T1×R

〈ν〉2∂kνν
(g(ν)

π
∂kθ+1
θ ∂zW [p](t, θ + tν, z)

)
∂kνν ∂

kθ
θ ∂zpdθdν

=
1

π

∫
T1×R

〈ν〉2∂kνν ∂
kθ
θ ∂zp

( kν∑
jν=0

(
kν
jν

)[ 1∑
j=0

−i∂1−j
z κ(z)tjν

2

×
(

(−i)kθ+jνe−i(θ+tν)∂jzU(t, z)− (i)kθ+jνei(θ+tν)∂jzU(t, z)
)]
∂kν−jνν g

)
dθdν.

We use ∣∣∣ ((−i)kθ+jνe−i(θ+tν)∂jzU(t, z)− (i)kθ+jνei(θ+tν)∂jzU(t, z)
) ∣∣∣ 6 2|∂jzU(t, z)|,
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and Cauchy Schwarz inequality to estimate

|I11| 6 C ′
1∑
j=0

|∂1−j
z κ(z)|
π

|∂jzU(t, z)|||〈ν〉∂kθθ ∂
kν
ν ∂zp||L2

kν∑
jν=0

(
kν
jν

)
tjν ||〈ν〉∂kν−jνν g||L2

6 C ′′(1 + t)l
1∑
j=0

|∂1−j
z κ(z)| · |∂jzU(t, z)| · ||g||Hl · ||∂zp||Hl .

(3.23)

• (Estimate of the second and third terms in (3.21)): Then, we use a similar argument as
in the first term and proof of Lemma 5.3 in [18] to obtain the upper bound estimate of the
second and third terms:

|I12| =

∣∣∣∣∣∣
∫
T1×R

〈ν〉2
1∑
j=0

(
1

j

)
∂kθθ ∂

kν
ν

(
∂jzp(θ, ν, z)∂θ∂

1−j
z W [p](t, θ + tν, z)

)
∂kνν ∂

kθ
θ ∂zpdθdν

∣∣∣∣∣∣
6 C ′||∂zp||Hl

1∑
j=0

1−j∑
j′=0

(
1

j

)(
1− j
j′

)
|∂j′z U(t, z)||∂1−j−j′

z κ(z)|

×
(
||∂jzp||Hl +

l∑
k=1

tk||∂jzp||Hl−k+1

)
,

(3.24)

and

|I13| =

∣∣∣∣∣∣
∫
T1×R

〈ν〉2
1∑
j=0

(
1

j

)
∂kθθ ∂

kν
ν (∂θ∂

j
zp(θ, ν, z)∂

1−j
z W [p](t, θ + tν, z))∂kνν ∂

kθ
θ ∂zpdθdν

∣∣∣∣∣∣
6 C ′||∂zp||Hl

1∑
j=0

1−j∑
j′=0

(
1

j

)(
1− j
j′

)
|∂j′z U(t, z)||∂1−j−j′

z κ(z)|
l∑

k=1

tk||∂jzp||Hl−k .

(3.25)

Finally, combining estimates (3.23), (3.24), (3.25) and the relation

d||∂zp||2Hl

dt
= 2||∂zp||Hl

d||∂zp||Hl

dt

give the desired estimate. �

Remark 3.4. In this proof, many formulas have
∑

that we did not expand, and this kind
of formula is very similar for m > 0.

Now, with the above lemma, we can give an estimate for the last two terms in Q
(m)
n,T (p)

and finish the proof of Proposition 3.1 for the case M = 1.

Lemma 3.3. Let n ≥ 4 be a positive integer, and suppose that κ = κ(z) and g = g(ν)
satisfy the conditions (2.11) with M = 1. Then, there exists Q∗ > 0, and for every Q > Q∗,
there exists ε1,C,Q such that for every ε ∈ (0, ε1,C,Q), if p = p(t, θ, ν, z) is a solution to (3.1)
with initial datum pin(z) satisfying

||∂mz pin(z)||Hn 6 1 for all 0 6 m 6 1,
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and for every T > 0,

Q
(m)
n,T (p) 6 Q, for all 0 6 m 6 1,

then

sup
t∈[0,T ]

||∂mz p(t, z)||Hn

1 + t
6
Q

2
, sup

t∈[0,T ]
||∂mz p(t, z)||Hn−2 6

Q

2
, for all 0 6 m 6 1.(3.26)

Proof. As in the proof of Lemma 3.1, we use the similar argument in Proposition 5.1 [18],
to find Q0, ε0 such that for every ε ∈ (0, ε0) and every initial condition pin(z) satisfying
||pin(z)||Hn 6 1, we have

(3.27) Qn,T (p) 6
Q0

2
.

This implies

sup
t∈[0,T ]

||p(t, z)||Hn

1 + t
6
Q0

2
and sup

t∈[0,T ]
||p(t, z)||Hn−2 6

Q0

2
.

Now, we discuss how to choose Q1 and ε1 to obtain the result. If Q and ε satisfy the
conditions

(3.28) Q > Q0, ε < ε0 and Q
(1)
n,T (p) 6 Q,

we use (3.19) with l = n to get

d||∂zp||Hn

dt

6 C ′
[ 1∑
j=0

(
1

j

)
|∂1−j
z κ(z)||∂jzU(t, z)|

×
(

(1 + t)n(||g||Hl + ε||p||H0) + ε(1 + t)
n∑
j=1

tn−j ||p||Hj

)]
+ C ′κ(z)

[
|U(t, z)|

(
(1 + t)n(ε||∂zp||H0) + ε(1 + t)

n∑
j=1

tn−j ||∂zp||Hj

)]
=: I21 + I22.

(3.29)

Below, we estimate the terms I2i separately.

• (Estimate of I21): By direct estimate, we have

|I21| 6 C ′
(1 + t)n

1∑
j=0

(
1

j

)
|∂1−j
z κ(z)||∂jzU(t, z)|

||g||Hl + ε||p||H0 + ε
n∑
j=1

||p||Hj

(1 + t)j−1


6 C ′′

(
2n
√

2π + ε
Q0Q+Q2

0

(n− 2)
+Q0

)(
||g||Hl + ε(n+ 1)Q0

)
,

where the second inequality is by (2.11), (3.18), (3.27) and (3.28).
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• (Estimate of I22): Similarly, we have

|I22| 6 C ′
(1 + t)n|U(t, z)|

ε||∂zp||H0 + ε
n∑
j=1

||∂zp||Hj

(1 + t)j−1


6 C ′′Q0

(
ε(n− 1)Q+ 2ε

||∂zp||Hn

(1 + t)n−2

)
,

(3.30)

where we used ||∂zp||Hn−1 6 ||∂zp||Hn and (2.11), (3.18), (3.27), (3.28).

Therefore, we can get the estimate for ||∂zp||H
n

1+t as follows.

||∂zp||Hn

1 + t
6 max{1, A′ + εB′Q}+ 2C ′′′ε

∫ t

0

||∂zp||Hn

(1 + t)(1 + s)n−2
ds

6 max{1, A′ + εB′Q}e2C′′′ε/(n−3),

where A′, B′ and C ′′′ depend on g,Q0, n, C.

As before, one can choose Q large enough, and then choose ε small enough to get

||∂zp||Hn

1 + t
6
Q

2
.

Now, we consider the case l = n− 2 with s similar procedure to get

d||∂zp||Hn−2

dt
6 C ′

(
2n
√

2π + ε
Q0Q+Q2

0

(n− 2)
+Q0

)
(||g||Hn−2 + ε(n− 1)Q0)

1

(1 + t)2

+ C ′Q0 (ε(n− 1)Q)
1

(1 + t)2

6 (A′′ + εB′′Q)
1

(1 + t)2
,

(3.31)

where A′′, B′′ depend on g,Q0, n, C. Next, we integrate (3.31) to obtain

||∂zp||Hn−2 6 1 +A′′ + εB′′Q.

Then, as before, we choose Q large enough and then choose ε enough to obtain

||∂zp||Hn−2 6
Q

2
.

For Q, ε satisfying the above conditions, we define

Q1 := max{Q0, Q} and ε1,C,Q := min{ε0, ε}.
Then we can get for every ε′ ∈ (0, ε1,C,Q) and every initial condition pin(z) satisfying

||∂mz p(0, z)||Hn 6 1 for m = 0, 1,

we have

Qn,T (p) 6
Q0

2
<
Q1

2
.

This implies (3.26) for m = 0 is satisfied automatically. On the other hand, if we have

Q
(1)
n,T (p) 6 Q1, we have

sup
t∈[0,T ]

||∂zp(t)||Hn

1 + t
6
Q1

2
, sup

t∈[0,T ]
||∂zp(t)||Hn−2 6 Q/2 6

Q1

2
.
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�

3.4. Proof of Proposition 3.1 for M > 1. In the previous subsection, we have provided
a proof of Proposition 3.1 for M = 1 which corresponds to the initial step in a mathematical
induction.

Suppose that the results for Proposition 3.1 hold for M = N − 1 > 0, and we need to
prove the proposition holds for M = N . We use the same argument as before, and most of

details in the proof are similar, because we can exchange ∂z with ∂jθθ ∂
jν
ν or integral.

Lemma 3.4. Let n ≥ 4 be a positive integer, and suppose that κ = κ(z) and g = g(ν)
satisfy conditions (2.11) with M = 1. Then, there exists Q∗ > 0, and for every Q > Q∗,
there exists ε1,C,Q such that for every ε ∈ (0, ε1,C,Q), if p = p(t, θ, ν, z) is a solution to (3.1)
with initial datum pin(z) satisfying

||∂mz pin(z)||Hn 6 1 for all 0 6 m 6M,

and for every T > 0,

Q
(m)
n,T (p) 6 Q, for all 0 6 m 6M.

Then, we have

sup
t∈[0,T ]

(1 + t)n|∂mz U(t, z)| 6 Q

2
for all 0 6 m 6M .

Proof. Recall that we need to show

sup
t∈[0,T ]

(1 + t)n|∂Mz U(t, z)| 6 Q/2.

From the assumption, we can find QM−1, εM−1 such that for every ε ∈ (0, εM−1) and every
initial condition pin(z) that satisfies ||∂mz pin(z)||Hn 6 1 for all 0 6 m 6M − 1, we have

Qmn,T (p) 6
QM−1

2
for all 0 6 m 6M − 1.

Now we will see how to choose QM and εM to obtain the result. Suppose that Q and ε
satisfy the condition

Q > QM−1, ε < εM−1 and Q
(M)
n,T (p) 6 Q.

Next, we consider equation (3.3) for m = M :

∂Mz U(t, z)− κ(z)

2

∫ t

0
ĝ(t− s)∂Mz U(s, z)ds = F1(t, z) + F2(t.z),

F1(t, z) = ∂Mz p̂1(0, t)− εκ(z)

2

M∑
j=0

(
M

j

)∫ t

0
∂jz p̂2(s, t+ s)∂M−jz U(s, z)ds,

F2(t, z) =

M−1∑
m=0

(
M

m

)
∂M−mz κ(z)

2

∫ t

0
ĝ(t− s)∂mz U(s, z)ds

−ε
M−1∑
m=0

m∑
j=0

(
M

m

)(
m

j

)
∂M−mz κ(z)

∫ t

0
∂jz p̂2(s, t+ s, z)∂m−jz U(s, z)ds.
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Then, it follows from Proposition 2.1 and Remark 3.1 that

sup
t∈[0,T ]

(1 + t)n|∂Mz U(t, z)| 6 Cn,K sup
t∈[0,T ]

(1 + t)n |F1(t, z) + F2(t, z)| .(3.32)

We follow a similar procedure as in Lemma 3.1 with the estimation on the terms in the
right hand side of (3.32).

• (Estimate on the first term): For the estimate of (1 + t)n|F1(t, z)|, we get

|(1 + t)n∂Mz p̂1(0, t)| 6 2nπ
√

2||∂Mz p(0, z)||Hn 6 2nπ
√

2,∣∣∣∣(1 + t)n
∫ t

0
∂jz p̂2(s, t+ s)∂M−jz U(s, z)ds

∣∣∣∣
6
QM−1

2
(1 + t)n

∫ t

0

|∂jz p̂2(s, t+ s, z)|
(1 + s)n

ds

6
C ′QM−1

2
(1 + t)n

∫ t

0

||∂jzp(s, z)||Hn

(1 + t+ s)n(1 + s)n
ds

6
C ′Q2

M−1

2

∫ t

0

ds

(1 + s)n−1
=
C ′′Q2

M−1

2(n− 2)
, for 0 < j < M.

(3.33)

Similarly, for j = 0 and j = M

(3.34)
∣∣∣(1 + t)n

∫ t

0
∂jz p̂2(s, t+ s)∂M−jz U(s, z)ds

∣∣∣ 6 C ′QM−1Q

2(n− 2)
.

• (Estimate on the second term): For the estimate of (1+t)n|F2(t)|, we use a similar method
in (3.17), (3.33) and (3.34) to see

(3.35) (1 + t)n|F2(t)| 6 ε
C ′′Q2

M−1

2(n− 2)
+ C ′′QM−1.

In (3.32), we combine all estimates (3.33), (3.34) and (3.35) to obtain

(3.36) sup
t∈[0,T ]

(1 + t)n|∂Mz U(t, z)| 6 C ′′′
[
QM−1 + 2nπ

√
2 +

ε

2

(
QM−1Q+Q2

M−1

)]
,

where C ′′′ depends on n, g, C. Therefore, we can first make Q larger such that

sup
t∈[0,T ]

(1 + t)n|∂Mz U(t, z)| 6 εC ′′′QM−1Q,

and then make ε ≤ Q
2 . Then, the same argument gives the desired estimate. �

Lemma 3.5. Given l > 1, there exists a constant C ′l > 0 such that for all t > 0

d||∂Mz p||Hl

dt
6 C ′l

[ M∑
m=0

m∑
m′=0

(
M

m

)(
m

m′

)
|∂m′z U(t)||∂m−m′z κ(z)|

×
(

(1 + t)l(||g||HlδM,m + ε||∂M−mz p||H0) + ε(1 + t)

l∑
j=1

tl−j ||∂M−mz p||Hj

)]
.

(3.37)

Proof. This proof is exactly the same as in the proof of Lemma 3.2, because we can exchange

∂z and ∂jθθ ∂
jν
ν or integral. Therefore, we omit its details. �
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Lemma 3.6. Let n ≥ 4 be a positive integer, and suppose that κ = κ(z) and g = g(ν)
satisfy the conditions (2.11) with M = 1. Then, there exists Q∗ > 0, and for every Q > Q∗,
there exists ε1,C,Q such that for every ε ∈ (0, ε1,C,Q), if p = p(t, θ, ν, z) is a solution to (3.1)
with initial datum pin(z) satisfying

||∂mz pin(z)||Hn 6 1 for all 0 6 m 6M,

and for every T > 0,

Q
(m)
n,T (p) 6 Q, for all 0 6 m 6M,

then

sup
t∈[0,T ]

||∂mz p(t, z)||Hn

1 + t
6
Q

2
, sup

t∈[0,T ]
||∂mz p(t, z)||Hn−2 6

Q

2
, for all 0 6 m 6M.

Proof. By induction hypothesis. we can find QM−1, εM−1 such that for every ε ∈ (0, εM−1)
and every initial datum pin(z) satisfying ||∂mz pin(z)||Hn 6 1 for all 0 6 m 6M −1, we have

Qmn,T (p) 6
QM−1

2
for all 0 6 m 6M − 1.

This implies that for all 0 6 m 6M − 1,

sup
t∈[0,T ]

||∂mz p(t)||Hn

1 + t
6
QM−1

2
, sup

t∈[0,T ]
||∂mz p(t)||Hn−2 6

QM−1

2
.

Next, we discuss how to choose QM and εM to obtain the desired result. Suppose that Q
and ε satisfy the conditions:

Q > QM−1, ε < εM−1 and Q
(M)
n,T (p) 6 Q.

We use (3.37) with l = n to obtain

d||∂Mz p||Hn

dt

6 C ′
[ M∑
m=0

m∑
m′=0

(
M

m

)(
m

m′

)
|∂m′z U(t, z)||∂m−m′z κ(z)|

×

(1 + t)n(||g||HnδM,m + ε||∂M−mz p||H0) + ε(1 + t)
n∑
j=1

tn−j ||∂M−mz p||Hj

]

6 C ′′
∑

m+m′6M

|∂m′z U(t, z)|

(1 + t)n(||g||Hnδm,0 + ε||∂mz p||H0) + ε(1 + t)

n∑
j=1

tn−j ||∂mz p||Hj


6 C ′′ (QM−1(ε(n+ 1)QM−1 + 1) + (A+ εBQ) (||g||Hn + ε(n+ 1)QM−1))

+ C ′′QM−1

(
ε(n− 1)Q+ 2ε

||∂Mz p||Hn

(1 + t)n−2

)
,

where A,B are from (3.36) and the first term is for m,m′ < M , the second term is for
m′ = M , and the third term is for m = M .
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Therefore, we can get a final estimate for ||∂
M
z p||Hn
1+t as

||∂Mz p||Hn

1 + t
6 max{1, A′ + εB′Q}+ 2C ′′′ε

∫ t

0

||∂Mz p||Hn

(1 + t)(1 + s)n−2
ds

6 max{1, A′ + εB′Q}e2C′′′ε/(n−3),

where A′, B′, C ′′′ depend on g,QM−1,M, n,C.

Again, we apply (3.19) with l = n− 2 to get

d||∂Mz p||Hn−2

dt

6 C ′′
∑

m+m′6M

[
|∂m′z U(t, z)|

×
(

(1 + t)n−2(||g||Hnδm,0 + ε||∂mz p||H0) + ε(1 + t)
n−2∑
j=1

tn−2−j ||∂mz p||Hj

)]
6

C ′′

(1 + t)2

[
(ε(n− 1)QM−1 + 1)QM−1 + (A+ εBQ) (||g||Hn−2 + ε(n− 1)QM−1)

+ ε(n+ 1)QM−1Q
]
,

where A,B is from (3.36) and the first term is for m,m′ < M , the second term is for
m′ = M , ans the third term is for m = M.

Therefore, we can get the final estimate for ||∂
M
z p||Hn
1+t :

||∂Mz p||Hn−2 6 1 +A′′ + εB′′Q,

where A′′, B′′ depend on g,QM−1,M, n,C. As before, we choose Q large enough, and then
choose ε small enough to get

||∂Mz p||Hn−2 6
Q

2
.

�

3.5. Proof of Corollary 2.2. Suppose that pin, g and κ satisfy conditions (2.11) of The-
orem 2.2, and let p(t, z) be a solution to (3.1) with initial datum pin(z). Then, it suffices
to show supt ||∂mz p(t)||Hn−2 <∞ and

pin(θ, ν, z) +

∫
R+

[
ε
m∑
j=0

(
m

j

)(
∂θ∂

j
zp(t, θ, ν, z)∂

m−j
z W [p](t, θ + tν, z)

+ ∂jzp(θ, ν, z)∂θ∂
m−j
z W [p](t, θ + tν, z)

)
+
g(ν)

2π
∂θ∂

m
z W [p](t, θ + tν, z)

]
dt
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is well-defined in Hn−2. This is equivalent to show that the following three terms

I31(T ) :=

∫ ∞
T

g(ν)

2π
∂θ∂

m
z W [p](t, θ + tν, z)dt,

I32(T ) :=

∫ ∞
T

m∑
j=0

(
m

j

)
∂jzp(t, θ, ν, z)∂θ∂

m−j
z W [p](t, θ + tν, z)dt,

I33(T ) :=

∫ ∞
T

m∑
j=0

(
m

j

)
∂θ∂

j
zp(t, θ, ν, z)∂

m−j
z W [p](t, θ + tν, p, z)dt

converge to zero in Hn−2, as T →∞.

• (Zero convergence of I31(T )): We use ||g||Hn−2 6 ||g||Hn < ∞, (3.22), Proposition 3.1
and n ≥ 4 to see

(3.38)

||I31(T )||Hn−2 6 C ′
∫ ∞
T

m∑
j=0

|∂m−jz κ(z)||∂jzU(t, z)|||g||Hn−2dt

6
C ′′Q

2

∫ ∞
T

1

(1 + t)n
dt → 0, as T →∞,

where C ′, C ′′ depend on g,m,C.

• (Zero convergence of I32(T ) and I32(T )): Note that Proposition 4.1 yields

||∂jzp||Hn−2 <
Q

2
,
||∂jzp||Hn

1 + t
<
Q

2
.

This and n ≥ 4 yield

(3.39)

||I32(T )||Hn−2 6 C ′
∫ ∞
T

m∑
j=0

m−j∑
j′=0

||∂jzp||Hn−2 |∂j′z κ(z)||∂m−j−j′z U(t, z)|dt

6
C ′′Q2

2

∫ ∞
T

1

(1 + t)n
dt → 0, as T →∞,

||I33(T )||Hn−2 6 C ′
∫ ∞
T

m∑
j=0

m−j∑
j′=0

||∂jzp||Hn−1 |∂j′z κ(z)||∂m−j−j′z U(t, z)|dt

6
C ′′Q2

2

∫ ∞
T

1

(1 + t)n−1
dt → 0, as T →∞,

where C ′, C ′′ depend on m,C. Finally, we collect all estimates (3.38) and (3.39) to complete
the proof.

�

4. A local sensitivity analysis in an analytic framework

In this section, we provide the proof of Theorem 2.4 on the local sensitivity for Landau
damping in the analytic framework.
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4.1. Transformation of the equation. First, we introduce a Lagrangian density along
the free path:

h(t, θ, ν, z) := f(t, θ + tν, ν, z)g(ν) =
g(ν)

2π
+ ρ(t, θ + tν, ν)g(ν).

By this definiton, because of ĝk(τ) = 0 for any k, τ , we have

(4.1) ||h(t, θ, ν, z)||λ,p = ||ρ(t, θ + tν, ν)g(ν)||λ,p

for all λ > 0, p > 0. Then, it is easy to see that h satisfies

(4.2)


∂th(t, θ, ν, z) + ∂θ

(
h(t, θ, ν, z)V [h](t, θ + tν, z)

)
= 0,

h(t, θ, ν, z) > 0,

∫
T
h(t, θ, ν, z)dθ = g(ν),

V [h](t, θ, z) := κ(z)
∫
T×R sin(θ′ + tν − θ)h(t, θ′, ν, z)dθ′dν,

and the complex order parameter can be represented by:

R(t, z) =

∫
T×R

ei(θ+tν)h(t, θ, ν, z)dθdν.

Therefore, with this h, the condition in (2.14) and (4.1) could give us ||∂mz h||λ0,r < ∞ for
all 0 6 m 6M , and it suffices to prove for all 0 6 m 6M

(i) |||∂mz h(t, θ, ν, z)|||a < C and |||∂mz R|||a < C.
(ii) |∂mz R(t)| → 0 exponentially fast.
(iii) ∃ h∞(θ, ν, z) such that ||∂mz h∞||λ̄,γ <∞, for some λ̄ > 0 such that

∂mz h(t, θ, ν, z)→ ∂mz h∞(θ, ν, z) exponentially fast.

For M = 0, this has been proven by Theorem 2.3.

As before, we perform the Fourier transform on both sides of (4.2)1 to get

(4.3) ĥk(t, τ, z) = ĥink(τ, z) + kκ(z)
∑
q∈±1

q

2

∫ t

0
Γq(s)ĥk−q(s, τ − qs, z)ds,

where we have

Γ1(t, z) = R(t, z), Γ−1(t, z) = R(t, z) and R(t, z) = ĥ1(t, t, z).

Therefore, we set k = 1, τ = t to see

(4.4) Γ1(t, z) = ĥin1(t, z) + kκ(z)
∑
q∈±1

q

2

∫ t

0
Γq(s)ĥ1−q(s, t− qs, z)ds.

Then, we define an operator Lt acting on a function u = u(t, θ, ν, z) such that

L̂tu(t, k, τ, z) = k
∑
q∈±1

q

2
Γq(t, z)ûk−q(t, τ − qt, z).

This yields

∂th = κLth
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Next, we apply ∂mz on both sides of equations (4.3) and (4.4):

∂̂mz hk(t, τ, z) = ∂̂mz h
in
k(τ, z) + k

m∑
m′=0

m′∑
j=0

(
m

m′

)(
m′

j

) ∑
q∈±1

q

2
∂m−m

′
z κ(z)

×
∫ t

0
∂jzΓq(s, z)∂

m′−j
z ĥk−q(s, τ − qs, z)ds,

(4.5)

and

∂mz Γ1(t, z) = ∂̂mz h
in

1(t, z) + k
m∑

m′=0

m′∑
j=0

(
m

m′

)(
m′

j

) ∑
q∈±1

q

2
∂m−m

′
z κ(z)

×
∫ t

0
∂jzΓq(s, z)∂

m′−j
z ĥ1−q(s, t− qs, z)ds,

(4.6)

where

(4.7)

∫
T1

∂mz h(t, θ, ν, z)dθ = 0, ∀ν ∈ R, z ∈ Ω, t > 0, for m = 1, · · · ,M.

4.2. A priori estimates. By definition of (∂mz R)λ,p(t, z) in (2.12), it suffices to show that
(∂mz R)λ,p(t, z) is bounded for some λ, p and all t. As in [6], we have a similar estimate for
(∂mz R)λ,p(t, z). In the sequel, the constant C is from Theorem 2.4.

Proposition 4.1. For λ, p,m > 0 and z ∈ Ω, we have

(∂mz R)λ,p(t, z) 6 ||∂mz hin(z)||λ,p + C ′
m∑

m′=0

m′∑
j=0

|∂m−m′z κ(z)|||∂m′−jz hin(z)||λ,p

×
∫ t

0
(∂jzR)λ,p(s, z)

(
1

〈s〉p
+

1

〈t− s〉p

)
ds

+ C ′
m∑

m′=0

m′∑
j=0

|∂m−m′z κ(z)|
∫ t

0
(∂jzR)λ,p(s, z)

||∂m
′−j

z h(s, z)||λ,p
〈s〉p

ds,

hin(θ, ν, z) = ρin(θ, ν, z) · g(ν).

(4.8)

Proof. We multiply eλt〈t〉p on both sides of (4.6) to get

eλt〈t〉p∂̂mz hk(t, τ, z)

= eλt〈t〉p∂̂mz hink(τ, z) + eλt〈t〉pk
m∑

m′=0

m′∑
j=0

(
m

m′

)(
m′

j

) ∑
q∈±1

q

2
∂m−m

′
z κ(z)

×
∫ t

0
∂jzΓq(s, z)∂

m′−j
z ĥk−q(s, τ − qs, z)ds

=: I41 + I42.

(4.9)

Below, we estimate the terms I4i, i = 1, 2 on the right hand sides of (4.9) as follows.

• (Estimate on I41): By direct estimate, one has

(4.10) |eλt〈t〉p∂̂mz hin1(t, z)| 6 eλ〈1,t〉〈1, t〉p|∂̂mz hin1(t, z)| 6 ||∂mz hin(z)||λ,p.
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• (Estimate on I42): We consider the case of q = 1 and use (4.7) to obtain

∂̂m
′−j

z h1−q(s, t− qs, z) = ∂̂m
′−j

z h0(s, t− s, z) = ∂̂m
′−j

z h0(0, t− s, z).
Therefore, for each m′ and j, I42 can be bounded by

eλt〈t〉p
∫ t

0
|∂jzΓ1(s, z)∂̂m

′−j
z h0(s, t− s, z)|ds

6 eλt〈t〉p
∫ t

0
|∂jzΓ1(s, z)∂̂m

′−j
z h0(0, t− s, z)|ds

6 ||∂m′−jz hin(z)||λ,peλt〈t〉p
∫ t

0
e−λ〈t−s〉〈t− s〉−p|∂jzΓ1(s, z)|ds

6 ||∂m′−jz hin(z)||λ,p
∫ t

0
(∂jzR)λ,p(s, z)

〈t〉p

〈s〉p〈t− s〉p
eλ(t−s−〈t−s〉)ds

6 C ′||∂m′−jz hin(z)||λ,p
∫ t

0
(∂jzR)λ,p(s, z)

(
1

〈s〉p
+

1

〈t− s〉p

)
ds,

(4.11)

where the last inequality is due to the following relations:

〈t− s〉 > (t− s) and 〈t〉p 6 C(〈s〉p + 〈t− s〉p).
For the case of q = −1, we use a similar method to get that for each j. The term can be
bounded by

eλt〈t〉p|∂jzΓ−1(s, z)∂̂m
′−j

z h2(s, t+ s, z)|ds

6
∫ t

0
(∂jzR)λ,p(s, z)||∂m

′−j
z h(s, z)||λ,peλ(t−s)−λ〈t+s〉 〈t〉p

〈s〉p〈t+ s〉p
ds

6 C ′
∫ t

0
(∂jzR)λ,p(s, z)

||∂m
′−j

z h(s, z)||λ,p
〈s〉p

ds.

(4.12)

In (4.9), by combining estimates (4.10), (4.11) and (4.12), one can get the desired estimate.
�

Next, we provide a proposition to be used in the estimation of ||∂mz h||λ,p.

Proposition 4.2. Given Γ±1(t, z), for λ, p,m > 0, we have the following assertions:

(4.13)

||∂mz Lth(t, z)||λ,p

6 C ′
m∑
j=0

[
(∂jzR)λ,0(t, z)||∂m−jz h(t, z)||λ,p+1 + (∂jzR)λ,p(t, z)||∂m−jz h(t, z)||λ,1

]
,

and

(4.14) ||f ||λ,p+1 6
1

λ′ − λ
||f ||λ′,p,

for all f ∈ Xλ,p and λ′ > λ

Proof. The second part and case m = 0 in (i) follow from Proposition 2 [6]. On the other
hand, we use a similar method to prove the first part. First, it follows from (4.1) that

∂̂mz Lth(t, k, τ, z) = k

m∑
j=0

(
m

j

) ∑
q∈±1

q

2
∂jzΓq(t, z)∂̂

m−j
z hk−q(t, τ − qt, z).
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For each j, we set

Jj := eλ〈k,τ〉〈k, τ〉p
∑
q∈±1

q

2
∂jzΓq(t, z)∂̂

m−j
z hk−q(t, τ − qt, z).

Then, we have

(4.15) |Jj | 6
|∂jzR(t, z)||k|

2

∑
q∈±1

eλ〈k,τ〉〈k, τ〉p
∣∣∣∣∂̂m−jz hk−q(t, τ − qt, z)

∣∣∣∣ .
On the other hand, recall some inequalities on 〈k, τ〉:

〈k, τ〉 6 〈k − q, τ − qt〉+ 〈q, qt〉, 〈q, qt〉 6 C ′ + t, |q| = 1,

〈k, τ〉p 6 C ′(〈k − q, τ − qt〉p + 〈t〉p), |q| = 1.

Now, we further estimate the term |Jj | as follows.

|Jj | 6 C ′eλt|∂jzR(t, z)|
∑
q∈±1

eλ〈k−q,τ−qt〉|k|〈k − q, τ − qt〉p
∣∣∣∣∂̂m−jz hk−q(t, τ − qt, z)

∣∣∣∣
+ C ′eλt|∂jzR(t, z)|

∑
q∈±1

eλ〈k−q,τ−qt〉|k|〈t〉p
∣∣∣∣∂̂m−jz hk−q(t, τ − qt, z)

∣∣∣∣ .(4.16)

Since |k| 6 2〈k − q, τ − qt〉, |q| = 1, we can obtain

(4.17) |Jj | 6 C ′
[
(∂jzR)λ,0(t)||∂m−jz h(t)||λ,p+1 + (∂jzR)λ,p(t)||∂m−jz h(t)||λ,1

]
.

Finally, adding all |Jj | in (4.15), (4.16) and (4.17) yields the desired estimate. �

From the above proposition, we can see that the operator Lt maps function in Xλ,p to a
different space Xλ,p+1, i.e., they are not the same space. This is why paper [6] introduces
the nrom ||| · |||a. Next, we provide an estimate for the control of |||∂mz h|||a. We fix

γ > 3, λ0 > λ > 0 and
2λ0

π
> a > 0.

Then, we define the corresponding βa(t, λ) and norm ||| · |||a and |||| · ||||a.

Proposition 4.3. For given Γ±1(t) with |||∂jzR|||a < ∞ for all j 6 m and m > 0, let
h = h(t, θ, ν, z) be a solution to (4.3) and (4.5). Then, we have

|||∂mz h|||a 6 C ′||∂mz hin||λ0,γ + C ′
m∑

m′=0

m′∑
j=0

|∂m−m′z κ(z)|||||∂jzR||||a|||∂m
′−j

z h|||a.

Proof. For the desired estimate, we need to use (4.5) and the estimate (4.13) in Proposition
4.2. First, we consider ||∂mz h(t)||λ,1 using (4.13) in the case of p = 1. We use γ > 3 to
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obtain

||∂mz h(t, z)||λ,1

6 C ′||∂mz hin(z)||λ,1 + C ′
m∑

m′=0

|∂m−m′z κ(z)|

×
∫ t

0

m′∑
j=0

[
(∂jzR)λ,0(s, z)||∂m′−jz h(s, z)||λ,2 + (∂jzR)λ,1(s, z)||∂m′−jz h(s, z)||λ,1

]
ds

6 C ′||∂mz hin(z)||λ,1 + C ′
m∑

m′=0

|∂m−m′z κ(z)|

×
∫ t

0

m′∑
j=0

(∂jzR)λ,γ(s, z)

(
1

〈s〉γ−1

||∂m
′−j

z h(s, z)||λ,γ
〈s〉

+
1

〈s〉γ−1
||∂m′−jz h(s, z)||λ,1

)
ds.

(4.18)

Then, multiplying β
1
2 (t, λ) on both sides of (4.18) gives

β
1
2 (t, λ)||∂mz h(t, z)||λ,1 6 C ′||∂mz hin(z)||λ,1

+ C ′
m∑

m′=0

|∂m−m′z κ(z)|
m′∑
j=0

||||∂jzR||||a|||∂m
′−j

z h|||a
∫ t

0

1

〈s〉2
β

1
2 (t, λ)

β
1
2 (s, λ)

ds,

where we used the inequality:

∫ t

0

1

〈s〉2
β

1
2 (t, λ)

β
1
2 (s, λ)

ds 6
π

2
.

Next, we need to estimate ||∂mz h(t)||λ,γ using (4.13) in the case of p = γ. We also use (4.14)
for any λ′(s) > λ with λ0 − λ′(s)− a arctan(s) > 0 to get

||∂mz h(t, z)||λ,γ

6 C ′||∂mz hin(z)||λ,1 + C ′
m∑

m′=0

|∂m−m′z κ(z)|

×
∫ t

0

m′∑
j=0

[
(∂jzR)λ,0(s, z)||∂m′−jz h(s, z)||λ,γ+1 + (∂jzR)λ,γ(s, z)||∂m′−jz h(s, z)||λ,1

]
6 C ′||∂mz hin(z)||λ,1 + C ′

m∑
m′=0

|∂m−m′z κ(z)|

×
∫ t

0

m′∑
j=0

(∂jzR)λ,γ(s, z)
( 1

〈s〉γ
||∂m

′−j
z h(s, z)||λ,γ
λ′(s)− λ

+ ||∂m′−jz h(s, z)||λ,1
)
ds.

(4.19)
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We divide (4.19) by 〈t〉 and multiply the resulting relation by β1/2(t, λ) to obtain

β1/2(t, λ)

〈t〉
||∂mz h(t, z)||λ,γ 6 C ′||∂mz hin(z)||λ,1

+ C ′
m∑

m′=0

|∂m−m′z κ(z)|
m′∑
j=0

||||∂jzR||||a|||∂m
′−j

z h|||a(I51 + I52),

where

I51 :=
β1/2(t, λ)

〈t〉

∫ t

0

ds

〈s〉2β1/2(s, λ)(λ′(s)− λ)
,

I52 :=
β1/2(t, λ)

〈t〉

∫ t

0

ds

β1/2(s, λ)
.

Following Proposition 3 in [6], one can choose λ′(s) properly to make |I51|, |I52| less than a
constant. Finally, for the very first term, we use λ0 > λ to derive

||∂mz hin(z)||λ,1 6 ||∂mz hin(z)||λ0,1.

�

Proposition 4.4. Let h be a function such that

|||∂jzh|||a <∞ for all j 6 m, and m > 0.

If Γ±1(t, z) solves (4.4) and (4.6), it satisfies

||||∂mz R||||a 6 C ′||∂mz hin||λ0,γ + C ′
m∑

m′=0

|∂m−m′z κ(z)|

×
m′∑
j=0

(||∂m′−jz h(0)||λ0,γ ||||∂jzR||||a + |||∂m′−jz h|||a||||∂jzR||||a).

Proof. For our desired estimate, one only needs to use (4.8) for p = γ and λ0 > λ. The first
two terms in (4.8) yield

C ′||∂mz hin(z)||λ0,γ + C ′
m∑

m′=0

|∂m−m′z κ(z)|
m′∑
j=0

||∂m′−jz h(0, z)||λ0,γ ||||∂jzR||||a.

We use the last term and
∫ t

0
1

〈s〉2β1/2(t,λ)
ds 6 2

aλ
1/2
0 due to Proposition 4 [6] to find

C ′
m∑

m′=0

|∂m−m′z κ(z)|
m′∑
j=0

|||∂m′−jz h|||a||||∂jzR||||a.

�

4.3. Proof of Theorem 2.4. In this subsection, we provide a proof for our second main
result. For this, we use Propositions 4.3 and 4.4.

• Case A (M = 1): Suppose that for each z ∈ Ω, let h(t, θ, ν, z),Γ±1(t, z), ∂zh(t, θ, ν, z), ∂zΓ±1(t, z)
be solutions to (4.3) and (4.4), respectively.
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For m = 1, we can apply Propositions 4.3 and 4.4 to obtain

||||∂zR||||a 6 C ′||∂zhin||λ0,γ
+ C ′C

∑
j1+j261

(||∂j1z hin||λ0,γ ||||∂j2z R||||a + |||∂j1z h|||a||||∂j2z R||||a),

|||∂zh|||a 6 C ′||∂zhin||λ0,γ + C ′C
∑

j1+j261

||||∂j1z R||||a|||∂j2z h|||a,

where C is a bound for |∂lzκ(z)|. This implies

(1− C ′C(||hin||λ0,γ + |||h|||a))||||∂zR||||a

6 C ′||∂zhin||λ0,γ + C ′C||||R||||a
( 1∑
j=0

|||∂jzh|||a + |||∂jzhin|||λ0,γ
)
,

(4.20)

and

(4.21) (1− C ′C||||R||||a)|||∂zh|||a 6 C ′||∂zhin||λ0,γ + C ′C|||h|||a(||||∂zR||||a + ||||R||||a).

Substituting (4.21) into (4.20) gives{
1− C ′C(||hin(z)||λ0,γ + |||h|||a)−

C ′2C2

1− C ′C||||R||||a
||||R||||a|||h|||a

}
||||∂zR||||a

6 C ′||∂zhin(z)||λ0,γ + C ′C||||R||||a

×
(
|||h|||a +

C ′||∂zhin(z)||λ0,γ + C ′C|||h|||a||||R||||a
1− C ′C||||R||||a

+

1∑
j=0

|||∂jzhin(z)|||λ0,γ
)
.

Choosing C sufficiently small such that

1− C ′C
(
||hin(z)||λ0,γ + |||h|||a

)
− C ′2C2

1− CC||||R||||a
||||R||||a|||h|||a < 1

then

||||∂zR||||a

6
C ′||∂zhin||λ0,γ + C ′C||||R||||a

(
|||h|||a +

C′||∂zhin||λ0,γ+C′C|||h|||a||||R||||a
1−C′C||||R||||a +

∑1
j=0 |||∂

j
zhin|||λ0,γ

)
1− {1− CK(||hin||λ0,γ + |||h|||a)− C2K2

1−CK||||R||||a ||||R||||a|||h|||a}
.

Note that the bound is a constant, so is |||∂zh|||a = |||∂mz (f(t, θ + tν, ν, z))|||a.

• Case B (M > 1): We basically use the method of induction on M . Suppose that the
desired results hold for M 6 N − 1. Next, we verify the desired estimate for M = N . As
before, for m = M , applying Propositions 4.3 and 4.4 gives

||||∂Mz R||||a 6 C ′||∂Mz hin||λ0,γ
+ C ′C

∑
j1+j26M

(||∂j1z hin||λ0,γ ||||∂j2z R||||a + |||∂j1z h|||a||||∂j2z R||||a),

|||∂Mz h|||a 6 C ′||∂Mz hin||λ0,γ + C ′C
∑

j1+j26M

||||∂j1z R||||a|||∂j2z h|||a.
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Since

||∂jzhin(z)||λ0,γ <∞ for j 6M and ||||∂jzR||||a <∞, |||∂jzh|||a <∞ for j < M ,

by choosing C sufficiently small such that

1− C ′C(||hin(z)||λ0,γ + |||h|||a)−
C ′2C2

1− C ′C||||R||||a
||||R||||a|||h|||a < 1,

one has

||||∂Mz R||||a, |||∂Mz h|||a < C ′′,

where C ′′ is a constant.

We choose 0 < λ1 < λ2 < λ0 − aπ/2 and use (4.13) for λ = λ1, p = γ to get

||∂mz Lth(t)||λ1,γ 6 C ′
m∑
j=0

[
(∂jzR)λ1,0(t)||∂m−jz h(t)||λ1,γ+1 + (∂jzR)λ1,γ(t)||∂m−jz h(t)||λ1,1

]
.

By definition of above elements and (4.14), one obtains

(∂jzR)λ1,0(t, z) 6 C ′(∂jzR)λ2,0(t, z)e(λ1−λ2)t,

||∂m′−jz h(t, z)||λ1,γ+1 6
1

λ2 − λ1
||∂m′−jz h(t, z)||λ2,γ ,

||∂m′−jz h(t, z)||λ1,1 6
1

λ2 − λ1
||∂m′−jz h(t, z)||λ2,0 6

1

λ2 − λ1
||∂m′−jz h(t, z)||λ2,γ .

Therefore, the following inequality holds:

||∂m′z Lth(t, z)||λ1,γ 6
C ′

λ2 − λ1

 m′∑
j=0

||||∂jzR||||a|||∂m
′−j

z h|||a

 e(λ1−λ2)t.

This implies

||∂mz hin(z)||λ1,γ +

m∑
m′=0

(
m

m′

)
|∂m−m′z κ(z)|

∫
R+

||∂mz Lth(t, z)||λ1,γdt

6 ||∂mz hin(z)||λ0,γ +
C ′

(λ2 − λ1)2

 ∑
j1+j26m

||||∂j1z R||||a|||∂j2z h|||a

 <∞.

Now, we set

∂mz h∞(θ, ν, z) := ∂mz h
in +

m∑
m′=0

(
m

m′

)
|∂m−m′z κ(z)|

∫
R+

∂m
′

z Lth(t)dt.

Then, it is well-defined in Xλ1,γ and ||∂mz h∞||λ1,γ <∞ with

||∂mz h∞ − ∂mz h(t)||λ1,γ 6
C ′′

(λ2 − λ1)2
e(λ1−λ2)t,

which converges exponentially fast. This completes the proof.
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Remark 4.1. In the course of the proof, one might need to assume

||||∂Mz R||||a <∞, |||∂Mz h|||a <∞.
Then, one can apply Propositions 4.3 and 4.4 to get the uniform bound. By performing a
similar iteration as in Theorem 1 in [6], one can get this condition. Since this is not our
main goal, we omit this part.

5. Conclusion

In this paper, we have conducted a local sensitivity analysis for Landau damping to
the random kinetic Kuramoto equation in a small coupling strength regime. The kinetic
Kuramoto equation can be derived from the random Kuramoto model via the mean-field
limit. As aforementioned in Introduction, the realistic modelings of physical phenomena
involve many uncertainties in , for examples, physical domain, boundary conditions, trans-
port coefficients, etc. Thus, uncertainties in problem setting are ubiquitous and need to be
quantified.

The stability of the incoherent state for the Kuramoto model has been addressed in Ku-
ramoto’s seminal work in a mean-field setting. In particular, he found that the incoherent
state can be linearly stable in the subcritical coupling strength regime, whereas it is lin-
early unstable in a supercritical regime. The extension of this linear results to the original
nonlinear equation is called the Kuramoto conjecture. Recently, there were lots of progress
in this direction. In this paper, we revisit the nonlinear stability problem of the incoherent
solution in the framework of ”uncertainty quantification:, by conducting the local sensitiv-
ity analysis. Our finding shows that as long as the coupling strength and initial datum are
sufficiently regular and small, the Landau damping is still true even with random uncertain
perturbation, with the same decay in time as in the deterministic case.

There are several interesting issues that we have not addressed in this paper, for example
the random effects on the nonlinear instability of the incoherent state in the supercritical
coupling regime, and dynamic features in the vicinity of critical coupling strength, etc. We
point out that these issues are also not clearly understood even in the deterministic setting.
We leave these studies for a future work.
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