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Short Definition

The computation of macroscopic properties, as pre-
dicted by the laws of statistical physics, requires sam-
pling phase-space configurations distributed according
to the probability measure at hand. Typically, approx-
imations are obtained as time averages over trajecto-
ries of discrete dynamics, which can be shown to be
ergodic in some cases. Arguably, the greatest interest
is in sampling the canonical (constant temperature)
ensemble, although other distributions (isobaric, mi-
crocanonical, etc.) are also of interest. Focusing on
the case of the canonical measure, three important
types of methods can be distinguished: (1) Markov
chain methods based on the Metropolis—Hastings algo-
rithm; (2) discretizations of continuous stochastic dif-
ferential equations which are appropriate modifications
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and/or limiting cases of the Hamiltonian dynamics;
and (3) deterministic dynamics on an extended phase
space.

Description

Applications of sampling methods arise most com-
monly in molecular dynamics and polymer modeling,
but they are increasingly encountered in fluid dynamics
and other areas. In this article, we focus on the treat-
ment of systems of particles described by position and
momentum vectors ¢ and p, respectively, and modeled
by a Hamiltonian energy H = H(q, p).

Macroscopic properties of materials are obtained,
according to the laws of statistical physics, as the
average of some function with respect to a proba-
bility measure p describing the state of the system
(» Calculation of Ensemble Averages):

E,(A) = fg A(q. p) u(dq dp). ()

In practice, averages such as (1) are obtained by gener-
ating, by an appropriate numerical method, a sequence
of microscopic configurations (¢', p’);>o such that

lim
n——+o00

1 n—1 ) )
LY AP = /5 (g, p) p(dq dp). @
i=0

The Canonical Case
For simplicity, we consider the case of the canonical
measure:
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u(dqdp) = Z;'e PH@D dq dp,

Z, = / e~ BH.p) dq dp. 3)
£

where 87! = kgT. Many sampling methods designed
for the canonical ensemble can be extended or adapted
to sample other ensembles.

If the Hamiltonian is separable (i.e., it is the sum
of a quadratic kinetic energy and a potential energy),
as is usually the case when Cartesian coordinates are
used, the measure (3) has a tensorized form, and the
components of the momenta are distributed accord-
ing to independent Gaussian distributions. It is there-
fore straightforward to sample the kinetic part of the
canonical measure. The real difficulty consists in sam-
pling positions distributed according to the canonical
measure

v(dg) = Z e D dq 7, = /De—ﬁvm dq.

“)
which is typically a high dimensional distribution, with
many local concentrated modes. For this reason, many
sampling methods focus on sampling the configura-
tional part v of the canonical measure.

Since most concepts needed for sampling purposes
can be used either in the configuration space or in the
phase space, the following notation will be used: The
state of the system is denoted by x € S C R?, which
can be the position space ¢ € D (and then d = 3N),
or the full phase space (¢, p) € £ with d = 6N.
The measure 7(dx) is the canonical distribution to be
sampled (v in configuration space, u in phase space).

General Classification

From a mathematical point of view, most sampling

methods may be classified as (see [2]):

1. “Direct” probabilistic methods, such as the standard
rejection method, which generate identically and
independently distributed (i.i.d) configurations

2. Markov chain techniques

3. Markovian stochastic dynamics

4. Purely deterministic methods on an extended phase-
space

Although the division described above is useful to bear

in mind, there is a blurring of the lines between the dif-

ferent types of methods used in practice, with Markov
chains being constructed from Hamiltonian dynamics
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or degenerate diffusive processes being added to deter-
ministic models to improve sampling efficiencies.

Direct probabilistic methods are typically based on
a prior probability measure used to sample configura-
tions, which are then accepted or rejected according
to some criterion (as for the rejection method, for
instance). Usually, a prior probability measure which
is easy to sample should be used. However, due to
the high dimensionality of the problem, it is extremely
difficult to design a prior sufficiently close to the
canonical distribution to achieve a reasonable accep-
tance rate. Direct probabilistic methods are therefore
rarely used in practice.

Markov Chain Methods

Markov chain methods are mostly based on the
Metropolis—Hastings algorithm [5, 13], which is a
widely used method in molecular simulation. The prior
required in direct probabilistic methods is replaced by
a proposal move which generates a new configuration
from a former one. This new configuration is then
accepted or rejected according to a criterion ensuring
that the correct measure is sampled. Here again,
designing a relevant proposal move is the cornerstone
of the method, and this proposal depends crucially on
the model at hand.

The Metropolis—Hastings Algorithm

The Metropolis—Hastings algorithm generates a

Markov chain of the system configurations (x"),>¢

having the distribution of interest 7 (dx) as a stationary

distribution. The invariant distribution 7 has to be

known only up to a multiplicative constant to perform

this algorithm (which is the case for the canonical

measure and its marginal in position). It consists in

a two-step procedure, starting from a given initial

condition x°:

1. Propose a new state " ! from x” according to the
proposition kernel 7' (x", -)

2. Accept the proposition with probability min
( N(fcn-H) T(;Cn+1’xn)

’ T[(X") T(xn’)‘zn+l)
xn+1

), and set in this case

= ¥"t1: otherwise, set x" 1 = x”

It is important to count several times a configuration
when a proposal is rejected.

The original Metropolis algorithm was proposed
in [13] and relied on symmetric proposals in the config-
uration space. It was later extended in [5] to allow for
nonsymmetric propositions which can bias proposals

n+1
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toward higher probability regions with respect to the
target distribution m. The algorithm is simple to in-
terpret in the case of a symmetric proposition kernel
on the configuration space (w(x) o e #"@ and
T(q.q9") = T(q',q)). The Metropolis—Hastings ratio
is simply

r(q.q") = exp[-B(V(q") — V(9))].

If the proposed move has a lower energy, it is always
accepted, which allows to visit more frequently the
states of higher probability. On the other hand, tran-
sitions to less likely states of higher energies are not
forbidden (but accepted less often), which is important
to observe transitions from one metastable region to
another when these regions are separated by some
energy barrier.

Properties of the Algorithm
The probability transition kernel of the Metropolis—
Hastings chain reads

P(x,dx")y = min (1, r(x,x")) T (x,dx’)

+ (1 — a(x)) 8. (dx"), ®)
where o(x) € [0, 1] is the probability to accept a move
starting from x (considering all possible propositions):

a(x) = [Smin(l, r(x,y)) T(x,dy).

The first part of the transition kernel corresponds to
the accepted transitions from x to x’, which occur
with probability min (1, r(x, x")), while the term (1 —
a(x))d, (dx") encodes all the rejected steps.

A simple computation shows that the Metropolis—
Hastings transition kernel P is reversible with respect
to 7, namely, P(x,dx)n(dx) = P(x',dx)m(dx’).
This implies that the measure 7 is an invariant mea-
sure. To conclude to the pathwise ergodicity of the al-
gorithm (2) (relying on the results of [ 14]), it remains to
check whether the chain is (aperiodically) irreducible,
i.e., whether any state can be reached from any other
one in a finite number of steps. This property depends
on the proposal kernel 7', and should be checked for
the model under consideration.

Besides determining the theoretical convergence
of the algorithm, the proposed kernel is also a key
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element in devising efficient algorithms. It is observed

in practice that the optimal acceptance/rejection rate,

in terms of the variance of the estimator (a mean of
some observable over a trajectory), for example, is
often around 0.5, ensuring some balance between:

* Large moves that decorrelate the iterates when they
are accepted (hence reducing the correlations in the
chain, which is interesting for the convergence to
happen faster) but lead to high rejection rates (and
thus degenerate samples since the same position
may be counted several times)

* And small moves that are less rejected but do not
decorrelate the iterates much

This trade-off between small and large proposal moves

has been investigated rigorously in some simple cases

in [16,17], where optimal acceptance rates are obtained
in a limiting regime.

Some Examples of Proposition Kernels

The most simple transition kernels are based on ran-
dom walks. For instance, it is possible to modify the
current configuration by a random perturbation applied
to all particles. The problem with such symmetric
proposals is that they may not be well suited to the
target probability measure (creating very correlated
successive configurations for small o, or very unlikely
moves for large o). Efficient nonsymmetric proposal
moves are often based on discretizations of continuous
stochastic dynamics which use a biasing term such as
—VV to ensure that the dynamics remains sufficiently
close to the minima of the potential.

An interesting proposal relies on the Hamiltonian
dynamics itself and consists in (1) sampling new mo-
menta p” according to the kinetic part of the canon-
ical measure; (2) performing one or several steps of
the Verlet scheme starting from the previous position
q", obtaining a proposed configuration (g"+!, p"T!);
and (3) computing " = exp[-B(H ("', ") —
H(g", p™))] and accepting the new position ¢" ! with
probability min(1, r"). This algorithm is known as
the Hybrid Monte Carlo algorithm (first introduced
in [3] and analyzed from a mathematical viewpoint
in [2,20]).

A final important example is parallel tempering
strategies [10], where several replicas of the system
are simulated in parallel at different temperatures, and
sometimes exchanges between two replicas at different
temperatures are attempted, the probability of such an
exchange being given by a Metropolis—Hastings ratio.
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Continuous Stochastic Dynamics

A variety of stochastic dynamical methods are in use
for sampling the canonical measure. For simplicity of
exposition, we consider here systems with the N-body
Hamiltonian H = p"M~'p/2 + V(q).

Brownian Dynamics
Brownian dynamics is a stochastic dynamics on the
position variable ¢ € D only:

2
dg, = -VV(q,)dt + \/;dVVn

where W, is a standard 3 N -dimensional Wiener pro-
cess. It can be shown that this system is an ergodic pro-
cess for the configurational invariant measure v(dgq) =
Ztexp(—BV(q)) dq, the ergodicity following from
the elliptic nature of the generator of the process. The
dynamics (6) may be solved numerically using the
Euler—-Maruyama scheme:

(6)

2At
= 6",

qn+l — qn _ AIVV(qn) + /3

@)

where the (G"),>o are independent and identically
distributed (i.i.d.) centered Gaussian random vectors in
R3N with identity covariance matrix E (G" ® G") =
Idsy . Although the discretization scheme does not ex-
actly preserve the canonical measure, it can be shown
under certain boundedness assumptions (see [12,21]),
that the numerical scheme is ergodic, with an invariant
probability close to the canonical measure v in a
suitable norm. The numerical bias may be eliminated
using a Metropolis rule, see, e.g., [16, 18].

Langevin Dynamics

Hamiltonian dynamics preserve the energy, while a
sampling of the canonical measure requires visiting all
the energy levels. Langevin dynamics is a model of a
Hamiltonian system coupled with a heat bath, defined
by the following equations:

dq[ =M_1p[ dt,

dpi = —VV(q:)dt —y(q) M~ p; dt + o (q;) d Wi,
(3)

where W, is a 3N -dimensional standard Brownian
motion, and o and y are (possibly position dependent)
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3N x 3N real matrices. The term o (q,) d W, is a fluc-
tuation term bringing energy into the system, this en-
ergy being dissipated through the viscous friction term
—y(q:) M~ p; dt. The canonical measure is preserved
precisely when the “fluctuation-dissipation” relation
ooT = 2 is satisfied. Many variants and extensions
of Langevin dynamics are available.

Using the Hormander conditions, it is possible to
demonstrate ergodicity of the system provided o(q)
has full rank (i.e., a rank equal to 3N) for all ¢ in
position space. A spectral gap can also be demonstrated
under appropriate assumptions on the potential energy
function, relying on recent advances in hypocoercivity
[22] or thanks to Lyapunov techniques.

Brownian motion may be viewed as either the non-
inertial limit (m — 0) of the Langevin dynamics, or
its overdamped limit (y — oo) with a different time-
scaling.

The discretization of stochastic differential equa-
tions, such as Langevin dynamics, is still a topic of
research. Splitting methods, which divide the system
into deterministic and stochastic components, are in-
creasingly used for this purpose. As an illustration,
one may adopt a method whereby Verlet integration is
supplemented by an “exact” treatment of the Ornstein—
Uhlenbeck process, replacing

dp. = —y(q) M 'p,dt + a(q:)dW,

by a discrete process that samples the associated Gaus-
sian distribution. In some cases, it is possible to show
that such a method is ergodic.

Numerical discretization methods for Langevin dy-
namics may be corrected in various ways to exactly
preserve the canonical measure, using the Metropo-
lis technique [5, 13] (see, e.g., the discussion in [9],
Sect. 2.2).

Deterministic Dynamics on Extended Phase
Spaces

It is possible to modify Hamiltonian dynamics by the
addition of control laws in order to sample the canoni-
cal (or some other) distribution. The simplest example
of such a scheme is the Nosé—Hoover method [6, 15]
which replaces Newton’s equations of motion by the
system:
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g=M"p,
p=-VV(g) —ép,
E=07'(p"M ' p— NksT),

where O > 0 is a parameter. It can be shown
that this dynamics preserves the product distribution
e BH@.P) g=BOE/2 5 4 stationary macrostate. It is, in
some cases (e.g., when the underlying system is linear),
not ergodic, meaning that the invariant distribution is
not unique [7]. Nonetheless, the method is still popular
for sampling calculations. The best arguments for
its continued success, which have not been founded
rigorously yet, are that (a) molecular systems typically
have large phase spaces and may incorporate liquid
solvent, steep potentials, and other mechanisms that
provide a strong internal diffusion property or (b)
any inaccessible regions in phase space may not
contribute much to the averages of typical quantities of
interest.

The accuracy of sampling can sometimes be im-
proved by stringing together “chains” of additional
variables [11], but such methods may introduce addi-
tional and unneeded complexity (especially as there are
more reliable alternatives, see below). When ergodicity
is not a concern (e.g., when a detailed atomistic model
of water is involved), an alternative to the Nosé—
Hoover method is to use the Nosé—Poincaré method [1]
which is derived from an extended Hamiltonian and
which allows the use of symplectic integrators (pre-
serving phase space volume and, approximately, en-
ergy, and typically providing better long-term stability;
see » Molecular Dynamics).

Hybrid Methods by Stochastic Modification

When ergodicity is an issue, it is possible to enhance
extended dynamics methods by the incorporation of
stochastic processes, for example, as defined by the ad-
dition of Ornstein—Uhlenbeck terms. One such method
has been proposed in [19]. It replaces the Nosé—Hoover
system by the highly degenerate stochastic system:

dqt = M_lp[ dl,
dp. = (=VV(q,) —§p,) dt,

N 2
[Q‘l(pr‘lpt——) —y} di+ | =L aw,

aé
: g
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which incorporates only a scalar noise process. This
method has been called the Nosé-—Hoover—Langevin
method in [8], where also ergodicity was proved in the
case of an underlying harmonic system (V' quadratic)
under certain assumptions. A similar technique, the
“Langevin Piston” [4] has been suggested to control the
pressure in molecular dynamics, where the sampling
is performed with respect to the NPT (isobaric—
isothermal) ensemble.
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Short Definition

The Schrodinger equation forms the basis of nonrel-
ativistic quantum mechanics and is fundamental for
our understanding of atoms and molecules. The entry
motivates this equation and embeds it into the general
framework of quantum mechanics.

Description

Introduction

Quantum mechanics links chemistry to physics.
Conceptions arising from quantum mechanics form
the framework for our understanding of atomic and
molecular processes. The history of quantum mechan-
ics began around 1900 with Planck’s analysis of the
black-body radiation, Einstein’s interpretation of
the photoelectric effect, and Bohr’s theory of the
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hydrogen atom. A unified framework allowing for
a systematic study of quantum phenomena arose,
however, first in the 1920s. Starting point was de
Broglie’s observation of the wave-like behavior of
matter, finally result- ing in the Schrodinger equation
[8] and [3] for the multiparticle case. The purpose of
this article is to motivate this equation from some
basic principles and to sketch at the same time
the mathematical structure of quantum mechanics.
More information can be found in textbooks on
quantum mechanics like Atkins and Friedman [1]
or Thaller [11, 12]. The first one is particularly devoted
to the understanding of the molecular processes
that are important for chemistry. The second and
the third one more emphasize the mathematical
structure and contain a lot of impressive visualizations.
The monograph [4] gives an introduction to the
mathematical theory. A historically very interesting
text, in which the mathematically framework of
quantum mechanics has been established and which
was at the same time a milestone in the development
of spectral theory, is von Neumann’s seminal treatise
[13]. The present exposition is largely taken from
Yserentant [14].

The Schrodinger Equation of a Free Particle
Let us first recall the notion of a plane wave, a complex-
valued function

R xR — C: (x,1) — elk~—ior, 1)
with k € R? the wave vector and @ € R the
frequency. A dispersion relation @ = w(k) assigns
to each wave vector a characteristic frequency. Such
dispersion relations fix the physics that is described by
this kind of waves. Most common is the case v =
c¢|k| which arises, for example, in the propagation of
light in vacuum. When the wave nature of matter was
recognized, the problem was to guess the dispersion
relation for the matter waves: to guess, as this hy-
pothesis creates a new kind of physics that cannot be
deduced from known theories. A good starting point
is Einstein’s interpretation of the photoelectric effect.
When polished metal plates are irradiated by light of
sufficiently short wave length they may emit electrons.
The magnitude of the electron current is as expected
proportional to the intensity of the light source, but
their energy surprisingly to the wave length or the
frequency of the incoming light. Einstein’s explanation
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was that light consists of single light quanta with
energy and momentum

)

depending on the frequency w and the wave vector k.
The quantity

h = 1.0545716- 107 kgm?s™!

is Planck’s constant, an incredibly small quantity of
the dimension energy x time called action, reflecting
the size of the systems quantum mechanics deals with.
To obtain from (2) a dispersion relation, Schrodinger
started first from the energy-momentum relation of
special relativity, but this led by reasons not to be
discussed here to the wrong predictions. He therefore
fell back to the energy-momentum relation

1
E = —|p|?
2m|p|

from classical, Newtonian mechanics. It leads to the
dispersion relation

h
— |k|?
2m

w =

for the plane waves (1). These plane waves can be
superimposed to wave packets

Y(x.1) = («/%_ny/ e~k G (k) e dk. (3)

These wave packets are the solutions of the partial
differential equation

“)

the Schrédinger equation for a free particle of mass m
in absence of external forces.

The Schrodinger equation (4) is of first order in
time. Its solutions, the wavefunctions of free particles,
are uniquely determined by their initial state . If ¥
is arapidly decreasing function (in the Schwartz space)
the solution possesses time derivatives of arbitrary
order, and all of them are rapidly decreasing functions
of the spatial variables. To avoid technicalities, we
assume this for the moment. We further observe that
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fw(x,r)de - /mk,z)pdk

remains constant in time. This follows from Plancherel’s
theorem, a central result of Fourier analysis. We
assume in the sequel that this value is normalized
to 1, which is basic for the statistical interpretation
of the wavefunctions . The quantities |y|> and |@|2
can then be interpreted as probability densities. The
integrals

/ (e 0P dx, /ﬁ(k,z)pdk
2 Q

represent the probabilities to find the particle at time ¢
in the region £2 of the position space, respectively, the
region £2 of the momentum space. The quantity

h2 ~
f— |k |? ¥ (k, )| dk,
2m

is the expectation value of the kinetic energy. With help
of the Hamilton operator

h2

H= ——
2m

A, (&)

this expectation value can be rewritten as

/w T dx = (. Hy).

The expectation values of the components of the mo-
mentum are in vector notation

/hk [V (k. 1)|? dk.

Introducing the momentum operator
p = —ihV (6)

their position representation is the inner product

/w 7V dx = (. py).

The expectation values of the three components of the
particle position are finally

/x W OPdx = Wq).
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with ¢ the position operator given by ¥ — x1i.
This coincidence between observable physical quanti-
ties like energy, momentum, or position and operators
acting upon the wavefunctions is in no way accidental.
It forms the heart of quantum mechanics.

The Mathematical Framework of Quantum
Mechanics

We have seen that the physical state of a free particle at
a given time ¢ is completely determined by a function
in the Hilbert space L, that again depends uniquely on
the state at a given initial time. In the case of more
general systems, the space L, is replaced by another
Hilbert space, but the general concept remains:

Postulate 1. A quantum-mechanical system consists of
a complex Hilbert space H with inner product (-, -) and
a one-parameter group U(t), t € R, of unitary linear
operators on H with

U0)=1 U@+1t)=Us)U@)

that is strongly continuous in the sense that for all €
‘H in the Hilbert space norm

lim Uy = .

A state of the system corresponds to a normalized vec-
tor in ‘H. The time evolution of the system is described
by the group of the propagators U(t); the state

v() =U@®)y(0)

of the system at time t is uniquely determined by its
state at time t = 0.

(N

In the case of free particles considered so far, the
solution of the Schrodinger equation and with that
time evolution is given by (3). The evolution operators
U(t), or propagators, read therefore in the Fourier or
momentum representation

V) — ekl k).

Strictly speaking, they have first only been defined
for rapidly decreasing functions, functions in a dense
subspace of L,, but it is obvious from Plancherel’s
theorem that they can be uniquely extended from there
to L, and have the required properties.

The next step is to move from Postulate 1 to an ab-
stract version of the Schrodinger equation. For that we
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have to establish a connection between such strongly
continuous groups of unitary operators and abstract
Hamilton operators. Let D(H) be the linear subspace
of the given system Hilbert space # that consists of
those elements v in H for which the limit

Hy = ih lim o -1 v
=0 T
exists in the sense of norm convergence. The mapping
¥ — Hy from the domain D(H) into the Hilbert
space H is then called the generator H of the group.
The generator of the evolution operator of the free
particle is the operator

h2

H = —
2m

@)

with the Sobolev space H? as domain of definition
D(H). In view of this observation, the following result
for the general abstract case is unsurprising:

Theorem 1 For all initial values 1 (0) in the domain
D(H) of the generator of the group of the propagators
U(t), the elements (7) are contained in D(H), too,
depend continuously differentiable on t, and satisfy the
differential equation

ih Sy = HyO. ©)
dr

It should be noted once more, however, that the dif-
ferential (9), the abstract Schrodinger equation, makes
sense only for initial values in the domain of the
generator H, but that the propagators are defined on
the whole Hilbert space.

A little calculation shows that the generators of one-
parameter unitary groups are necessarily symmetric.
More than that, they are even selfadjoint. There is
a direct correspondence between unitary groups and
selfadjoint operators, Stone’s theorem, a cornerstone in
the mathematical foundation of quantum mechanics:

Theorem 2 IfU(¢), t € R, is a one-parameter unitary
group as in Postulate 1, the domain D(H) of its
generator H is a dense subset of the underlying Hilbert
space and the generator itself selfadjoint. Every selfad-
Jjoint operator H is conversely the generator of such a
one-parameter unitary group, that is usually denoted
as _
U(t) = e #H1,
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Instead of the unitary group of the propagators, a
quantum-mechanical system can be thus equivalently
fixed by the generator H of this group, the Hamilton
operator, or in the language of physics, the Hamiltonian
of the system.

In our discussion of the free particle, we have
seen that there is a direct correspondence between
the expectation values of the energy, the momentum,
and the position of the particle and the energy or
Hamilton operator (5), the momentum operator (6), and
the position operator x — x . Each of these operators
is selfadjoint. This reflects the general structure of
quantum mechanics:

Postulate 2. Observable physical quantities, or ob-
servables, are in quantum mechanics represented by
selfadjoint operators A : D(A) — H defined on dense
subspaces D(A) of the system Hilbert space H. The
quantity

(4) = (V. Ay)

is the expectation value of a measurement of A for the
system in state € D(A).

(10)

At this point, we have to recall the statistical nature
of quantum mechanics. Quantum mechanics does not
make predictions on the outcome of a single mea-
surement of a quantity A but only on the mean result
of a large number of measurements on “identically
prepared” states. The quantity (10) has thus to be
interpreted as the mean result that one obtains from a
large number of such measurements. This gives reason
to consider the standard deviation or uncertainty

AA = Ay — (A)y|

for states ¥ € D(A). The uncertainty is zero if and
only if Ay = (A)y, that is, if ¥ is an eigenvector of
A for the eigenvalue (A). Only in such eigenstates the
quantity represented by the operator A can be sharply
measured without uncertainty. The likelihood that a
measurement returns a value outside the spectrum of
A is zero.

One of the fundamental results of quantum me-
chanics is that, only in exceptional cases, can different
physical quantities be measured simultaneously with-
out uncertainty, the Heisenberg uncertainty principle.
Its abstract version reads as follows:

Theorem 3 Let A and B two selfadjoint operators
and let W be a normalized state in the intersection of
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D(A) and D(B) such that Ay € D(B) and By €
D(A). The product of the corresponding uncertainties
is then bounded from below by

AADB = SI(BA-ABW. ). (1)

The proof is an exercise in linear algebra. As an
example, we consider the components

., 0
Pk = —lha

4k = Xk,
of the position and the momentum operator. Their
commutators are

qrkPk — Prqx = ihl

This results in the Heisenberg uncertainty principle

1
Api Aqi > th (12)

Position and momentum therefore can never be
determined simultaneously without uncertainty,
independent of the considered state of the system.
The inequality (12) and with that also (11) are sharp as
the instructive example

v = (=) n(3)
X = B — ol =
Vo 1
of the rescaled three-dimensional Gauss functions

() = (5=) e (= P)

of arbitrary width demonstrates. For these wavefunc-
tions, the inequality (12) actually turns into an equality.
From

V() = (V9) Yo(9k)
one recognizes that a sharp localization in space, that
is, a small parameter ¢ determining the width of v, is
combined with a loss of localization in momentum.
States with a well defined, sharp energy E play a
particularly important role in quantum mechanics, that
is, solutions ¥ # 0 in H of the eigenvalue problem

HYy = EVY,
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the stationary Schrédinger equation. The functions
t —e ik tayr

represent then solutions of the original time-dependent
Schrodinger equation. The main focus of quantum
chemistry is on stationary Schrédinger equations.

The Quantum Mechanics of Multiparticle

Systems

Let us assume that we have a finite collection of N
particles of different kind with the spaces L,(£2;) as
system Hilbert spaces. The Hilbert space describing the
system that is composed of these particles is then the
tensor product of these Hilbert spaces or a subspace
of this space, that is, a space of square integrable
wavefunctions

Y21 x...x2y > C

with the N-tuples (§1,...,&n), & € £2;, as arguments.
From the point of view of mathematics, this is of
course another postulate that can in a strict sense not
be derived from anything else, but is motivated by the
statistical interpretation of the wavefunctions and of
the quantity || as a probability density. Quantum-
mechanical particles of the same type, like electrons,
can, however, not be distinguished from each other
by any means or experiment. This is both a physical
statement and a mathematical postulate that needs to
be specified precisely. It has striking consequences for
the form of the physically admissible wavefunctions
and of the Hilbert spaces that describe such systems
of indistinguishable particles.

To understand these consequences, we have to recall
that an observable quantity like momentum or energy
is described in quantum mechanics by a selfadjoint op-
erator A and that the inner product (¥, Ay) represents
the expectation value for the outcome of a measure-
ment of this quantity in the physical state described by
the normalized wavefunction . At least a necessary
condition that two normalized elements or unit vectors
¥ and v’ in the system Hilbert space H describe
the same physical state is surely that (¥, Ay) =
(y', Ay’) for all selfadjoint operators A : D(A) C
H — H whose domain D(A) contains both i and
Y, that is, that the expectation values of all possi-
ble observables coincide. This requirement fixes such
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states almost completely. Wavefunctions that describe
the same physical state can differ at most by a constant
phase shift v — ey, 6 a real number. Wavefunctions
that differ by such a phase shift lead to the same
expectation values of observable quantities. The proof
is again an exercise in linear algebra. In view of
this discussion, the requirements on the wavefunctions
describing a system of indistinguishable particles are
rather obvious and can be formulated in terms of the
operations that formally exchange the single particles:

Postulate 3. The Hilbert space of a system of N
indistinguishable particles with system Hilbert space
L,(82) consists of complex-valued, square integrable
functions

I// : (Sl""’SN) - w(g:l""’gN)

on the N-fold cartesian product of 2, that is, is a
subspace of L,(2V). For every Vr in this space and
every permutation P of the arguments &;, the function
& — Y(PE&) is also in this space, and moreover it

differs from  at most by a constant phase shift.

This postulate can be rather easily translated into a
symmetry condition on the wavefunctions that governs
the quantum mechanics of multiparticle systems:

Theorem 4 The Hilbert space describing a system of
indistinguishable particles either consists completely
of antisymmetric wavefunctions, functions \ for which

Y(P§) = sign(P)y(§)

holds for all permutations P of the components
El,....Env of & that is, of the single particles, or
only of symmetric wavefunctions, wavefunctions for
which

v(PE) = ¥(§)
holds for all permutations P of the arguments.

Which of the two choices is realized depends solely
on the kind of particles and cannot be decided in
the present framework. Particles with antisymmetric
wavefunctions are called fermions and particles with
symmetric wavefunctions bosons.

Quantum chemistry is mainly interested in elec-
trons. Electrons have a position in space and an internal
property called spin that in many respects behaves like
an angular momentum. The spin o of an electron can
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attain the two values ¢ = =41/2. The configuration
space of an electron is therefore not the R? but the
cartesian product

2 =R x{-1/2, +1/2}.
The space L, (§2) consists of the functions ¢ : 2 — C

with square integrable components x — ¥ (x,0), 0 =
+1/2, and is equipped with the inner product

> [veodea ax

o=%1/2

. ¢) =

A system of N electrons is correspondingly described
by wavefunctions

¥RV x{-1/2,1/2}V - C (13)
with square integrable components x — V¥ (x,0),
where x € R3" and o is a vector consisting of N spins

0; = =£1/2. These wavefunctions are equipped with
the inner product

9) = ¥ [ 00300 dx

where the sum now runs over the 2" possible spin
vectors o.

Electrons are fermions, as all particles with half-
integer spin. That is, the wavefunctions change their
sign under a simultaneous exchange of the positions x;
and x; and the spins o; and o; of electrons i # j.
They are, in other words, antisymmetric in the sense
that

Y (Px, Po) = sign(P)y(x,0)

holds for arbitrary simultaneous permutations x — P x
and 0 — Po of the electron positions and spins. This
is a general version of the Pauli principle, a principle
that is of fundamental importance for the physics of
atoms and molecules. The Pauli principle has stunning
consequences. It entangles the electrons with each
other, without the presence of any direct interaction
force. A wavefunction (13) describing such a system
vanishes at points (x, o) at whichx; = x; ando; = 0
for indices i # j. This means that two electrons
with the same spin cannot meet at the same place, a
purely quantum-mechanical repulsion effect that has
no counterpart in classical physics.
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The Molecular Schrédinger Equation

Neglecting spin, the system Hilbert space of an atom or
molecule consisting of N particles (electrons and nu-
clei) is the space Ly(R?)Y = L,(R*"). The Hamilton
operator

N N
1 1 0:0;

— — A + - = =J
sz,» 2 Z |xi — x;]

i=1 i,j=1
i#j

H = , (14

written down here in dimensionless form, is derived
via the correspondence principle from its counterpart
in classical physics, the Hamilton function

N

=Y s lnk

i=1

H(p,q) =

QQ/
Z:I

i,j=1
i#j

or total energy of a system of point-like particles in the
potential field

Vig) =

QQ/
ZI

l]_l
i#j

The m; are the masses of the particles in multiples
of the electron mass and the Q; the charges of the
particles in multiples of the electron charge. As has
first been shown by Kato [7], the Hamilton operator
(14) can be uniquely extended from the space of the in-
finitely differentiable functions with bounded support
to a selfadjoint operator H from its domain of defini-
tion D(H) C L,(R3V) to Ly(R3V). It fits therefore
into the abstract framework of quantum mechanics
sketched above. The domain D(H ) of the extended op-
erator is the Sobolev space H? consisting of the twice
weakly differentiable functions with first and second
order weak derivatives in L,, respectively a subspace
of this Sobolev space consisting of components of the
full, spin-dependent wavefunctions in accordance with
the Pauli principle if spin is taken into account. The
resulting Schrodinger equation

Iy
i— =H

at v

is an extremely complicated object, because of the

high dimensionality of the problem but also because of
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the oscillatory character of its solutions and the many
different time scales on which they vary and which can
range over many orders of magnitude. Comprehensive
survey articles on the properties of atomic and molec-
ular Schrodinger operators are Hunziker and Sigal [6]
and Simon [9].

Following Born and Oppenheimer [2], the full
problem is usually split into the electronic Schrodinger
equation describing the motion of the electrons in
the field of given clamped nuclei, and an equation
for the motion of the nuclei in a potential field
that is determined by solutions of the electronic
equation. The transition from the full Schrédinger
equation taking also into account the motion of the
nuclei to the electronic Schrodinger equation is a
mathematically very subtle problem; see [10] and
the literature cited therein or the article of Hagedorn
(» Born—Oppenheimer ~ Approximation, Adiabatic
Limit, and Related Math. Issues) for more information.
The intuitive idea behind this splitting is that the elec-
trons move much more rapidly than the much heavier
nuclei and almost instantaneously follow their motion.
Most of quantum chemistry is devoted to the solution
of the stationary electronic Schrodinger equation,
the eigenvalue problem for the electronic Hamilton
operator

1 < 1 & 1
H=—--Y"A +V, — —
2; P+ o(x)+2i/2=:1|Xi_xj|

i#j

again written down in dimensionless form, where

N K 7
o) = - ZZ |xi —a,|

i=1v=1

is the nuclear potential. It acts on functions with ar-
guments xi,...,Xy in R3, which are associated with
the positions of the considered electrons. The a, are
the now fixed positions of the nuclei and the values Z,
the charges of the nuclei in multiples of the electron
charge. The equation has still to be supplemented
by the symmetry constraints arising from the Pauli
principle.

The spectrum of the electronic Schrodinger operator
is bounded from below. Its essential spectrum is, by the
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Hunziker-van Winter-Zhislin theorem, a semi-infinite
interval; see [4] for details. Of interest for chemistry
are configurations of electrons and nuclei for which
the minimum of the total spectrum is an isolated
eigenvalue of finite multiplicity, the ground state en-
ergy of the system. The assigned eigenfunctions, the
ground states, as well as all other eigenfunctions for
eigenvalues below the essential spectrum decay then
exponentially. That means that the nuclei can bind all
electrons. More information on the mathematical prop-
erties of these eigenfunctions can be found in » Exact
Wavefunctions Properties. Chemists are mainly inter-
ested in the ground states. The position of the nuclei
is then determined minimizing the ground state energy
as function of their positions, a process that treats
the nuclei as classical objects. It is called geometry
optimization.

The Born-Oppenheimer approximation is only a
first step toward the computationally feasible models
that are actually used in quantum chemistry. The his-
torically first and most simple of these models is the
Hartree-Fock model in which the true wavefunctions
are approximated by correspondingly antisymmetrized
tensor products

N
u(x) = [eitx)

i=l1

of functions ¢; of the electron positions x; € R?. These
orbital functions are then determined via a variational
principle. This intuitively very appealing ansatz
often leads to surprisingly accurate results. Quantum
chemistry is full of improvements and extensions of
this basic approach; see the comprehensive monograph
[5] for further information. Many entries in this
encyclopedia are devoted to quantum chemical models
and approximation methods that are derived from
the Schrodinger equation. We refer in particular
to the article (» Hartree—Fock Type Methods) on
the Hartree-Fock method, to the contributions
(» Post-Hartree-Fock Methods and Excited States
Modeling) on post-Hartree Fock methods and
(» Coupled-Cluster Methods) on the coupled cluster
method, and to the article (» Density Functional
Theory) on density functional theory. Time-dependent
problems are treated in the contribution (» Quantum
Time-Dependent Problems).


http://dx.doi.org/10.1007/978-3-540-70529-1_260
http://dx.doi.org/10.1007/978-3-540-70529-1_233
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http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_246
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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The Schrodinger Equation

The linear Schrodinger equation is a fundamental
quantum mechanics equation that describes the
complex-valued wave function ®(z, x,y) of molecules
or atoms
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ihd, ®(t,x,y) = HP(t,x,y), x e RV y e R",

1)

where the vectors x and y denote the positions of N
nuclei and n electrons, respectively, while # is the
reduced Planck constant. The molecular Hamiltonian
operator H consists of two parts, the kinetic energy
operator of the nuclei and the electronic Hamiltonian
H. for fixed nucleonic configuration:

N
h2
H:—ZZM Ay; + He(y, x),

Jj=1

with,

n

Hely.x) = —Z +y

j_l i<k lyj = yk|
Z;Zy
Z,‘:le—xkl 2‘:]2_‘:| — vl

Here m; denotes mass of the j-th electron, and M},
Z; denote mass and charge of the j-th nucleus. The
electronic Hamiltonian H, consists of the kinetic en-
ergy of the electrons as well as the interelectronic
repulsion potential, internuclear repulsion potential,
and the electronic-nuclear attraction potential.

The Born-Oppenheimer Approximation

The main computational challenge to solve the
Schrodinger equation is the high dimensionality of
the molecular configuration space R¥+”. For example,
the carbon dioxide molecule C O, consists of 3 nuclei
and 22 electrons; thus one has to solve the full
time-dependent Schrodinger equation in space R7°,
which is a formidable task. The Born-Oppenheimer
approximation [1] is a commonly used approach in
computational chemistry or physics to reduce the
degrees of freedom.

This approximation is based on the mass discrep-
ancy between the light electrons, which move fast, thus
will be treated quantum mechanically, and the heavy
nuclei that move slower and are treated classically.
Here one first solves the following time-independent
electronic eigenvalue problems:
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Vx € RV,
(2)

He(y, )Yk (y: %) = Ex(X) ¥k (¥: %),
k=1.2,....

Assuming that the spectrum of H,, a self-adjoint op-
erator, is discrete with a complete set of orthonormal
eigenfunctions {1 (y;x)} called the adiabatic basis,
over the electronic coordinates for every fixed nucleus
coordinates x, i.e.,

/_ VIOV (y: 0y = 8.

where § i is the Kronecker delta. The electronic eigen-
value Ej(x), called the potential energy surface, de-
pends on the positions x of the nuclei.

Next the total wave function ®(z,x,y) is expanded
in terms of the eigenfunctions {y }:

O(1,x,y) = Y ¢ (6, 0Pk (y: ). 3)
k

Assume m; = m, and M; = M, for all ;.
We take the atomic units by setting # = 1,Z =
1 and introduce ¢ = /m/M. Typically ¢ ranges
between 1072 and 1073. Insert ansatz (3) into the time-
dependent Schrodinger equation (1), multiply all the
terms from the left by " (y; x), and integrate with re-
spect to y, then one obtains a set of coupled differential
equations:

N 2
e gix) = | =3 S A+ E) | et

j=1

+)  Cugi(t,x), 4
I

where the coupling operator Cy; is important to de-
scribe quantum transitions between different potential
energy surfaces.

As long as the potential energy surfaces { Ex (X)} are
well separated, all the coupling operators Cy; are ig-
nored, and one obtains a set of decoupled Schrodinger
equations:

N 2
SCPNTRISY [ DL NS PO

Jj=1

(t,x) e RT xRV, (5)
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Thus the nuclear motion proceeds without the transi-
tions between electronic states or energy surfaces. This
is also referred to as the adiabatic approximation.

There are two components in dealing with a quan-
tum calculation. First, one has to solve the eigenvalue
problem (2). Variational methods are usually used [10].
However, for large n, this remains an intractable task.
Various mean field theories have been developed to
reduce the dimension. In particular, the Hartree-Fock
Theory [9] and the Density Function Theory [8] aim
at representing the 3n-dimensional electronic wave
function into a product of one-particle wave function in
3 dimension. These approaches usually yield nonlinear
Schrodinger equations.

The Semiclassical Limit

The second component in quantum simulation is to
solve the time-dependent Schrodinger equation (5). Its
numerical approximation per se is similar to that of
the parabolic heat equation. Finite difference, finite
element or, most frequently, spectral methods can be
used for the spatial discretization. For the time dis-
cretization, one often takes a time splitting of Strong
or Trotter type that separates the kinetic energy from
the potential operators in alternating steps. However,
due to the smallness of % or ¢, the numerical resolution
of the wave function remains difficult. A classical
method to deal with such an oscillatory wave problem
is the WKB method, which seeks solution of the form
¢(t,x) = A(t,x)e’S¥/% (in the sequel, we consider
only one energy level in (5), thus omitting the subscript
k and replacing E by V). If one applies this ansatz
in (5), by ignoring the O(g) term, one obtains the
eikonal equation for phase S and transport equation
for amplitude A:

1
38 + 5|VS|2 + V(x) =0; (©6)

8,A+VS~VA+§AS=O. @)

The eikonal equation (6) is a typical Hamilton-
Jacobi equation, which develops singularities in S,
usually referred to caustics in the context of geometric
optics. Beyond the singularity, one has to superim-
pose the solutions of S, each of which satisfying
the eikonal equation (6), since the solution becomes
multivalued [6].
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This equation can be solved by the method of char-
acteristics, provided that V(x) is sufficiently smooth.
Its characteristic flow is given by the following Hamil-
tonian system of ordinary differential equations, which
is Newton’s second law:

dé§
=, GV = —NWxy).
(@)
Another approach to study the semiclassical limit is
the Wigner transform [12]:

dx
E(Z’Y) =£&(1,y):

Wil d = o [ o (x+30)7

D) o

which is a convenient tool to study the limit of ¢ (¢, x)
to obtain the classical Liouville equation:

dw+E-Vew—VV(x)-Vew=0.  (10)

Its characteristic equation is given by the Hamiltonian
system (8).

Various Potentials

The above Wigner analysis works well if the potential
V is smooth. In applications, E can be discontinuous
(corresponding to potential barriers), periodic (for solid
mechanics with lattice structure), random (with an
inhomogeneous background), or even nonlinear (where
the equation is a field equation, with applications to
optics and water waves, or a mean field equation as
an approximation of the original multiparticle linear

Schrodinger equation). Different approaches need to be

taken for each of these different cases.

* Vs discontinuous. Through a potential barrier, the
quantum tunnelling phenomenon occurs and one
has to handle wave transmission and reflections [3].

* Vs periodic. The Bloch decomposition is used to
decompose the wave field into sub-fields along each
of the Bloch bands, which are the eigenfunctions as-
sociated with a perturbed Hamiltonian that includes
‘H plus the periodic potential [13].

e V is random. Depending on the space dimension
and strength of the randomness, the waves can be
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localized [2] or diffusive. In the latter case, the
Wigner transform can be used to study the high-
frequency limit [7].

eV is nonlinear. The semiclassical limit (10) fails
after caustic formation. The understanding of this
limit for strong nonlinearities remains a major
mathematical challenge. Not much is known except
in the one-dimensional defocusing nonlinearity case

V= [9]*) [4].

In (4), when different E}. intersect, or get close, one
cannot ignore the quantum transitions between differ-
ent energy levels. A semiclassical approach, known as
the surface hopping method, was developed by Tully. It
is based on the classical Hamiltonian system (8), with
a Monte Carlo procedure to account for the quantum
transitions [11].

For a survey of semiclassical computational meth-
ods for the Schrodinger equation, see [5].
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Scientific Computing is about practical methods for
solving mathematical problems. One may argue that
the field goes back to the invention of Mathemat-
ics, but today, the term Scientific Computing usually
means application of computers to solve mathematical
problems. The solution process consists of several key
steps, which form the so-called simulation pipeline:

1. Formulation of a mathematical model which de-
scribes the scientific problem and is suited for
computer-based solution methods and some chosen
hardware

2. Construction of algorithms which precisely describe

the computational steps in the model

. Implementation of the algorithms in software

. Verification of the implementation

. Preparation of input data to the model

. Analysis and visualization of output data from the

model

7. Validation of the mathematical model, with associ-
ated parameter estimation

8. Estimation of the precision (or uncertainty) of the
mathematical model for predictions

In any of the steps, it might be necessary to go back

and change the formulation of the model or previous

steps to make further progress with other items on
the list. When this process of iterative improvement
has reached a satisfactory state, one can perform com-
puter simulations of a process in nature, technological
devices, or society. In essence, that means using the
computer as a laboratory to mimic processes in the
real world. Such a lab enables impossible, unethical,
or costly real-world experiments, but often the process
of developing a computer model gives increased sci-
entific insight in itself. The disadvantage of computer
simulations is that the quality of the results, or more

AN W B~ W

Scientific Computing

precisely the quantitative prediction capabilities of the
simulations, may not be well established.

Relations to Other Fields

A term closely related to Scientific Computing (and
that Wikipedia actually treats as a synonym) is Com-
putational Science, which we here define as solving a
scientific problem with the aid of techniques from Sci-
entific Computing. While Scientific Computing deals
with solution techniques and tools, Computational Sci-
ence has a stronger focus on the science, that is, a
scientific question and the significance of the answer.
In between these focal points, the craft of Scien-
tific Computing is fundamental in order to produce
an answer. Scientific Computing and Computational
Science are developing into an independent scientific
discipline; they combine elements from Mathematics
and Computer Science to form the foundations for a
new methodology of scientific discovery. Developing
Computational Science and Scientific Computing may
turn out to be as fundamental to the future progress in
science as was the development of novel Mathematics
in the times of Newton and Euler.

Another closely related term is Numerical Analysis,
which is about the “development of practical algo-
rithms to obtain approximate solutions of mathematical
problems and the validation of these solutions through
their mathematical analysis.” The development of al-
gorithms is central to both Numerical Analysis and
Scientific Computing, and so is the validation of the
computed solutions, but Numerical Analysis has a
particular emphasis on mathematical analysis of the
accuracy of approximate algorithms. Some narrower
definitions of Scientific Computing would say that it
contains all of Numerical Analysis, but in addition
applies more experimental computing techniques to
evaluate the accuracy of the computed results. Scien-
tific Computing is not necessarily restricted to approx-
imate solution methods, although those are the most
widely used. Other definitions of Scientific Computing
may include additional points from the list above,
up to our definition which is wide and includes all
the key steps in creating predictive computer simula-
tions.

The term Numerical Analysis seems to have ap-
peared in 1947 when the Institute for Numerical Analy-
sis was set up at UCLA with funding from the National
Bureau of Standards in the Office Naval Research.
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A landmark for the term Scientific Computing dates
back to 1980 when Gene Golub established SIAM
Journal on Scientific Computing. Computational Sci-
ence, and Computational Science and Engineering, be-
came widely used terms during the late the 1990s. The
book series Lecture Notes in Computational Science
and Engineering was initiated in 1995 and published
from 1997 (but the Norwegian University of Science
and Technology proposed a professor in Computa-
tional Science as early as 1993). The Computational
Science term was further coined by the popular con-
ferences SIAM Conference on Computational Science
and Engineering (from 2000) and the International
Conference on Computational Science (ICCS, from
2001). Many student programs with the same names
appeared at the turn of the century.

In Numerical Analysis the guiding principle is to
perform computations based on a strong theoretical
foundation. This foundation includes a proof that the
algorithm under consideration is computable and how
accurate the computed solution would be. Suppose,
for instance, that our aim is to solve a system of
algebraic equations using an iterative method. If we
have an algorithm providing a sequence of approxima-
tions given by {x;}, the basic questions of Numerical
Analysis are (i) (existence) to prove that x;; can be
computed provided that x; already is computed and
(ii) (convergence) how accurate is the i-th approxi-
mation. In general, these two steps can be extremely
challenging. Earlier, the goal of having a solid the-
oretical basis for algorithms was frequently realistic
since the computers available did not have sufficient
power to address very complex problems. That situ-
ation has changed dramatically in recent years, and
we are now able to use computers to study prob-
lems that are way beyond the realm of Numerical
Analysis.

Scientific Computing is the discipline that takes
over where a complete theoretical analysis of the
algorithms involved is impossible. Today, Scientific
Computing is an indispensable tool in science,
and the models, methods, and algorithms under
considerations are rarely accessible by analytical
tools. This lack of theoretical rigor is often addressed
by using extensive, carefully conducted computer
experiments to investigate the quality of computed
solutions. More standardized methods for such
investigations are an important integral part of
Scientific Computing.
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Scientific Computing: Mathematics or

Computer Science?

Universities around the world are organized in de-
partments covering a reasonable portion of science or
engineering in a fairly disjoint manner. This organi-
zational structure has caused much headache amongst
researchers in Numerical Analysis and Scientific Com-
puting because these fields typically would have to find
its place either in a Computer Science department or in
a Mathematics department, and Scientific Computing
and Numerical Analysis belong in part to both these
disciplines. Heated arguments have taken place around
the world, and so far no universal solution has been
provided. The discussion may, however, be used to
illustrate the validity of Sayre’s law (From first lines of
wikipedia.org/wiki/Sayres_law: Sayre’s law states, in a
formulation quoted by Charles Philip Issawi: “In any
dispute the intensity of feeling is inversely proportional
to the value of the issues at stake.” By way of corollary,
it adds: “That is why academic politics are so bitter.”)
which is often attributed to Henry Kissinger.

Formulation of Mathematical Models

The demand for a mathematical model comes from
the curiosity or need to answer a scientific question.
When the model is finally available for computer
simulations, the results very often lead to reformulation
of the model or the scientific question. This iterative
process is the essence of doing science with aid of
mathematical models.

Although some may claim that formulation of math-
ematical models is an activity that belongs to Engi-
neering and classical sciences and that the models are
prescribed in Scientific Computing, we will argue that
this is seldom the case. The classical scientific subjects
(e.g., Physics, Chemistry, Biology, Statistics, Mathe-
matics, Computer Science, Economics) do formulate
mathematical models, but the traditional focus targets
models suitable for analytical insight. Models suitable
for being run on computers require mathematical for-
mulations adapted to the technical steps of the solution
process. Therefore, experts on Scientific Computing
will often go back to the model and reformulate it to
improve steps in the solution process. In particular,
it is important to formulate models that fit approxi-
mation, software, hardware, and parameter estimation
constraints. Such aspects of formulating models have



1304

to a large extent been developed over the last decades
through Scientific Computing research and practice.
Successful Scientific Computing therefore demands a
close interaction between understanding of the phe-
nomenon under interest (often referred to as domain
knowledge) and the techniques available in the solution
process. Occasionally, intimate knowledge about the
application and the scientific question enables the use
of special properties that can reduce computing time,
increase accuracy, or just simplify the model consider-
ably.

To illustrate how the steps of computing impacts
modeling, consider flow around a body. In Physics (or
traditional Fluid Dynamics to be more precise), one
frequently restricts the development of a model to what
can be treated by pen and paper Mathematics, which
in the current example means assumption of stationary
laminar flow, that the body is a sphere, and that the
domain is infinite. When analyzing flow around a
body through computer simulations, a time-dependent
model may be easier to implement and faster to run
on modern parallel hardware, even if only a stationary
solution is of interest. In addition, a time-dependent
model allows the development of instabilities and the
well-known oscillating vortex patterns behind the body
that occur even if the boundary conditions are station-
ary. A difficulty with the discrete model is the need for
a finite domain and appropriate boundary conditions
that do not disturb the flow inside the domain (so-called
Artificial Boundary Conditions). In a discrete model,
it is also easy to allow for flexible body geometry
and relatively straightforward to include models of
turbulence. What kind of turbulence model to apply
might be constrained by implementational difficul-
ties, details of the computer architecture, or comput-
ing time feasibility. Another aspect that impacts the
modeling is the estimation of the parameters in the
model (usually done by solving » Inverse Problems:
Numerical Methods). Large errors in such estimates
may favor a simpler and less accurate model over
a more complex one where uncertainty in unknown
parameters is greater. The conclusion on which model
to choose depends on many factors and ultimately
on how one defines and measures the accuracy of
predictions.

Some common ingredients in mathematical models
are Integration; Approximation of Functions (Curve
and Surface Fitting); optimization of Functions or
Functionals; Matrix Systems; Eigenvalue Problems;
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Systems of Nonlinear Equations; graphs and networks;

Numerical Analysis of Ordinary Differential
Equations; Computational Partial Differential
Equations; Integral Equations; Dynamical System
Theory; stochastic variables, processes, and fields;
random walks; and Imaging Techniques. The entries
on » Numerical Analysis, » Computational Partial
Differential Equations, and » Numerical Analysis
of Ordinary Differential Equations provide more
detailed overview of these topics and associated
algorithms.

Discrete Models and Algorithms

Mathematical models may be continuous or discrete.
Continuous models can be addressed by symbolic
computing, otherwise (and usually) they must be made
discrete through discretization techniques. Many phys-
ical phenomena leave a choice between formulating
the model as continuous or discrete. For example, a
geological material can be viewed as a finite set of
small elements in contact (discrete element model) or
as a continuous medium with prescribed macroscopic
material properties (continuum mechanical model). In
the former case, one applies a set of rules for how
elements interact at a mesoscale level and ends up
with a large system of algebraic equations that must
be solved, or sometimes one can derive explicit for-
mulas for how each element moves during a small
time interval. Another discrete modeling approach is
based on cellular automata, where physical relations
are described between a fixed grid of cells. The Lat-
tice Boltzmann method, for example, uses 2D or 3D
cellular automata to model the dynamics of a fluid
on a meso-scopic level. Here the interactions between
the states of neighboring cells are derived from the
principles of statistical mechanics.

With a continuous medium, the model is expressed
in terms of partial differential equations (with appro-
priate initial and boundary conditions). These equa-
tions must be discretized by techniques like » Finite
Difference Methods, » Finite Element Methods, or

Finite Volume Methods, which lead to systems of
algebraic equations. For a purely elastic medium, one
can formulate mathematically equivalent discrete and
discretized continuous models, while for complicated
material behavior the two model classes have their pros
and cons. Some will prefer a discrete element model
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because it often has fewer parameters to estimate
than a continuum mechanical constitutive law for the
material.

Some models are spatially discrete but continuous
in time. Examples include » Molecular Dynamics and
planetary systems, while others are purely discrete, like
the network of Facebook users.

The fundamental property of a discrete model, ei-
ther originally discrete or a discretized continuous
model, is its suitability for a computer. It is necessary
to adjust the computational work, which is usually
closely related to the accuracy of the discrete model,
to fit the given hardware and the acceptable time for
calculating the solution. The choice of discretization
is also often dictated by software considerations. For
example, one may prefer to discretize a partial dif-
ferential equation by a finite difference method rather
than a finite element method because the former is
much simpler to implement and thus may lead to more
efficient software and thus eventually more accurate
simulation results.

The entries on » Numerical Analysis, » Compu-
tational Partial Differential Equations, » Numerical
Analysis of Ordinary Differential Equations, and
Imaging present overviews of different discretization
techniques, and more specialized articles go deeper
into the various methods.

The accuracy of the discretization is normally the
most important factor that governs the choice of tech-
nique. Discretized continuous models are based on
approximations, and quantifying the accuracy of these
approximations is a key ingredient in Scientific Com-
puting, as well as techniques for assessing their com-
putational cost. The field of Numerical Analysis has
developed many mathematical techniques that can help
establish a priori or a posteriori bounds on the errors
in numerous types of approximations. The former can
bound the error by properties of the exact solution,
while the latter applies the approximate (i.e., the com-
puted) solution in the bound. Since the exact solution
of the mathematical problem remains unknown, pre-
dictive models must usually apply a posteriori esti-
mates in an iterative fashion to control approximation
erTors.

When mathematical expressions for or bounds of
the errors are not obtainable, one has to resort to
experimental investigations of approximation errors.
Popular techniques for this purpose have arisen from
verification methods (see below).
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With » Symbolic Computing one can bring
additional power to exact and approximate solution
techniques based on traditional pen and paper
Mathematics. One example is perturbation methods
where the solution is expressed as a power series of
some dimensionless parameter, and one develops a
hierarchy of models for determining the coefficients
in the power series. The procedure originally involves
lengthy analytical computations by hand which can be
automated using symbolic computing software such as
Mathematica, Maple, or SymPy.

When the mathematical details of the chosen dis-
cretization are worked out, it remains to organize those
details in algorithms. The algorithms are computational
recipes to bridge the gap between the mathematical
description of discrete models and their associated
implementation in software. Proper documentation of
the algorithms is extremely important such that others
know all ingredients of the computer model on which
scientific findings are based. Unfortunately, the details
of complex models that are routinely used for impor-
tant industrial or scientific applications may sometimes
be available only through the actual computer code,
which might even be proprietary.

Many of the mathematical subproblems that
arise from a model can be broken into smaller
problems for which there exists efficient algorithms
and implementations. This technique has historically
been tremendously effective in Mathematics and
Physics. Also in Scientific Computing one often
sees that the best way of solving a new problem
is to create a clever glue between existing building
blocks.

Implementation

Ideally, a well-formulated set of algorithms should
easily translate into computer programs. While this
is true for simple problems, it is not in the general
case. A large portion of many budgets for Science
Computing projects goes to software development.
With increasingly complicated models, the complex-
ity of the computer programs appears to grow even
faster, because Computer Languages were not designed
to easily express complicated mathematical concepts.
This is one main reason why writing and maintaining
scientific software is challenging.
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The fundamental challenge to develop correct and
efficient software for Scientific Computing is notori-
ously underestimated. It has an inherent complexity
that cannot be addressed by automated procedures
alone, but must be acknowledged as an independent
scientific and engineering problem. Also, testing of
the software quickly consumes even more resources.
Software Engineering is a central field of Computer
Science which addresses techniques for developing and
testing software systems in general, but has so far had
minor impact on scientific software. We can identify
three reasons. First, the structure of the software is
closely related to the mathematical concepts involved.
Second, testing is very demanding since we for most
relevant applications do not know the answer before-
hand. Actually, much scientific software is written
to explore new phenomena where neither qualitative
nor quantitative properties of the computed results
are known. Even when analytical insight is known
about the solution, the computed results will contain
unknown discretization errors. The third reason is that
scientific software quickly consumes the largest com-
putational resources available and hence employs spe-
cial High-Performance Computing (HPC) platforms.
These platforms imply that computations must run
in parallel on heterogeneous architectures, a fact that
seriously complicates the software development. There
has traditionally been little willingness to adopt good
Software Engineering techniques if they cause any loss
of computational performance (which is normally the
case).

In the first decades of Scientific Computing,
FORTRAN was the dominating Computer Language
for implementing algorithms and FORTRAN has still a
strong position. Classical FORTRAN (with the dialects
1V, 66, and 77) is ideal for mathematical formulas and
heavy array computations, but lacks more sophisticated
features like classes, namespaces, and modules to
elegantly express complicated mathematical concepts.
Therefore, the much richer C++ language attracted
significant attention in scientific software projects from
the mid-1990s. Today, C++ is a dominating language
in new projects, although the recent FORTRAN
2003/2008 has many of the features that made
C++ popular. C, C++, and FORTRAN enable the
programmer to utilize almost the maximum efficiency
of an HPC architecture. On the other hand, much less
computationally efficient languages such as MATLAB,
Mathematica, and Python have reached considerable
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popularity for implementing Scientific Computing
algorithms. The reason is that these languages are more
high level; that is, they allow humans to write computer
code closer to the mathematical concepts than what is
easily achievable with C, C++, and FORTRAN.

Over the last four decades, numerous high-quality
libraries have been developed, especially for frequently
occurring problems from numerical linear algebra, dif-
ferential equations, approximation of functions, opti-
mization, etc. Development of new software today will
usually maximize the utilization of such well-tested
libraries. The result is a heterogeneous software envi-
ronment that involves several languages and software
packages, often glued together in easy-to-use and easy-
to-program applications in MATLAB or Python.

If we want to address complicated mathematical
models in Scientific Computing, the software needs
to provide the right abstractions to ease the imple-
mentation of the mathematical concepts. That is, the
step from the mathematical description to the com-
puter code must be minimized under the constraint of
minor performance loss. This constrained optimization
problem is the great challenge in developing scientific
software.

Most classical mathematical methods are serial, but
utilization of modern computing platforms requires
algorithms to run in parallel. The development of
algorithms for » Parallel Computing is one of the most
significant activities in Scientific Computing today.
Implementation of parallel algorithms, especially in
combination with high-level abstractions for compli-
cated mathematical concepts, is an additional research
challenge. Easy-to-use parallel implementations are
needed if a broad audience of scientists shall effec-
tively utilize Modern HPC Architectures such as clus-
ters with multi-core and multi-GPU PCs. Fortunately,
many of the well-known libraries for, e.g., linear alge-
bra and optimization are updated to perform well on
modern hardware.

Often scientific progress is limited by the available
hardware capacity in terms of memory and compu-
tational power. Large-scale projects can require ex-
pensive resources, where not only the supercomputers
per se but also their operational cost become limiting
factors. Here it becomes mandatory that the accuracy
provided by a Scientific Computing methodology is
evaluated relative to its cost. Traditional approaches
that just quantify the number of numerical operations
turn often out to be misleading. Worse than that,
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theoretical analysis often provides only asymptotic
bounds for the error with unspecified constants. This
translates to cost assessments with unspecified con-
stants that are of only little use for quantifying the
real cost to obtain a simulation result. In Scientific
Computing, such mathematical techniques must be
combined with more realistic cost predictions to guide
the development of effective simulation methods. This
important research direction comes under names such
as » Hardware-Oriented Numerics for PDE or system-
atic performance engineering and is usually based on
a combination of rigorous mathematical techniques
with engineering-like heuristics. Additionally, techno-
logical constraints, such as the energy consumption
of supercomputers are increasingly found to become
critical bottlenecks. This in turn motivates genuinely
new research directions, such as evaluating the numer-
ical efficiency of an algorithm in terms of its physical
resource requirements like the energy usage.

Verification

Verification of scientific software means setting up a
series of tests to bring evidence that the software solves
the underlying mathematical problems correctly.
A fundamental challenge is that the problems are
normally solved approximately with an error that
is quantitatively unknown. Comparison with exact
mathematical results will in those cases yield a
discrepancy, but the purpose of verification is to
ensure that there are no additional nonmathematical
discrepancies caused by programming mistakes.

The ideal tests for verification is to have exact
solutions of the discrete problems. The discrepancy
of such solutions and those produced by the soft-
ware should be limited by (small) roundoff errors due
to Finite Precision Arithmetic in the machine. The
standard verification test, however, is to use exact
solutions of the mathematical problems to compute
observed errors and check that these behave correctly.
More precisely, one develops exact solutions for the
mathematical problem to be solved, or a closely related
one, and establishes a theoretical model for the errors.
Error bounds from Numerical Analysis will very often
suggest error models. For each problem one can then
vary discretization parameters to generate a data set of
errors and see if the relation between the errors and
the discretization parameters is as expected from the
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error model. This strategy constitutes the perhaps most
important verification technique and demonstrates how
dependent software testing is on results from Numeri-
cal Analysis.

Analytical insight from alternative or approximate
mathematical models can in many physical problems
be used to test that certain aspects of the solution be-
have correctly. For example, one may have asymptotic
results for the solution far away from the locations
where the main physics is generated. Moreover, prin-
ciples such as mass, momentum, and energy balance
for the whole system under consideration can also be
checked. These types of tests are not as effective for
uncovering software bugs as the tests described above,
but add evidence that the software works.

Scientific software needs to compute correct num-
bers, but must also run fast. Tests for checking that the
computational speed has not changed unexpectedly are
therefore an integral part of any test suite. Especially
on parallel computing platforms, this type of efficiency
tests is as important as the correctness tests.

A fundamental requirement of verification proce-
dures is that all tests are automated and can at any time
be repeated. Version control systems for keeping track
of different versions of the files in a software package
can be integrated with automatic testing such that every
registered change in the software triggers a run of the
test suite, with effective reports to help track down new
errors. It is also easy to roll back to previous versions
of the software that passed all tests. Science papers that
rely heavily on Scientific Computing should ideally
point to web sites where the version history of the
software and the tests are available, preferably also
with snapshots of the whole computing environment
where the simulation results were obtained. These
elements are important for » Reproducibility: Methods
of the scientific findings.

Preparation of Input Data

With increasingly complicated mathematical models,
the preparation of input data for such models has be-
come a very resource consuming activity. One example
is the computation of the drag (fuel consumption) of
a car, which demands a mathematical description of
the car’s surface and a division of the air space outside
the car into small hexahedra or tetrahedra. Techniques
of » Geometry Processing can be used to measure
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and mathematically represent the car’s surface, while
Meshing Algorithms are used to populate the air flow
domain with small hexahedra or tetrahedra. An even
greater challenge is met in biomedical or geophysical
computing where Segmentation Methods must nor-
mally be accompanied by human interpretation when
extracting geometries from noisy images.

A serious difficulty of preparing input data is related
to lack of knowledge of certain data. This situation
requires special methods for parameter estimation as
described below.

Visualization of Output Data

Computer simulations tend to generate large amounts
of numbers, which are meaningless to the scientists
unless the numbers are transformed to informative
pictures closely related to the scientific investigation at
hand. This is the goal of » Visualization. The simplest
and often most effective type of visualization is to
draw curves relating key quantities in the investiga-
tion. Frequently, curves give incomplete insight into
processes, and one needs to visualize more complex
objects such as big networks or time-dependent, three-
dimensional scalar or vector fields. Even if the goal of
simulating a car’s fuel consumption is a single number
for the drag force, any physical insight into enhancing
geometric features of the car requires detailed visual-
ization of the air velocities, the pressure, and vortex
structures in time and 3D space. Visualization is partly
about advanced numerical algorithms and partly about
visual communication. The importance of effective
visualization in Scientific Computing can hardly be
overestimated, as it is a key tool in software debugging,
scientific investigations, and communication of the
main research findings.

Validation and Parameter Estimation

While verification is about checking that the algorithms
and their implementations are done right, validation is
about checking that the mathematical model is rele-
vant for predictions. When we create a mathematical
model for a particular process in nature, a technolog-
ical device, or society, we think of a forward model
in the meaning that the model requires a set of in-
put data and can produce a set of output data. The
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input data must be known for the output data to be
computed. Very often this is not the case, because
some input data remains unknown, while some output
data is known or can be measured. And since we
lack some input data, we cannot run the forward
model. This situation leads to a parameter estimation
problem, also known as a model calibration problem,
a parameter identification problem, or an » Inverse
Problems: Numerical Methods. The idea is to use
some of the known output data to estimate some of
the lacking input data with aid of the model. For-
ward models are for the most part well posed in the
sense that small errors in input data are not amplified
significantly in the output. Inverse problems, on the
other hand, are normally ill posed: small errors in
the measured output may have severe impact on the
precision of our estimates of input data. Much of
the methodology research is about reducing the ill
posedness.

Validation consists in establishing evidence that
the computer model really models the real phenomena
we are interested in. The idea is to have a range of test
cases, each with some known output, usually measured
in physical experiments, and checking that the model
reproduces the known output. The tests are straightfor-
wardly conducted if all input data is known. However,
very often some input parameters in the model are
unknown, and the typical validation procedure for a
given test case is to tune those parameters in a way
that reproduces the known output. Provided that the
tuned parameters are within realistic regions, the model
passes the validation test in the sense that there exists
relevant input data such that the model predicts the
observed output.

Understanding of the process being simulated
can effectively guide manual tuning of unknown
input parameters. Alternatively, many different
numerical methods exist for automatically fitting input
parameters. Most of them are based on constrained
optimization, where one wants to minimize the
squared distance between predicted and observed
output with respect to the unknown input parameters,
given the constraint that any predicted value
must obey the model. Numerous specific solution
algorithms are found in the literature on deterministic

Inverse Problems: Numerical Methods. Usually,
the solution of an inverse problems requires a large
number of solutions of the corresponding forward
problem.
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Many scientific questions immediately lead to
inverse problems. Seismic imaging is an example
where one aims to estimate the spatial properties of the
Earth’s crust using measurements of reflected sound
waves. Mathematically, the unknown properties are
spatially varying coefficients in partial differential
equations, and the measurements contain information
about the solution of the equations. The primary
purpose is to estimate the value of the coefficients,
which in a forward model for wave motion constitute
input data that must be known. When the focus is about
solving the inverse problem itself, one can often apply
simpler forward models (in seismic imaging, e.g.,
ordinary differential equations for ray tracing have
traditionally replaced full partial differential equations
for the wave motion as forward model).

Reliable estimation of parameters requires more
observed data than unknown input data. Then we can
search for the best fit of parameters, but there is
no unique definition of what “best” is. Furthermore,
measured output data is subject to measurement errors.
It is therefore fruitful to acknowledge that the solution
of inverse problems has a variability. Control of this
variability gives parameter estimates with correspond-
ing statistical uncertainties. For this purpose, one may
turn to solving stochastic inverse problems. These
are commonly formulated in a » Bayesian Statistics:
Computation where probability densities for the input
parameters are suggested, based on prior knowledge,
and the framework updates these probability densities
by taking the forward model and the data into account.
The inserted prior knowledge handles the ill posedness
of deterministic inverse problems, but at a much in-
creased computational cost.

Uncertainty Quantification

With stochastic parameter estimation we immediately
face the question: How does the uncertainty in esti-
mated parameters propagate through the model? That
is, what is the uncertainty in the predicted output?
Methods from » Uncertainty Quantification: Computa-
tion can be used to answer this problem. If parameters
are estimated by Bayesian frameworks, we have com-
plete probability descriptions. With simpler estimation
methods we may still want to describe uncertainty
in the parameters in terms of assumed probability
densities.
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The simplest and most general method for un-
certainty quantification is Monte Carlo simulation.
Large samples of input data are drawn at random
from the known probability densities and fed as input
to the model. The forward model is run to compute
the output corresponding to each sample. From the
samples of output data, one can compute the aver-
age, variance, and other statistical measures of the
quantities of interest. One must often use of the or-
der 10°—107 samples (and hence runs of the forward
model) to compute reasonably precise statistics. Much
faster but less general methods exist. During recent
years, » Polynomial Chaos Expansions have become
popular. These assume that the mapping from stochas-
tic input to selected output quantities is smooth such
that the mapping can be effectively described by a
polynomial expansion with few terms. The expansion
may converge exponentially fast and reduce the num-
ber of runs of the forward model by several orders of
magnitude.

Having validated the model and estimated the
uncertainty in the output, we can eventually perform
predictive computer simulations and calculate the
precision of the predictions. At this point we have
completed the final item in our list of key steps in the
simulation pipeline.

We remark that although the stochastic parameter
estimation framework naturally turns an originally de-
terministic model into a stochastic one, modelers may
early in the modeling process assume that the details
of some effect are not precisely known and therefore
describe the effect as a stochastic quantity. Some input
to the model is then stochastic and the question is
how the statistical variability is propagated through the
model. This basically gives the same computational
problem as in uncertainty quantification. One exam-
ple where stochastic quantities are used directly in
the modeling is environmental forces from wind and
waves on structures. The forces may be described as
stochastic space-time fields with statistical parameters
that must be estimated from measurements.

Laboratory and Field Experiments

The workflow in Scientific Computing to establish pre-
dictive simulation models is seen to involve knowledge
from several subjects, clearly Applied and Numeri-
cal Mathematics, Statistics, and Computer Science,
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but the mathematical techniques and software work
must be closely integrated with domain-specific mod-
eling knowledge from the field where the science
problem originates, say Physics, Mechanics, Geology,
Geophysics, Astronomy, Biology, Finance, or Engi-
neering disciplines. A less emphasized integration is
with laboratory and field experiments, as Scientific
Computing is often applauded to eliminate the need
for experiments. However, we have explained that
predictive simulations require validation, parameter
estimation, and control of the variability of input and
output data. The computations involved in these tasks
cannot be carried out without access to carefully con-
ducted experiments in the laboratory or the field. A
hope is that an extensive amount of large-scale data
sets from experiments can be made openly available
to all computational scientists and thereby acceler-
ate the integration of experimental data in Scientific
Computing.

Self-Consistent Field (SCF) Algorithms

Eric Cances

Ecole des Ponts ParisTech — INRIA, Université Paris
Est, CERMICS, Projet MICMAC, Marne-la-Vallee,
Paris, France

Definition

Self-consistent field (SCF) algorithms usually refer
to numerical methods for solving the Hartree-Fock,
or the Kohn-Sham equations. By extension, they
also refer to constrained optimization algorithms
aiming at minimizing the Hartree-Fock, or the Kohn-
Sham energy functional, on the set of admissible
states.

Discretization of the Hartree-Fock Model

As usual in electronic structure calculation, we adopt
the system of atomic units, obtained by setting to
1 the values of the reduced Planck constant %, of
the elementary charge, of the mass of the electron,
and of the constant 4mwey, where ¢y is the dielectric
permittivity of the vacuum.

Self-Consistent Field (SCF) Algorithms

The Hartree-Fock model reads, for a molecular

system containing N electrons, as

EF(N) = inf{ &M (@), & = PN)

(¢1’...

e (H'®Y)". / b = »,-},a)

where R}, =R? x {TL},/ ¢i¢f=/ ¢i(X)¢7(X)

Z /gb,(r 0)¢;(r,0)"dr,

oe{tl}
and
£ (@) = Z / Vo4 [ poVi
1—1 R32
/ / pq)(r) pq)(r drdr/
R3 JR3 |r—r’
|2
——/ / Irox. )17 dxdx'.
R3 JR3 |r—r’|

The function V,, denotes the nuclear potential. If
the molecular system contains M nuclei of charges
Z1,-++ .2y located at positions Ry, ---, Ry, the fol-
lowing holds

Vnuc (I’) =

M
_Zz_k
= Ir =Ry

The density pg and the density matrix y¢ associated
with @ are defined by

and

N
=Y > lpir.o)l

i=loe{t |}

pa (1)

N
vo(x,X) =Y ¢i ()¢ (x)*.

i=1

The derivation of the Hartree-Fock model from
the N-body Schrodinger equation is detailed in the
contribution by I. Catto to the present volume.

The Galerkin approximation of the minimization
problem (1) consists in approaching E{'(N) by
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EgF(N,V) = min { EMF (D), & = (¢1,--- . ¢n)

N *
ev a/RSZQﬁiqﬁj—Sij},

where V C H'(RY) is a finite dimensional approxi-
mation space of dimension Nj. Obviously, EJF(N) <
EMF(N,V) forany V C H'(R3,).

In the sequel, we denote by C™" the vector space
of the complex-valued matrices with m lines and n
columns, and by C;"" the vector space of the hermitian
matrices of size m x m. We endow these spaces with
the Frobenius scalar product defined by (4, B)r =
Tr (A* B). Choosing a basis (x1.---, xn,) of V, and

)

expanding @ = (¢, ,¢y) € VN as
Np
$i(x) =D Cpi fu(x),

i=1
problem (2) also reads

E¢F(N,V) = min {EF(CC*), C e CV,

C*SC = Iy}, 3)

where I is the identity matrix of rank N and where

EY(D) = Tr(hD) + %Tr (G(D)D).

The entries of the overlap matrix S and of the one-
electron Hamiltonian matrix / are given by

P *
Spy 1= /]R} XuXv

“)

and

XM(X) v (X)

dx.
S r—Re|

(5)

1
huw ::5/]R VoV = Z f

The linear map G € £(C)**") is defined by

Np

[G(D)w =) [(uolkd) = (uAlkv)] Dy,

K,A=1
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where (uA|«v) is the standard notation for the two-
electron integrals

* 7\ *
(vl i f [ 200 LOpE”
Ry Ir—r'|
(6)
We will make use of the symmetry property
Tr(G(D)D’) = Tr (G(D') D). (7

The formulation (3) is referred to as the molecular
orbital formulation of the Hartree-Fock model, by
contrast with the density matrix formulation defined as

EHF(N,V) = min {EHF(D) D el

DSD = D, Tr(SD) = N}. ®)

It is easily checked that problems (3) and (8) are equiv-
alent, remarking that the map {C € CV»N | C*SC =
Iy} > C = CC* € {D € C"™|DSD =

D, Tr(SD) = N} is onto. For any @ = (¢,

.py) € VY with ¢i(x) = Y%, Cpixu(x). the
following holds
Np

Yo(x.X) = Y Duyxu(®x(x)* with D =CC*.
nv=1

We refer to the contribution by Y. Maday for the
derivation of a priori and a posteriori estimates on the
energy difference E{T(N,V) — EF(N), and on the
distance between the minimizers of (2) and those of
(1), for L? and Sobolev norms.

Most Hartree-Fock calculations are performed in
atomic orbital basis sets (see, e.g., [9] for details),
and more specifically with Gaussian type orbitals. The
latter are of the form

Nﬁ'
Z Pug(r— Rk(u))e—awg\l‘—Rk(u)F S, (0),

g=1
)
where P, . is a polynomial, o), > 0, and S, =
a or B, with a(o) = 8,4 and B(o) = &,y. The
main advantage of Gaussian type orbitals is that all the
integrals in (4)—(6) can be calculated analytically [5].

aur,o) =
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In order to simplify the notation, we assume in the
sequel that the basis (yi,--- , xn,) is orthonormal, or,
equivalently, that S = Iy,. The molecular orbital and
density matrix formulations of the discretized Hartree-
Fock model then read

EF(N,V) = min {EMF(CC*), C €C}. (10)
C={CeC™N|C*C = Iy},
E{F(N,V) = min {EYF(D), D € P}. (11)
P = {D eCYM | p2 = p,
Tr (D) = N}.
Hartree-Fock-Roothaan-Hall Equations
The matrix
F(D) := h+ G(D) (12)

is called the Fock matrix associated with D. It is the
gradient of the Hartree-Fock energy functional at D,
for the Frobenius scalar product.

It can be proved (see again [9] for details) that if D
is a local minimizer of (11), then

N
D=) &b
i=1
F(D)(pl = €; (pi
P =4
€] <€ <...<gy are the lowest
N eigenvalues F(D).

13)

The above system is a nonlinear eigenvalue problem:
the vectors @; are orthonormal eigenvectors of the
hermitian matrix F(D) associated with the lowest
N eigenvalues of F(D), and the matrix F(D) de-
pends on the eigenvectors @; through the definition
of D. The first three equations of (13) are called the
Hartree-Fock-Roothaan-Hall equations. The property
that €1,--- ,ey are the lowest N eigenvalues of the
hermitian matrix F (D) is referred to as the Aufbau
principle. An interesting property of the Hartree-Fock
model is that, for any local minimizer of (11), there
is a positive gap between the Nth and (N + 1)th

Self-Consistent Field (SCF) Algorithms

eigenvalues of F(D): y = eny1 — ey > 0[2,9].
From a geometrical viewpoint, D = "7 &;® is the
matrix of the orthogonal projector on the vector space
spanned by the lowest N eigenvalues of F (D). Note
that (13) can be reformulated without any reference to
the molecular orbitals @; as follows:

D € argmin {Tr (F(D)D'), D' € P}, (14)
and that, as y = ey —€n > 0, the right-hand side of
(14) is a singleton. This formulation is a consequence
of the following property: for any hermitian matrix
F e C;]lv” *No with eigenvalues €| < --- < €y, and any
orthogonal projector D of the form D = YN &, ®*
with @*®; = §;; and F®; = ¢;P;, the following
holds VD’ € P,

— ey

Tr (FD') > Tr (FD) + N N

S ID = DII;.

5)

Roothaan Fixed Point Algorithm

It is very natural to try and solve (13) by means of the
following fixed point algorithm, originally introduced
by Roothaan in [24]:

F(DI™®; vt = € k1 Dik+1
* —
D1 Pjk+1 = b
€1k+1 < €2k+1 < -+ < €ni+1 are the lowest
N eigenvalues F(DR™) (16)
N

Rth __ . *
Dk+1 - Z¢l.k+l¢i.k+1v

i=1

which also reads, in view of (15),

Rth
Dk+1

€ argmin {Tr (F(DF™)D'), D' € P}. (17)
Solving the nonlinear eigenvalue problem (13) then
boils down to solving a sequence of linear eigenvalue
problems.

It was, however, early realized that the above algo-
rithm often fails to converge. More precisely, it can be
proved that, under the assumption that

inf (€N+1.k — GN.k) > 0, (18)
keN
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which seems to be always satisfied in practice, the
sequence (DR™M)ren generated by the Roothaan
algorithm either converges to a solution D of the
Hartree-Fock-Roothaan-Hall equations satisfying the
Aufbau principle

|DR™ — D = 0  with D satisfying (13), (19)
—00

or asymptotically oscillates between two states Deyen
and D44, none of them being solutions to the Hartree-
Fock-Roothaan-Hall equations

||D§1§h_Deven” > 0 and ||D§12-1_Dodd|| —> 0.
k—o00 k—00
(20)

The behavior of the Roothaan algorithm can be
explained mathematically, noticing that the sequence
(D,ljth)keN is obtained by minimizing by relaxation the
functional

E(D,D’) =Tr(hD) + Tr (hD’) + Tr (G(D)D").
Indeed, we deduce from (7), (12), and (17) that

D™ = argmin {Tr (F(D§™)D’), D' € P}
= argmin {Tr (hD(‘)“h) + Tr (kD)
+Tr (G(D™ D), D' e P}
= argmin {E(Dg[h, D), D' e P}’
DX™ = argmin {Tr (F(DFth)D)y D e 7)}
= argmin {Tr (hD) + Tr (hDFth)
+Tr (G(DF™)D), D' € P}
= argmin {Tr (:D) + Tr (hDY™)
+Tr (G(D)D{™), D' € P}
= argmin {E(D, DFth), D e 73}’

and so on, and so forth. Together with (15) and (18),
this leads to numerical convergence [6]: ||D,l§f_‘2 —
D}}‘hHF — 0. The convergence/oscillation properties
(19)/(20) can then be obtained by resorting to the
Lojasiewicz inequality [17].

Oscillations of the Roothaan algorithm are called

charge sloshing in the physics literature. Replacing
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E(D, D’) with the penalized functional E(D, D) +
%HD — D'||% (b > 0) suppresses the oscillations when
b is large enough, but the resulting algorithm

D, € argmin {Tr (F(D} —bD{)D’), D' € P}

often converges toward a critical point of the Hartree-
Fock-Roothaan-Hall equations, which does not satisfy
the Aufbau principle, and is, therefore, not a local
minimizer. This algorithm, introduced in [25], is called
the level-shifting algorithm. It has been analyzed in
[6,17].

Direct Minimization Methods

The molecular orbital formulation (10) and the density
matrix formulation (11) of the discretized Hartree-
Fock model are constrained optimization problems.
In both cases, the minimization set is a (non-convex)
smooth compact manifold. The set C is a manifold
of dimension NN, — 3N(N + 1), called the Stiefel
manifold; the set P of the rank-N orthogonal projec-
tors in C™ is a manifold of dimension N(N, — N),
called the Grassmann manifold. We refer to [12] for an
interesting review of optimization methods on Stiefel
and Grassmann manifolds.

From a historical viewpoint, the first minimization
method for solving the Hartree-Fock-Roothaan-Hall
equations, the so-called steepest descent method, was
proposed in [20]. It basically consists in performing
one unconstrained gradient step on the function D
E(D) (ie., Dky1 = Dx—tVE(Dy) = Di—tF(Dy)),
followed by a “projection” step Dyy+1 — Di+1 €
P. The “projection” can be done using McWeeny’s
purification, an iterative method consisting in replacing
ateach step D with 3D2—2D3. Itis easily checked that
if 5k+1 is close enough to P, the purification method
converges quadratically to the point of P closest to
5k+1 for the Frobenius norm. The steepest descent
method has the drawback of any basic gradient method:
it converges very slowly, and is therefore never used in
practice.

Newton-like algorithms for computing Hartree-
Fock ground states appeared in the early 1960s with
Bacskay quadratic convergent (QC) method [3].
Bacskay’s approach was to lift the constraints and
use a standard Newton algorithm for unconstrained
optimization. The local maps of the manifold P used
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in [3] are the following exponential maps: for any
C € CYNo guch that C*SC = Iy,,

A Iy 0
73={CeAD0e AC,D0=[30:|,

_ 0 _Ajo (Np—N)XN { .
A_[AVO 0 }aAVOEC ’

the suffix vo denotes the virtual-occupied off-diagonal
block of the matrix A. Starting from some reference
matrix C, Bacskay QC algorithm performs one Newton
step on the unconstrained optimization problem

min {E€ (Ay,) := EMF(Ce” Doe"C*),

Avo = (C(N;,—N)XN} ,

and updates the reference matrix C by replacing C

~ *
with Ce”, where 4 = |:Z0 _gvo :|, Ay, denoting the
result of the Newton step. Newton methods being very
expensive in terms of computational costs, various at-
tempts have been made to build quasi-Newton versions
of Bacskay QC algorithm (see, for e.g., [10, 13]).

A natural alternative to Bacskay QC is to use
Newton-like algorithms for constrained optimization
in order to directly tackle problems (10) or (11)
(see, e.g., [26]). Trust-region methods for solving
the constrained optimization problem (10) have also
been developed by Helgaker and co-workers [27],
and independently by Martinez and co-workers [14].
Recently, gradient flow methods for solving (10) [1]
and (11) [17] have been introduced and analyzed from
a mathematical viewpoint.

For molecular systems of moderate size, and when
the Hartree-Fock model is discretized in atomic orbital
basis sets, direct minimization methods are usually
less efficient than the methods based on constraint
relaxation or optimal mixing presented in the next two
sections.

Lieb Variational Principle and Constraint
Relaxation
We now consider the variational problem

min {E'(D), D € P}, Q1)

Self-Consistent Field (SCF) Algorithms

P = {D eChM 0<D <1, Tr(D):N},

where 0 < D < 1 means that) < @*D® < ¢*P for
all @ € CM, or equivalently, that all the eigenvalues
of D lay in the range [0, 1]. It is easily seen that the set
P is convex. It is in fact the convex hull of the set P.
A fundamental remark is that all the local minimizers
of (21) are on P [9]. This is the discretized version
of a result by Lieb [18]. It is, therefore, possible to
solve the Hartree-Fock model by relaxing the non-
convex constraint D> = D into the convex constraint
0<Dc<1.

The orthogonal projection of a given hermitian
matrix D on P for the Frobenius scalar product can
be computed by diagonalizing D [8]. The cost of one
iteration of the usual projected gradient algorithm [4]
is therefore the same at the cost of one iteration of the
Roothaan algorithm.

A more efficient algorithm, the Optimal Damping
Algorithm (ODA), is the following [7]

Dj41 € argmin {Tr (F(Dx)D'), D' € P}
Dj41 = argmin {EHF(D), D e Seg[Dy, Dk+1]} ,

where Seg[Bk, Di41] = {(1 — k)ﬁk 4+ ADg4+1,A €
[0, 1]} denotes the line segment linking Dy and Dy 41.
As EMF is a second degree polynomial in the density
matrix, the last step consists in minimizing a quadratic
function of A on [0, 1], which can be done analytically.
The procedure is initialized with Dy = Do, Dy € P
being the initial guess. The ODA thus generates two
sequences of matrices:
¢ The main sequence of density matrices (Dg)ien €
PN which is proven to numerically converge to an
Aufbau solution to the Hartree-Fock-Roothaan-Hall
equations [9]
* A secondary sequence (Bk)kz 1 of matrices belong-
ing to P
The Hartree-Fock energy is a Lyapunov functional of
ODA:: it decays at each iteration. This follows from the
fact that for all D’ € P and all A € [0, 1],

EYF((1 =)Dy + AD') = E"(Dy) + ATr (F(Dy)

~ 2 ~ ~
(D' — Dy)) + %Tr (G(D' = D) (D' = Dy)).
(22)
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The “steepest descent” direction, that is, the
density matrix D for which the slope s3 _,
Tr (F(ﬁk)(D — Bk)) is minimum, is precisely Dy ;.

In some sense, ODA is a combination of diagonal-
ization and direct minimization. The practical imple-
mentation of ODA is detailed in [7], where numerical
tests are also reported. The cost of one ODA itera-
tion is approximatively the same as for the Roothaan
algorithm. Numerical tests show that ODA is par-
ticularly efficient in the early steps of the iterative
procedure.

Convergence Acceleration

SCF convergence can be accelerated by performing, at
each step of the iterative procedure, a mixing of the
previous iterates:

Djc41 € argmin {Tr (FyD'), D' € P}
k k
Fo=> cjxF(Dy). Y cjx=1
j=0

Jj=0

(23)

where the mixing coefficients ¢;; are optimized ac-
cording to some criterion. Note that in the Hartree-
Fock setting, the mean-field Hamiltonian F(D) is
affine in D, so that mixing the F(D;)’s amounts to
mixing the D;’s:

k
Fk = F(ﬁk) where 5k = ch.ij.
j=0

This is no longer true for Kohn-Sham models.
In Pulay’s DIIS algorithm [22], the mixing coeffi-
cients are obtained by solving

2
k k
min ZC‘j[F(Dj),Dj] s ZCj:l

7=l g /=1

The commutator [F (D), D] is in fact the gradient
of the functional 4 — E"F(e4De™") defined on the
vector space of the N, x N;, antihermitian matrices
(note that eADe™ € P forall D € P and A
antihermitian); it vanishes when D is a critical point
of EfF on P.
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In the EDIIS algorithm [16], the mixing coeffi-
cients are chosen to minimize the Hartree-Fock energy
of Dy:

k k
min { EM Y "eiDi | ey =0, ) e =1

J=1 Jj=1

(note that as the ¢;’s are chosen non-negative, 51( is
the element of P which minimizes the Hartree-Fock
energy on the convex hull of {Dg, Dy, -+, Di}).

The DIIS algorithm does not always converge. On
the other hand, when it converges, it is extremely fast.
This nice feature of the DIIS algorithm has not yet been
fully explained by rigorous mathematical arguments
(see however [23] for a numerical analysis of DIIS-type
algorithms in an unconstrained setting).

SCF Algorithms for Kohn-Sham Models

After discretization in a finite basis set, the Kohn-Sham
energy functional reads

EXS(D) = Tr(hD) + %Tr(J(D)D) + Exc(D),

where [J(D)]uw 1= Y 5 (Uv]kA)Dyy is the Coulomb
operator, and where E,. is the exchange-correlation
energy functional [11]. In the standard Kohn-Sham
model [15], EXS is minimized on P, while in the
extended Kohn-Sham model [11], EXS is minimized
on the convex set P. The algorithms presented in the
previous sections can be transposed mutatis mutandis
to the Kohn-Sham setting, but as Ex.(D) is not a sec-
ond order polynomial in D, the mathematical analysis
is more complicated. In particular, no rigorous result
on the Roothaan algorithm for Kohn-Sham has been
published so far.

Note that the equality F(D_, ¢;D;) = Y, ¢ci F(D;)
whenever ) . ¢; = 1 is true for Hartree-Fock with
F(D) = VEY(D) = h + G(D), but not for Kohn-
Sham with F(D) = VEXS(D) = h + J(D) +
V E«.(D). Consequently, in contrast with the situation
encountered in the Hartree-Fock framework, mixing
density matrices and mixing Kohn-Sham Hamiltonians
are not equivalent procedures. This leads to a variety
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of acceleration schemes for Kohn-Sham that boil down
to either DIIS or EDIIS in the Hartree-Fock setting.
For the sake of brevity, and also because the situation
is evolving fast (several new algorithms are proposed
every year, and identifying the best algorithms is a
matter of debate), we will not present these schemes
here.

Let us finally mention that, if iterative methods
based on repeated diagonalization of the mean-field
Hamiltonian, combined with mixing procedures, are
more efficient than direct minimization methods for
moderate size molecular systems, and when the Kohn-
Sham problem is discretized in atomic orbital basis
sets, the situation may be different for very large sys-
tems, or when finite element or planewave discretiza-
tion methods are used (see, e.g., [19,21] and references
therein).
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Definition

Highly integrated electric circuits in computer pro-
cessors mainly consist of semiconductor transistors
which amplify and switch electronic signals. Roughly
speaking, a semiconductor is a crystalline solid whose
conductivity is intermediate between an insulator and
a conductor. The modeling and simulation of semicon-
ductor transistors and other devices is of paramount
importance in the microelectronics industry to reduce
the development cost and time. A semiconductor de-
vice problem is defined by the process of deriving
physically accurate but computationally feasible model
equations and of constructing efficient numerical algo-
rithms for the solution of these equations. Depending
on the device structure, size, and operating conditions,
the main transport phenomena may be very different,
caused by diffusion, drift, scattering, or quantum ef-
fects. This leads to a variety of model equations de-
signed for a particular situation or a particular device.
Furthermore, often not all available physical informa-
tion is necessary, and simpler models are needed, help-
ing to reduce the computational cost in the numerical
simulation. One may distinguish four model classes:
microscopic/mesoscopic and macroscopic semiclassi-
cal models and microscopic/mesoscopic and macro-
scopic quantum models (see Fig. 1).

Description

In the following, we detail only some models from the
four model classes since the field of semiconductor
device problems became extremely large in recent
years. For instance, we ignore compact models, hybrid
model approaches, lattice heat equations, transport in
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subbands and magnetic fields, spintronics, and models
for carbon nanotube, graphene, and polymer thin-film
materials. For technological aspects, we refer to [9].

Microscopic Semiclassical Models
We are interested in the evolution of charge carri-
ers moving in an electric field. Their motion can be
modeled by Newton’s law. However, in view of the
huge number of electrons involved, the solution of
the Newton equations is computationally too expen-
sive. Moreover, we are not interested in the trajectory
of each single particle. Hence, a statistical approach
seems to be sufficient, introducing the distribution
function (or “probability density”) f(x,v,t) of an
electron ensemble, depending on the position x € R3,
velocity v = ¥ = dx/dt € R3, and time ¢ > 0. By
Liouville’s theorem, the trajectory of f(x(¢),v(t),t)
does not change during time, in the absence of colli-
sions, and hence,
_af

0= =8 f+&Vof +i-V,f

along trajectories,
ey

where d, f = df/dt and V, f, V, f are gradients with
respect to x, v, respectively.

Since electrons are quantum particles (and position
and velocity cannot be determined with arbitrary accu-
racy), we need to incorporate some quantum mechan-
ics. As the solution of the many-particle Schrodinger
equation in the whole space is out of reach, we need an
approximate approach. First, by Bloch’s theorem, it is
sufficient to solve the Schrédinger equation in a semi-
conductor lattice cell. Furthermore, the many-particle
interactions are described by an effective Coulomb
force. Finally, the properties of the semiconductor
crystal are incorporated by the semiclassical Newton
equations.

More precisely, let p = hk denote the crystal
momentum, where # is the reduced Planck constant
and k is the wave vector. For electrons with low
energy, the velocity is proportional to the wave vector,
X = hk/m, where m is the electron mass at rest.
In the general case, we have to take into account the
energy band structure of the semiconductor crystal (see
[4,7, 8] for details). Newton’s third law is formulated
as p = qV.V, where q is the elementary charge and
V(x,1) is the electric potential. Then, using v = p/m
and Vi = (m/h)V,, (1) becomes the (mesoscopic)
Boltzmann transport equation:
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Microscopic/mesoscopic semi-classical models

Semi-classical
Newton’s equations

statistical approach

Boltzmann transport
equation

moment method +

moment method e I

Hydrodynamic
equations

Energy-transport
equations

constant
temperature

Drift-diffusion
equations

Macroscopic semi-classical models

Semiconductor Device Problems

Microscopic/mesoscopic quantum models

Liouville-von

. Lindblad equation
Neumann equation

collisionless collisional

Wigner-Boltzmann

Schrédinger equation equation

moment moment method +
method Chapman-Enskog
Quantum hydro- Quantum energy-
dynamic equations transport equations
constant
temperature

Quantum drift-
diffusion equations

Macroscopic quantum models

Semiconductor Device Problems, Fig. 1 Hierarchy of some semiconductor models mentioned in the text

h
0 f +—k-Vof +Ivv.vs
m h

=0(f), (x.k) eR* xR’ 1>0,

)
where Q(f) models collisions of electrons with
phonons, impurities, or other particles. The moments
of f are interpreted as the particle density n(x,1),
current density J(x, t), and energy density (ne)(x,t):

A
J =" kfdk,

n= fdk,
R3 m Jgr3

h2
ne = —

2
o | IKP fdk

3)

In the self-consistent setting, the electric potential V'
is computed from the Poisson equation e,AV =
q(n—C(x)), where g, is the semiconductor permittivity
and C(x) models charged background ions (doping
profile). Since n depends on the distribution function
f, the Boltzmann—Poisson system is nonlinear.

The Boltzmann transport equation is defined over
the six-dimensional phase space (plus time) whose
high dimensionality makes its numerical solution a
very challenging task. One approach is to employ the
Monte Carlo method which consists in simulating a
stochastic process. Drawbacks of the method are the
stochastic nature and the huge computational cost. An

alternative is the use of deterministic solvers, for exam-
ple, expanding the distribution function with spherical
harmonics [6].

Macroscopic Semiclassical Models

When collisions become dominant in the semiconduc-
tor domain, that is, the mean free path (the length
which a particle travels between two consecutive col-
lision events) is much smaller than the device size, a
fluid dynamical approach may be appropriate. Macro-
scopic models are derived from (2) by multiplying
the equation by certain weight functions, that is 1,
k, and |k|?>/2, and integrating over the wave-vector
space. Setting all physical constants to one in the
following, for notational simplicity, we obtain, using
the definitions (3), the balance equations:

o,n + divy J =f O(f)dk, xeR: >0, (4
]R3

B,J-i—divX/ k®kfdk—nVXV=/ kQ(f)dk,
R3 R3
(5)

1
3 (ne) + = divy / k|k|> fdk — V. V-
2 R3

_! 2
v =5 [ ko ©
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The higher-order integrals cannot be expressed in terms
of the moments (3), which is called the closure prob-
lem. It can be solved by approximating f by the
equilibrium distribution fj, which can be justified by
a scaling argument and asymptotic analysis. The equi-
librium £ can be determined by maximizing the Boltz-
mann entropy under the constraints of given moments
n, nu, and ne [4]. Inserting f; in (4)—(6) gives explicit
expressions for the higher-order moments, yielding
the so-called hydrodynamic model. Formally, there
is some similarity with the Euler equations of fluid
dynamics, and there has been an extensive discussion
in the literature whether electron shock waves in semi-
conductors are realistic or not [10].

Diffusion models, which do not exhibit shock solu-
tions, can be derived by a Chapman—Enskog expansion
around the equilibrium distribution fy according to
f = fo+ afi, where @ > 0 is the Knudsen number
(the ratio of the mean free path and the device length)
which is assumed to be small compared to one. The
function f] turns out to be the solution of a certain op-
erator equation involving the collision operator Q( f).
Depending on the number of given moments, this leads
to the drift-diffusion equations (particle density given):

on+div, J =0, J=-V.n+nV,V,

xeR >0,

)

or the energy-transport equations (particle and energy
densities given)

dn +div, J =0, J:—wn+%ww

xeR >0, (8)
d;(ne) +divy S +nu-V,V =0,
3
S = _E(Vx(nT) _anV)’ ©)

where ne = %n T, T being the electron temperature,
and S is the heat flux. For the derivation of these
models; we have assumed that the equilibrium distri-
bution is given by Maxwell-Boltzmann statistics and
that the elastic scattering rate is proportional to the
wave vector. More general models can be derived too,
see [4, Chap. 6].

The drift-diffusion model gives a good description
of the transport in semiconductor devices close to
equilibrium but it is not accurate enough for submicron
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devices due to, for example, temperature effects, which
can be modeled by the energy-transport equations.

In the presence of high electric fields, the station-
ary equations corresponding to (7)—(9) are convection
dominant. This can be handled by the Scharfetter—
Gummel discretization technique. The key idea is to
approximate the current density along each edge in
a mesh by a constant, yielding an exponential ap-
proximation of the electric potential. This technique is
related to mixed finite-element and finite-volume meth-
ods [2]. Another idea to eliminate the convective terms
is to employ (dual) entropy variables. For instance,
for the energy-transport equations, the dual entropy
variables are w = (wy,w2) = (u —V)/T,—-1/T),
where p is the chemical potential, given by n =
T3/2 exp(u/ T). Then (8) and (9) can be formulated as
the system:

;b (w) — div(D(w, V)Vw) =0,

where b(w) = (n,2nT)T and D(w,V) € R®? is a
symmetric positive definite diffusion matrix [4] such
that standard finite-element techniques are applicable.

Microscopic Quantum Models
The semiclassical approach is reasonable if the car-
riers can be treated as particles. The validity of this
description is measured by the de Broglie wavelength
Ap corresponding to a thermal average carrier. When
the electric potential varies rapidly on the scale of
Ap or when the mean free path is much larger than
A B, quantum mechanical models are more appropriate.
A general description is possible by the Liouville-von
Neumann equation:
icd,p=[H,p|:=Hp—pH, >0,
for the density matrix operator p, where i> = —1,
& > 0 is the scaled Planck constant, and H is the
quantum mechanical Hamiltonian. The operator p is
assumed to possess a complete orthonormal set of
eigenfunctions (y;) and eigenvalues (A;). The se-
quence of Schrodinger equations igd;yr; = Hy;
(j € N), together with the numbers A; > 0, is called
a mixed-state Schrodinger system with the particle
density n(x,7) = 352, ;| (x,1)[*. In particular,
A; can be interpreted as the occupation probability of
the state j.
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The Schrodinger equation describes the evolution of
a quantum state in an active region of a semiconductor
device. It is used when inelastic scattering is suffi-
ciently weak such that phase coherence can be assumed
and effects such as resonant tunneling and quantum
conductance can be observed. Typically, the device
is connected to an exterior medium through access
zones, which allows for the injection of charge carriers.
Instead of solving the Schrodinger equation in the
whole domain (self-consistently coupled to the Poisson
equation), one wishes to solve the problem only in
the active region and to prescribe transparent boundary
conditions at the interfaces between the active and
access zones. Such a situation is referred to as an
open quantum system. The determination of transpar-
ent boundary conditions is a delicate issue since ad hoc
approaches often lead to spurious oscillations which
deteriorate the numerical solution [1].

Nonreversible interactions of the charge carriers
with the environment can be modeled by the Lindblad
equation:

o ST D,
ied,p=[H. P+ (LipLi—5(LELip+PLILY)).
k

where Ly are the so-called Lindblad operators and L}
is the adjoint of L. In the Fourier picture, this equation
can be formulated as a quantum kinetic equation, the
(mesoscopic) Wigner—Boltzmann equation:

w—+ p-Vew 4+ 0[Viw = Q(w),

(x,p) e R* xR ¢t >0, (10)

where p is the crystal momentum, 6[V]w is the po-
tential operator which is a nonlocal version of the drift
term V. V-V, ,w[4, Chap. 11], and QO (w) is the collision
operator. The Wigner function w = W|[p], where W
denotes the Wigner transform, is essentially the Fourier
transform of the density matrix. A nice feature of the
Wigner equation is that it is a phase-space description,
similar to the semiclassical Boltzmann equation. Its
drawbacks are that the Wigner function cannot be
interpreted as a probability density, as the Boltzmann
distribution function, and that the Wigner equation has
to be solved in the high dimensional phase space.
A remedy is to derive macroscopic models which are
discussed in the following section.

Semiconductor Device Problems

Macroscopic Quantum Models

Macroscopic models can be derived from the Wigner—
Boltzmann equation (10) in a similar manner as from
the Boltzmann equation (2). The main difference to
the semiclassical approach is the definition of the equi-
librium. Maximizing the von Neumann entropy under
the constraints of given moments of a Wigner function
w, the formal solution (if it exists) is given by the so-
called quantum Maxwellian M [w], which is a nonlocal
version of the semiclassical equilibrium. It was first
suggested by Degond and Ringhofer and is related
to the (unconstrained) quantum equilibrium given by
Wigner in 1932 [3, 5]. We wish to derive moment
equations from the Wigner—Boltzmann equation (10)
for the particle density #, current density J, and energy
density ne, defined by:

n= [ Mwldp. = f pMWldp.
]R3

R3

1
ne = / |p[2M [wldp.
]R3

Such a program was carried out by Degond et al. [3],
using the simple relaxation-type operator Q(w) =
M [w] —w. This leads to a hierarchy of quantum hydro-
dynamic and diffusion models which are, in contrast to
their semiclassical counterparts, nonlocal.

When we employ only one moment (the particle
density) and expand the resulting moment model in
powers of ¢ up to order O(e*) (to obtain local equa-
tions), we arrive at the quantum drift-diffusion (or
density-gradient) equations:

2
J=-Van+nV,V + %an

(%52)

o;n +divy J =0,

eR3, 1>0.

This model is employed to simulate the carrier in-
version layer near the oxide of a MOSFET (metal-
oxide-semiconductor field-effect transistor). The main
difficulty of the numerical discretization is the treat-
ment of the highly nonlinear fourth-order quantum
correction. However, there exist efficient exponentially
fitted finite-element approximations, see the references
of Pinnau in [4, Chap. 12].

Formally, the moment equations for the charge
carriers and energy density give the quantum
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energy-transport model. Since its mathematical
structure is less clear, we do not discuss this model
[4, Chap. 13.2].

Employing all three moments #, nu, ne, the moment
equations, expanded up to terms of order O(g*), be-
come the quantum hydrodynamic equations:

J®J
dn+divy =0, 0,J + div, (% + P)

VY = —/RS pOM[w))dp.

d;(ne) —divy((P + nel)u — q) + V. V-

1
J:—/ PROM M, x € R 1 >0,
2 ]R3

where T is the identity matrix in R**?, the quantum
stress tensor P and the energy density ne are given by:

&2 3
P =nT]I——anlogn, ne = -—nT
12 2

1 ) &2 Al

+§n|u| — 5" Ax logn,
u = J/n is the mean velocity, and ¢ =
—(&2/24)n(Au + 2V, div, u) is the quantum heat
flux. When applying a Chapman—Enskog expansion
around the quantum equilibrium, viscous effects are
added, leading to quantum Navier—Stokes equations
[5, Chap. 5]. These models are very interesting from
a theoretical viewpoint since they exhibit a surprising
nonlinear structure. Simulations of resonant tunneling
diodes using these models give qualitatively reasonable
results. However, as expected, quantum phenomena are
easily destroyed by the occurring diffusive or viscous
effects.
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Short Description

Shearlets are multiscale systems in L2(R?) which
efficiently encode anisotropic features. They extend
the framework of wavelets and are constructed by
parabolic scaling, shearing, and translation applied
to one or very few generating functions. The main
application area of shearlets is imaging science, for
example, denoising, edge detection, or inpainting.
Extensions of shearlet systems to L*(R"), n > 3 are
also available.
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Description

Multivariate Problems

Multivariate problem classes are typically governed by
anisotropic features such as singularities concentrated
on lower dimensional embedded manifolds. Examples
are edges in images or shock fronts of transport dom-
inated equations. Since due to their isotropic nature
wavelets are deficient to efficiently encode such func-
tions, several directional representation systems were
proposed among which are ridgelets, contourlets, and
curvelets.

Shearlets were introduced in 2006 [10] and are
to date the only directional representation system
which provides optimally sparse approximations
of anisotropic features while providing a unified
treatment of the continuum and digital realm in
the sense of allowing faithful implementations. One
important structural property is their membership
in the class of affine systems, similar to wavelets.
A comprehensive presentation of the theory and
applications of shearlets can be found in [16].

Continuous Shearlet Systems

Continuous shearlet systems are generated by applica-
tion of parabolic scaling A, Ay, a >0, shearing S,
s € R and translation, where

a 0 ~ a2 o
A,,:(Oam), Aa:(o a),
ls
and SS—(O 1),

to one or very few generating functions. For ¢ €
L*(R?), the associated continuous shearlet system is
defined by

Wass = a 347871~ 1) ra> 0.5 € R
te]Rz},

with a determining the scale, s the direction, and t the
position of a shearlet , s ,. The associated continuous
shearlet transform of some function f € L?(R?) is the

mapping

a>0,s R, teR.

L*®) > f = {f Vass),

Shearlets

The continuous shearlet transform is an isometry, pro-
vided that v satisfies some weak regularity conditions.

One common class of generating functions are clas-
sical shearlets, which are band-limited functions { €
L?(R?) defined by

PE =8 =)V (2).

where ¥, € L?(R) is a discrete wavelet, i.e., it
satisfies ), U127/ E)]> = 1 for ae. £ € R with
1 € C®R) and suppyn S [~3.—76] U [g. 3]
and ¥, € L*(R) is a “bump function” in the sense
that Z}(:_l V(g + k)2 = 1 forae. & € [—1,1]
with Y, € C®(R) and suppy, < [—1,1]. Figure 1
illustrates classical shearlets and the tiling of Fourier
domain they provide, which ensures their directional
sensitivity.

From a mathematical standpoint, continuous shear-
lets are being generated by a unitary representation of
a particular semi-direct product, the shearlet group [2].
However, since those systems and their associated
transforms do not provide a uniform resolution of
all directions but are biased towards one axis, for
applications cone-adapted continuous shearlet systems
were introduced. For ¢, v, v € L%(R?), the cone-
adapted continuous shearlet system SH on (¢, ¥, V) is
defined by

SHCOIII(¢7 Wv lﬁ) = (pcoz1t(¢) U lIlcant(W) U lf/cont(&)a

where

cz5cont(¢) = {¢t = ¢( - [) RS Rz}v
Weont () = (Wasr = a TP (A7 ST (- — 1))
ca € (0,1], |s] <1+4'% 1 eRY,

Goont (V) = Vs = a 19 (A1 ST (- —1))
cae(0,1],|s] <1+a'? 1 e R

The associated transform is defined in a similar man-
ner as before. The induced uniform resolution of all
directions by a cone-like partition of Fourier domain is
illustrated in Fig. 2.

The high directional selectivity of cone-adapted
continuous shearlet systems is reflected in the
result that they precisely resolve wavefront sets of
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Shearlets, Fig. 1 Classical shearlets: (a) |/,,| for exemplary values of a, s, and ¢. (b) Support of 1/A/ (c) Approximate support of

@MV, for different values of @ and s

distributions f by the decay behavior of |{f, ¥4.s.)]
and |( f, Vass)| as @ — 0 [15].

Discrete Shearlet Systems

Discretization of the parameters a,s, and t by a =
27/, jel,s=—k27/? keZ andt = AZ'Sm,
m € Z? leads to the associated discrete systems. For
Y € L%2(R?), the discrete shearlet system is defined by

Wikm = ﬁjlﬁ(SkAz/ c—m): jk € Z,m € 7*},

with j determining the scale, k the direction, and m the
position of a shearlet ;i ,,. The associated discrete
shearlet transform of some f € L?(R?)is the mapping

L*®R*) > f = (£ ¥jkm). Jk€lomel’.

Similarly, for ¢, v, 1} e L*(R?), tlle cone-adapted
discrete shearlet system SH ji5c(¢, ¥, ¥) is defined by

SHdisc(¢7 W’ ‘&) = czjdisc(gﬁ) ) lI/disc(w) U lf/disc(&)a

where

Bise($) = {pm = (- —m) :m € 7%},

Waise (W) = Wk = 2 Y (Sk Ay - —m)
1j =0kl <277 m e 2%},

Giise () = (P jxm = 28§ (S] Ay - —m)
2j =0,k <271, m e 7%},

To allow more flexibility in the denseness of the po-
sitioning of shearlets, sometimes the discretization
of the translation parameter ¢ is performed by ¢
Az_lek_ldiag(cl, c)m, m € 7% ci,co > 0. A very
general discretization approach is by coorbit theory
which is however only applicable to the non-cone-
adapted setting [4].

For classical (band-limited) shearlets as generating
functions, both the discrete shearlet system and the
cone-adapted discrete shearlet system — the latter one
with a minor adaption at the intersections of the cones
and suitable ¢ — form tight frames for L?(R?). A theory
for compactly supported (cone-adapted) discrete shear-
let systems is also available [14]. For a special class of
separable generating functions, compactly supported
cone-adapted discrete shearlet systems form a frame
with the ratio of frame bounds being approximately 4.

Discrete shearlet systems provide optimally sparse
approximations of anisotropic features. A customarily
employed model are cartoon-like functions, i.e., com-
pactly supported functions in L?(R?) which are C?
apart from a closed piecewise C? discontinuity curve.
Up to a log-factor, discrete shearlet systems based on
classical shearlets or compactly supported shearlets
satisfying some weak regularity conditions provide the
optimal decay rate of the best N-term approximation
of cartoon-like functions f [7,17], i.e.,

If— fxl3 <CN?(ogN)  asN — oo,

where here fy denotes the N-term shearlet approxi-
mation using the N largest coefficients.
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Shearlets, Fig. 2 Cone-adapted shearlet system: (a) Partition-
ing into cones. (b) Approximate support of 1}”,, and 1},”,, for

Fast Algorithms

The implementations of the shearlet transform can
be grouped into two categories, namely, in Fourier-
based implementations and in implementations in spa-
tial domain.

Fourier-based implementations aim to produce the
same frequency tiling as in Fig. 2b typically by em-
ploying variants of the Pseudo-Polar transform [5,21].
Spatial domain approaches utilize filters associated
with the transform which are implemented by a con-
volution in the spatial domain. A fast implementa-
tion with separable shearlets was introduced in [22],
subdivision schemes are the basis of the algorithmic
approach in [19], and a general filter approach was
studied in [11].

Shearlets

/

\ 4

\
/

different values of a and s. (¢) |1ﬁ,”,,| for some shearlet ¥ and
exemplary values of @, s, and ¢

Several of the associated algorithms are provided at
www.ShearLab.org.

Extensions to Higher Dimensions

Continuous shearlet systems in higher dimensions
have been introduced in [3]. In many situations, these
systems inherit the property to resolve wavefront
sets. The theory of discrete shearlet systems and
their sparse approximation properties have been
introduced and studied in [20] in dimension 3 with the
possibility to extend the results to higher dimensions,
and similar sparse approximation properties were
derived.


www.ShearLab.org

Shift-Invariant Approximation

Applications

Shearlets are nowadays used for a variety of applica-
tions which require the representation and processing
of multivariate data such as imaging sciences. Promi-
nent examples are deconvolution [23], denoising [6],
edge detection [9], inpainting [13], segmentation [12],
and separation [18]. Other application areas are sparse
decompositions of operators such as the Radon opera-
tor [1] or Fourier integral operators [8].
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Synonyms

Approximation by integer translates

Short Definition

Shift-invariant approximation deals with functions f
on the whole real line, e.g., time series and signals.
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It approximates f by shifted copies of a single gen-
erator ¢, i.e.,

)~ Spng(x) =Y cea(f)e (% —k), x € IR.
kezZ
)]

The functions ¢ (Z — k) for k € ZZ span a space that
is shift-invariant wrt. integer multiples of 4. Exten-
sions [1,2] allow multiple generators and multivariate
functions. Shift-invariant approximation uses only a
single scale &, while wavelets use multiple scales and
refinable generators.

Description

Nyquist—Shannon—Whittaker—Kotelnikov
provides the formula

sampling

Fx) =Y flkhsinc (% - k)

keZ

for band-limited functions with frequencies in
[/ h, +7/ h]. Itis basic in Electrical Engineering for
AD/DA conversion of signals after low-pass filtering.
Another simple example arises from the hat function
or order 2 B-spline By(x) :=1—|x|for—1 < x <1
and 0 elsewhere. Then the “connect-the-dots” formula

fo ~ Y fleh)By (7 — k)

keZ

is a piecewise linear approximation of f by connecting
the values f'(kh) by straight lines. These two examples
arise from a generator ¢ satisfying the cardinal inter-
polation conditions ¢(k) = Sox, k € ZZ, and then the
right-hand side of the above formulas interpolates f at
all integers. If the generator is a higher-order B-spline
B,,, the approximation

f) = Y fUeh) By (5 —F)

kezZ

goes back to I.J. Schoenberg and is not interpolatory in
general.

So far, these examples of (1) have very special
coefficients cx 5 (f) = f(kh) arising from sampling
the function f at data locations hZZ. This connects
shift-invariant approximation to sampling theory. If
the shifts of the generator are orthonormal in L,(/R),

Shift-Invariant Approximation

the coefficients in (1) should be obtained instead as
cen(f) = (fg(G — k) for any f € Ly(R) to
turn the approximation into an optimal L, projection.
Surprisingly, these two approaches coincide for the
sinc case.

Analysis of shift-invariant approximation focuses
on the error in (1) for various generators ¢ and for dif-
ferent ways of calculating useful coefficients ci 5 ( f).
Under special technical conditions, e.g., if the gener-
ator ¢ is compactly supported, the Strang—Fix condi-
tions [4]

PV Qrk)=6n, ke ZZ, 0<j <m

imply that the error of (1) is O(h™) for A — 0 in
Sobolev space W, (IR) if the coefficients are given via
L, projection. This holds for B-spline generators of
order m.

The basic tool for analysis of shift-invariant L,
approximation is the bracket product

[0.¥](@) := Y ¢+ 2km)y(w + 2kn). o € IR
keZ

which is a 2m-periodic function. It should exist point-
wise, be in L,[—, 7] and satisfy a stability property

0<A=<[p,¢l(w) =B, w€R.

IA

Then the L, projector for &~ = 1 has the convenient

Fourier transform

S'f,l.(p(a)) = M@(w), o € IR,

@, pl(w)

and if [p, ¢](w) = 1/2x for all w, the integer shifts
¢(-— k) for k € ZZ are orthonormal in L, (IR).

Fundamental results on shift-invariant approxima-
tion are in [1, 2], and the survey [3] gives a com-
prehensive account of the theory and the historical
background.
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Definition

The development and the mathematical analysis of
stochastic numerical methods to obtain approximate
solutions of deterministic linear and nonlinear par-
tial differential equations and to simulate stochastic
models.

Overview

Owing to powerful computers, one now desires to
model and simulate more and more complex physi-
cal, chemical, biological, and economic phenomena at
various scales. In this context, stochastic models are
intensively used because calibration errors cannot be
avoided, physical laws are imperfectly known (as in
turbulent fluid mechanics), or no physical law exists
(as in finance). One then needs to compute moments or
more complex statistics of the probability distributions
of the stochastic processes involved in the models.
A stochastic process is a collection (X;) of random
variables indexed by the time variable 7.

This is not the only motivation to develop stochastic
simulations. As solutions of a wide family of com-
plex deterministic partial differential equations (PDEs)
can be represented as expectations of functionals of
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stochastic processes, stochastic numerical methods are
derived from these representations.

We can distinguish several classes of stochastic nu-
merical methods: Monte Carlo methods consist in sim-
ulating large numbers of independent paths of a given
stochastic process; stochastic particle methods consist
in simulating paths of interacting particles whose em-
pirical distribution converges in law to a deterministic
measure; and ergodic methods consist in simulating
one single path of a given stochastic process up to a
large time horizon. Monte Carlo methods allow one
to approximate statistics of probability distributions of
stochastic models or solutions to linear partial differen-
tial equations. Stochastic particle methods approximate
solutions to deterministic nonlinear McKean—Vlasov
PDEs. Ergodic methods aim to compute statistics of
equilibrium measures of stochastic models or to solve
elliptic PDEs. See, e.g., [2].

In all cases, one needs to develop numerical ap-
proximation methods for paths of stochastic processes.
Most of the stochastic processes used as models or
involved in stochastic representations of PDEs are ob-
tained as solutions to stochastic differential equations

X:(x)=x+ /Ot b(X;(x))ds + /Ot o(X;(x)) dWs,
(1)

where (W) is a standard Brownian motion or, more
generally, a Lévy process. Existence and uniqueness of
solutions, in strong and weak senses, are exhaustively
studied, e.g., in [10].

Monte Carlo Methods for Linear PDEs

Set a(x) := o(x) o(x)", and consider the parabolic
PDE

ou 4. 1 &

5(z,x) = ;b, (x) diu(x) + 3 i; a’ (x) d;u(x)

)

with initial condition #(0, x) = f(x). Under various
hypotheses on the coefficients » and o, it holds that
u(t,x) = Euy(z, X;(x)), where X,(x) is the solution
to (1).

Let 7 > 0 be a time discretization step. Let
(Gp) be independent centered Gaussian vectors with
unit covariance matrix. Define the Euler scheme by
X{} (x) = x and the recursive relation
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o h o h
Xprnn(x) =X

1(x) +bX)(x) h

+o(X5 ) Vh Gy

The simulation of this random sequence only requires
the simulation of independent Gaussian random vari-
ables. Given a time horizon M h, independent copies of
the sequence (G,,1 < p < M) provide independent
paths ()f:,;k (x), 1 <p=M).

The global error of the Monte Carlo method with N

simulations which approximates u(ph, x) is

N
1 _
EM()(XM;,) — N Zuo (X}{l,”];)
k=1

= Euo(XMh) - Euo (Xlllzlh)

=eq(h)

1
N

M=

+ Rug (XL,) — wo (X))

k=1

=:¢5(h,N)

Nonasymptotic variants of the central limit theorem
imply that the statistical error €,(/) satisfies

C(M)
N

YM > 1, 3C(M) > 0, Eles(h)] < for all

O0<h<l.

Using estimates on the solution to the PDE (2) ob-
tained by PDE analysis or stochastic analysis (stochas-
tic flows theory, Malliavin calculus), one can prove
that the discretization error e, (h) satisfies the so-called
Talay—Tubaro expansion

eq(h) = C(T,x) h + Q(f. T, x) h*,

where |C(T,x)| + sup,|Qn(uo, T, x)| depend on b,
o, up, and T. Therefore, Romberg extrapolation tech-
niques can be used:

E =0(h?).

2 1
o h/2.k > h.k
N Z Uo (XMh ) - N Z Uo (XMh)

k=1 k=1

For surveys of results in this direction and various
extensions, see [8, 14, 17].

The preceding statistical and discretization error
estimates have many applications: computations of
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European option prices, moments of solutions to me-
chanical systems with random excitations, etc.

When the PDE (2) is posed in a domain D with
Dirichlet boundary conditions u(t, x) = g(x) on dD,
then u(r,x) = Ef(Xi(x)) L« + Eg(X:(x)) >,
where 7 is the first hitting time of 0D by (X, (x)).
An approximation method is obtained by substituting
X ﬁhl\%,l(x) to X,(x), where " is the first hitting
time of dD by the interpolated Euler scheme. For a
convergence rate analysis, see, e.g., [7].

Let n(x) denote the unit inward normal vector at
point x on dD. When one adds Neumann boundary
conditions Vu(t,x) - n(x) = 0 on dD to (2), then
u(t,x) = Ef(th(x)), where X*:= is the solution to
an SDE with reflection

XFx) =x + / tb(Xf(x)) ds + / ta(xf(x)) dw
0 0
! X,)dL}(X),
+ /0 (Xo)dLA(X)

where (L;(X)) is the local time of X at the boundary.
Then one constructs the reflected Euler scheme in such
a way that the simulation of the local time, which
would be complex and numerically instable, is avoided.
This construction and the corresponding error analysis
have been developed in [4].

Local times also appear in SDEs related to PDEs
with transmission conditions along the discontinuity
manifolds of the coefficient a(x) as in the Poisson—
Boltzmann equation in molecular dynamics, Darcy
law in fluid mechanics, etc. Specific numerical meth-
ods and error analyses were recently developed: see,
e.g., [5].

Elliptic PDEs are interpreted by means of solutions
to SDEs integrated from time O up to infinity or their
equilibrium measures. Implicit Euler schemes often
are necessary to get stability: see [12]. An alternative
efficient methods are those with decreasing stepsizes
introduced in [11].

Stochastic Particle Methods for Nonlinear
PDEs

Consider the following stochastic particle system.
The dynamics of the ith particle is as follows:
given N independent Brownian motions (W,(l)),
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multidimensional coefficients B and S, and McKean
interaction kernels b and o, the positions X,(') solve
the stochastic differential system

ax;’ =B 1. x". L

M=

b ( x, X,‘-”) dt
1

~.
Il

N
+ S t Xt(l)’ % ZO. (Xt(l)7 Xt(/)) dW;l)
j=1

3)
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Note that the processes X, ,(i) are not independent.
However, the propagation of chaos and nonlinear mar-
tingale problems theories developed in a seminal way
by McKean and Sznitman allow one to prove that
the probability distribution of the particles empirical
measure process converges weakly when N goes to
infinity. The limit distribution is concentrated at the
probability law of the process (X;) solution to the
following stochastic differential equation which is non-
linear in McKean’s sense (its coefficients depend on the
probability distribution of the solution):

X, = B(t,X,,fb(X,,y)v,(dy))dt+ S(l’Xtan(Xt,Y)Vt(d}’))th,

“)

v; (dy) := probability distribution of X;.

In addition, the flow of the probability distributions v;
solves the nonlinear McKean—Vlasov—Fokker-Planck
equation

d
—V;

dt

where, A denoting the matrix S - S*, L? is the formal
adjoint of the differential operator

=L}, (5)
Ly, =Y Bi(t,x, [b(x, y)v(dy))d
k

+ 3 At x. [o(x. y)v(dy)) i
Jk

(6)

From an analytical point of view, the SDEs (4)
provide probabilistic interpretations for macroscopic
equations which includes, e.g., smoothened versions of
the Navier—Stokes and Boltzmann equations: see, e.g.,
the survey [16] and [13].

From a numerical point of view, whereas the time
discretization of (X;) does not lead to an algorithm
since v, is unknown, the Euler scheme for the par-
ticle system {(Xt(i)),i = 1,...,N} can be simu-
lated: the solution v, to (5) is approximated by the
empirical distribution of the simulated particles at
time ¢, the number N of the particles being cho-
sen large enough. Compared to the numerical resolu-
tion of the McKean—Vlasov—Fokker—Planck equation
by deterministic methods, this stochastic numerical

approach is numerically relevant in the cases of small
viscosities. It is also intensively used, for example, in
Lagrangian stochastic simulations of complex flows
and in molecular dynamics: see, e.g., [9, 15]. When the
functions B, S, b, o are smooth, optimal convergence
rates have been obtained for finite time horizons, e.g.,
in [1,3].

Other stochastic representations have been devel-
oped for backward SDEs related to quasi-linear PDEs
and variational inequalities. See the survey [6].
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Regular perturbation methods often succeed in pro-
viding approximate solutions to problems involving
a small parameter € by simply seeking solutions as
a formal power series (or even a polynomial) in e.
When the regular perturbation approach fails to pro-
vide a uniformly valid approximation, one encounters
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a singular perturbation problem (using the nomencla-
ture of Friedrichs and Wasow [4], now universal).

The prototype singular perturbation problem
occurred as Prandtl’s boundary layer theory of 1904,
concerning the flow of a fluid of small viscosity past
an object (cf. [15, 20]). Applications have continued
to motivate the subject, which holds independent
mathematical interest involving differential equations.
Prandtl’s Goéttingen lectures from 1931 to 1932
considered the model

&' +)y +y=0

on 0 < x < 1 with prescribed endvalues y(0) and
y(1) for a small positive parameter € (corresponding
physically to a large Reynolds number). Linearly in-
dependent solutions of the differential equation are
given by

e—a(e)x and e—K(e)x/e

where o(¢) = 1_—32_46 = 14 O(¢) and k(¢) =

@ =1—¢€+ O(e?) as € — 0. Setting

y(x,e) = ae_U(G)X + ﬂe—l((e)x/g’
we will need y(0) = a + B and y(1) = we—o© 4
,Be—:c(e)/f_ The large decay constant /e implies that
a ~ y(1)e°, so
y(x,€) ~ eo(e)(l—x)y(l) + e—K(E)x/e(y(O) —eg(e)y(l))
and

y(x,€) = e ™y(1)+e e (y(0)—ey(1)) + O(e).

The second term decays rapidly from y(0) — ey (1) to
zero in an O (¢€)-thick initial layer near x = 0, so the
limiting solution

e y(1)

for x > O satisfies the reduced problem
Yy + Yo = 0 with Yo(1) = y(1).

Convergence of y(x, €) at x = 0 is nonuniform unless
y(0) = ey(1). Indeed, to all orders €/, the asymptotic
solution for x > 0 is given by the outer expansion
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Y(x,€) = e’©@U079y(1) ~ Z Y;(x)e’
Jj=0

(see Olver [12] for the definition of an asymptotic
expansion). It is supplemented by an initial (boundary)
layer correction

§(Zee) = OO ="y (1)

~ D (g) e

Jj=0

where terms &; all decay exponentially to zero as the
stretched inner variable x /€ tends to infinity.

Traditionally, one learns to complement regular
outer expansions by local inner expansions in regions
of nonuniform convergence. Asymptotic matching
methods, generalizing Prandtl’s fluid dynamical
insights involving inner and outer approximations,
then provide higher-order asymptotic solutions (cf.
Van Dyke [20], Lagerstrom [11], and I’lin [7], noting
that O’Malley [13] and Vasil’eva et al. [21] provide
more efficient direct techniques involving boundary
layer corrections). The Soviet A.N. Tikhonov and
American Norman Levinson independently provided
methods, in about 1950, to solve initial value problems
for the slow-fast vector system

X = f(x,y,t,€)
€y =g(x,y,t,¢€)

on ¢ > 0 subject to initial values x(0) and y(0). As we

);(())((:)) ) should satisfy

the reduced (differential-algebraic) system

might expect, the outer limit (

Xo = f(Xo.Y,.1.0), Xo(0) = x(0)
0= g(XOa YOat’O)

for an attracting root
Yo = ¢(Xo. 1)

of g = 0, along which g, remains a stable matrix.
We must expect nonuniform convergence of the fast
variable y near t = 0, unless y(0) = Y;(0). Indeed,
Tikhonov and Levinson showed that
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x(t,€) = Xo(t) + O(¢) and
y(t.€) = Yo(t) + no(t/e) + O(e)

(at least for ¢ finite) where no(7) is the asymptotically
stable solution of the stretched problem

0 (004 7(0).0.0). 10(0) = y(O)~y(0).
The theory supports practical numerical methods for
integrating stiff differential equations (cf. [5]). A more
inclusive geometric theory, using normally hyperbolic
invariant manifolds, has more recently been exten-
sively used (cf. [3,9]).

For many linear problems, classical analysis (cf.
[2, 6, 23]) suffices. Multiscale methods (cf. [8, 10]),
however, apply more generally. Consider, for example,
the two-point problem

ey +a(x)y’ +b(x,y) =0

on0 < x < 1 when a(x) > 0 and a and b are smooth.
We will seek the solution as € — 0T when y(0) and
(1) are given in the form

y(x.m.e) ~ Y yi(x.n)e

Jj=0

using the fast variable

n= l/ a(s)ds
€Jo

to provide boundary layer behavior near x = 0.
Because
a(x)

Y=y —w
€

and

/)

2
V' =y + Za(x)ym7 +

da'(x) o+ a*(x)

€ 62 nn»

the given equation is converted to the partial differen-
tial equation

%y Oy 9%y ay
2 —Z 12 )ael2 +d(x)=
a*(x) (8172 817) ¢ ( a(x) axan @ (x) an

d
+ a(x)% + b(x’y)) + ezyxx = 0.
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We naturally ask the leading term y, to satisfy

32)’0

dyo
an? =0

am
so yo has the form
yo(x,m) = Ao(x) + Bo(x)e™".
The boundary conditions moreover require that
Ao(0) + Bo(0) = y(0) and Ao (1) ~ y(1)

(since e™" is negligible when x =
coefficient, we find that y; must satisfy

Py Iy
2 —_— pEE—
¢ (x)(anz * 8n)

1). From the ¢

dyo

= —2a(x) 3_77

—d'(x)

9 yo
dxaon

a2 b, o)

x

— et
+ (a(x)Bj +a'(x)By) e™"
—b(x, Ag + Boe™).

Consider the right-hand side as a power series in e~ .
Undetermined coefficient arguments show that its first
two terms (multiplying 1 and e~") will resonate with
the solutions of the homogeneous equation to produce
unbounded or secular solutions (multiples of 7 and
ne~") as n — oo unless we require that

1. A satisfies the reduced problem

a(x)Ay + b(x, Ag) =0, Ao(1) = y(1)

(and continues to exist throughout 0 < x < 1)
2. By satisfies the linear problem

a(x)B§ + (—by(x, Ag) + a'(x)) By = 0,
Bo(0) = y(0) — Ao(0).

Thus, we have completely obtained the limiting so-
lution Yy(x, n). We note that the numerical solution
of restricted two-point problems is reported in Roos
et al. [18]. Special complications, possibly shock lay-
ers, must be expected at turning points where a(x)
vanishes (cf. [14,24]).

Singular Perturbation Problems

Related two-time scale methods have long been
used in celestial mechanics (cf. [17,22]) to solve initial
value problems for nearly linear oscillators

V+y=€¢f(y.y)

on ¢t > 0. Regular perturbation methods suffice on
bounded ¢ intervals, but for t = O(1/¢) one must seek
solutions

YT~ Yyt v

Jj=0

using the slow time
T = €l.

We must expect a boundary layer (i.e., nonuniform
convergence) at f = oo to account for the cumulative
effect of the small perturbation € f.

Instead of using two-timing or averaging (cf. [1] or
[19]), let us directly seek an asymptotic solution of the
initial value problem for the Rayleigh equation

" . 1.,
Vry=ey|l-3v

in the form

y(t, T, €) = A(t, €)'’ + eB(t,€)e’! 4+ 2C(x, €)e"

+ ... + complex conjugate

for undetermined slowly varying complex-valued coef-
ficients A, B, C, ... depending on € (cf. [16]). Differen-
tiating twice and separating the coefficients of the odd

harmonics e’’, €3’ ¢3! . . . in the differential equation,
we obtain

dA , LA L dA*
ZZE—ZA(I_lAl)‘f‘G(ﬁ— dt

d
—d—“j (1-2]AP) - 3;'(,4*)213) +...=0,

—88—%,434—...:0, and

—24C = 3i A’B +--- = 0.

The resulting initial value problem
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dA _ A

Fra ((1—|A|2)+%(|A|4—2)+...)

for the amplitude A(z,€) can be readily solved for
finite T by using polar coordinates and regular pertur-
bation methods on all equations. Thus, we obtain the
asymptotic solution

y([’ T 6) = A(Tv e)eit - 5“43(7:, €)€3i[

_ AS(;’ €) oSt

conjugate

) + ...+ complex

there. We note that the oscillations for related coupled
van der Pol equations are of special current interest in
neuroscience.

The reader who consults the literature cited will
find that singular perturbations continue to provide
asymptotic solutions to a broad variety of differential
equations from applied mathematics. The underlying
mathematics is also extensive and increasingly sophis-
ticated.
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Definition/Abstract

Crystalline solids are solids in which the ionic cores
of the atoms are arranged periodically. The dynamics
of a test electron in a crystalline solid can be conve-
niently analyzed by using the Bloch-Floquet transform,
while the localization properties of electrons are better
described by using Wannier functions. The latter can
also be obtained by minimizing a suitable localization
functional, yielding a convenient numerical algorithm.

Macroscopic transport properties of electrons in
crystalline solids are derived, by using adiabatic the-
ory, from the analysis of a perturbed Hamiltonian,
which includes the effect of external macroscopic or
slowly varying electromagnetic potentials. The geo-
metric Berry phase and its curvature play a prominent
role in the corresponding effective dynamics.

The Periodic Hamiltonian

In a crystalline solid, the ionic cores are arranged
periodically, according to a periodicity lattice I' =

{y eR?:y = Z;l:lnj y; forsomen; € Z} ~

7%, where {yi,...,yq} are fixed linearly independent
vectors in R?.

The dynamics of a test electron in the potential
generated by the ionic cores of the solid and, in a mean-
field approximation, by the remaining electrons is
described by the Schrédinger equation i0; Yy = Hpecfr,
where the Hamiltonian operator reads (in Rydberg
units)

Hper = —A + Vr(x) actingin L’ @RY). (1)
Here, A = V? is the Laplace operator and the function
Vit RY > Ris periodic with respect to I, i.e.,
Vr(x +y) = Vp(x) forally € T, x € R?. A math-
ematical justification of such a model in the reduced
Hartree-Fock approximation was obtained in Catto
et al. [3] and Cances et al. [4], see » Mathematical
Theory for Quantum Crystals and references therein.

To assure that H,.; is self-adjoint in L*(R%) on the
Sobolev space W22(R9), we make an usual Kato-type
assumption on the I"-periodic potential:

Vi e L2 (RY) ford <3,

Vi e L? (RY) with p > d/2ford > 4.

loc

)
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Clearly, the case of a potential with Coulomb-like
singularities is included.

The Bloch-Floquet Transform (Bloch
Representation)

Since Hper commutes with the lattice translations, it
can be decomposed as a direct integral of simpler
operators by the (modified) Bloch—-Floquet transform.
Preliminarily, we define the dual lattice as I'* :=
{k eRY: k-ye2nZforally e F}.We denote by
Y (resp. Y*) the centered fundamental domain of I
(resp. I'*), namely,

. d.. d . 11
Y —{keR .k—Zj:lk;yj fork;€|:—§,§ ,

where {y7} is the dual basis to {yj}, ie,yf -y =
278;;. When the opposite faces of Y* are identified,
one obtains the torus T% := RY/I"*.

One defines, initially for ¥ € Cy (Rd), the modified
Bloch—Floquet transform as

1

lY*|2

Usey) (k. y) = Y Uy (y ),

yer

yeR? k eRY. (3)
For any fixed k € RY, (Usry)(k,-) is a I'-periodic
function and can thus be regarded as an element of
H; := L*(Ty), Ty being the flat torus R?/I". The
map defined by (3) extends to a unitary operator Uk :
L*(RY) — fﬁ ‘H¢ d k, with inverse given by

1
v*|:

Wste) ) = —p [k ik,

where [ -] refers to the decomposition x =
withy, € I"and [x] € Y.

The advantage of this construction is that the trans-
formed Hamiltonian is a fibered operator over Y *.
Indeed, one checks that

yx + [x],

N 5 52
Uk Hper uB_Fl = / dk Hper(k)
Y *
with fiber operator

Hpe(k) = (—iV, + k) + Vr(y), keR?, (@)


http://dx.doi.org/10.1007/978-3-540-70529-1_262
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acting on the k-independent domain W2?(Ty) C
L?(Ty). The latter fact explains why it is mathemat-
ically convenient to use the modified BF transform.
Each fiber operator Hp,, (k) is self-adjoint, has compact
resolvent, and thus pure point spectrum accumulating
at infinity. We label the eigenvalue increasingly, i.e.,
Eo(k) < E(k) < E(k) < .... With this choice,
they are I"*-periodic, i.e., E,(k + A) = E, (k) for all
A € I'*. The function k + E, (k) is called the nth
Bloch band.

For fixed k € Y™, one considers the eigenvalue
problem

Hper(k) un(kv y) = En(k) un(k7 y)v

lluen (K, ')||L2(Ty) =1 (5
A solution to the previous eigenvalue equation (e.g., by
numerical simulations) provides a complete solution to
the dynamical equation induced by (1). Indeed, if the
initial datum 1 satisfies

Usr Yo) (k. y) = (k) uy (k, y) for some ¢ € L2(Y*),

(one says in jargon that “y is concentrated on the
nth band”) then the solution 1 (¢) to the Schrodinger
equation with initial datum v is characterized by

Usr ¥ )k, y) = (75 W0 (K)) un (k. ).

In particular, the solution is exactly concentrated on
the nth band at any time. By linearity, one recovers the
solution for any initial datum. Below, we will discuss
to which extent this dynamical description survives
when macroscopic perturbations of the operator (1) are
considered.

Wannier Functions and Charge Localization

While the Bloch representation is a useful tool to
deal with dynamical and energetic problems, it is not
convenient to study the localization of electrons in
solids. A related crucial problem is the construction
of a basis of generalized eigenfunctions of the oper-
ator Hpe; which are exponentially localized in space.
Indeed, such a basis allows to develop computational
methods which scale linearly with the system size
[6], makes possible the description of the dynamics
by tight-binding effective Hamiltonians, and plays a
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prominent role in the modern theories of macroscopic
polarization [9, 18] and of orbital magnetization [21].

A convenient system of localized generalized eigen-
functions has been proposed by Wannier [22]. By defi-
nition, a Bloch function corresponding to the nth Bloch
band is any u satisfying (5). Clearly, if u is a Bloch
function then i, defined by ii(k, y) = ¢?® u(k, y) for
any " *-periodic function ¥, is also a Bloch function.
The latter invariance is often called Bloch gauge invari-
ance.

Definition 1 The Wannier function w, € L*(R%)
corresponding to a Bloch function u, for the Bloch
band E, is the preimage of u, with respect to the
Bloch-Floquet transform, namely

wa(x) 1= (zifggu,,)(x):| 11 dk e**u, (k. [x]).

Y*|2 Jy*
The translated Wannier functions are
Wiy (X) 1= wu(x —y)

1

= o | dk e Ry, (k, [x]),
[Y*|2 Jy

yel.

Thus, in view of the orthogonality of the trigonometric
polynomials and the fact that Ugr is an isometry,
the functions {wj, ,},er are mutually orthogonal in
L?*(R¢). Moreover, the family {Wny }yer is a complete
orthonormal basis of Z;{B_Fl Ran P., where Py (k) is the
spectral projection of Hy (k) corresponding to the
eigenvalue E, (k) and Py = fﬁ P.(k)dk.

In view of the properties of the Bloch—Floquet
transform, the existence of an exponentially localized
Wannier function for the Bloch band E, is equivalent
to the existence of an analytic and I"*-pseudoperiodic
Bloch function (recall that (3) implies that the Bloch
function must satisfy u(k + A,y) = e *Vu(k,y)
for all A € I'*). A local argument assures that
there is always a choice of the Bloch gauge such that
the Bloch function is analytic around a given point.
However, as several authors noticed [5, 13], there might
be topological obstruction to obtain a global analytic
Bloch function, in view of the competition between the
analyticity and the pseudoperiodicity.

Hereafter, we denote by 0. (k) the set {E; (k) : n <
i <n+m— 1}, corresponding to a physically relevant
family of m Bloch bands, and we assume the following
gap condition:
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inf dist (04 (k). 0 (H(k)) \ 04(k)) > 0. (6)

If a Bloch band E,, satisfies (6) for m = 1 we say that
it is an single isolated Bloch band. For m > 1, we refer
to a composite family of Bloch bands.

Single Isolated Bloch Band

In the case of a single isolated Bloch band, the problem
of proving the existence of exponentially localized
Wannier functions was raised in 1959 by W. Kohn [10],
who solved it in dimension d = 1. In higher dimen-
sion, the problem has been solved, always in the case
of a single isolated Bloch band, by J. des Cloizeaux [5]
(under the nongeneric hypothesis that V- has a center
of inversion) and finally by G. Nenciu under general
hypothesis [12], see also [8] for an alternative proof.
Notice, however, that in real solids, it might happen
that the interesting Bloch band (e.g., the conduction
band in graphene) is not isolated from the rest of the
spectrum and that k — Py (k) is not smooth at the
degeneracy point. In such a case, the corresponding
Wannier function decreases only polynomially.

Composite Family of Bloch Bands
It is well-known that, in dimension d > 1, the
Bloch bands of crystalline solids are not, in general,
isolated. Thus, the interesting problem, in view of real
applications, concerns the case of composite families
of bands, i.e., m > 1 in (6), and in this context, the
more general notion of composite Wannier functions
is relevant [1, 5]. Physically, condition (6) is always
satisfied in semiconductors and insulators by consid-
ering the family of all the Bloch bands up to the Fermi
energy.

Given a composite family of Bloch bands, we con-
sider the orthogonal projector (in Dirac’s notation)

n+m—1

Pu(k) =) |ui(k)) wi (k)

i=n

which is independent from the Bloch gauge, and we
pose Py, = fﬁ Py (k)dk. A function y is called a
quasi-Bloch function if

Po(k)x(k,-) = x(k,-) and y(k,") #0 Yk € Y*.
@)
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Although the terminology is not standard, we call
Bloch frame a set { x4 }q=1.....m of quasi-Bloch functions
such that {y;(k), ..., ym(k)} is an orthonormal basis
of Ran P« (k) at (almost-)every k € Y*. As in the
previous case, there is a gauge ambiguity: a Bloch
frame is fixed only up to a k-dependent unitary matrix
Uk) e U(m),i.e.,if {y4}a=1...m is @ Bloch frame then
the functions ¥, (k) = Y, x»(k)Up 4 (k) also define
a Bloch frame.

Definition 2 The composite Wannier functions corre-
sponding to a Bloch frame {y,},=1...m are the func-
tions

we(x) 1= (Z;{B_Fl)(a) (x), aef{l,...,m}.

As in the case of a single Bloch band, the expo-
nential localization of the composite Wannier functions
is equivalent to the analyticity of the correspond-
ing Bloch frame (which, in addition, must be I"*-
pseudoperiodic). As before, there might be topological
obstruction to the existence of such a Bloch frame. As
far as the operator (1) is concerned, the existence of
exponentially localized composite Wannier functions
has been proved in Nenciu [12] in dimension d = 1;
as for d > 1, the problem remained unsolved for
more than two decades, until recently [2, 16]. Notice
that for magnetic periodic Schrodinger operators the
existence of exponentially localized Wannier functions
is generically false.

The Marzari-Vanderbilt Localization Functional

To circumvent the long-standing controversy about the
existence of exponentially localized composite Wan-
nier functions, and in view of the application to numeri-
cal simulations, the solid-state physics community pre-
ferred to introduce the alternative notion of maximally
localized Wannier functions [11]. The latter are defined
as the minimizers of a suitable localization functional,
known as the Marzari—Vanderbilt (MV) functional.
For a single-band normalized Wannier function w €
L?(R?), the localization functional is

Fay () = / Pl Pdx
]R(l'

d 2
S ( [ wweorar) @

Jj=1
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which is well defined at least whenever [p, |x|?
|[w(x)|?dx < +o0o. More generally, for a system
of L?-normalized composite Wannier functions
w={wy,...,wp} C Lz(Rd), the Marzari—Vanderbilt
localization functional is

Fuv () = Y- Fuvn) = Y- [Pl (P
a=1 a=1 R

m d 2
—ZZ(/W lewa(x)lzdx) G

a=1j=1

We emphasize that the above definition includes the
crucial constraint that the corresponding Bloch func-
tions @q(k,-) = Usrwa)(k,-), fora € {1,...,m}, are
a Bloch frame.

While such approach provided excellent results
from the numerical viewpoint, the existence and
exponential localization of the minimizers have been
investigated only recently [17].

Dynamics in Macroscopic Electromagnetic
Potentials

To model the transport properties of electrons in solids,
one modifies the operator (1) to include the effect of
the external electromagnetic potentials. Since the latter
vary at the laboratory scale, it is natural to assume that
the ratio & between the lattice constanta = |Y|'/¢ and
the length-scale of variation of the external potentials is
small, i.e., ¢ < 1. The original problem is replaced by

igd ¥ (z, x)
— (5 % a0+ Ve + Vien) vie
= H. Y (7, x) (10)
where T = et is the macroscopic time, and V €

Cb”(Rd,R) and 4; € Ctjx’(Rd,R), jefl,....d}
are respectively the external electrostatic and magnetic
potential. Hereafter, for the sake of a simpler notation,
we consider only d = 3.

While the dynamical equation (10) is quantum
mechanical, physicists argued [1] that for suitable
wavepackets, which are localized on the nth Bloch
band and spread over many lattice spacings, the main
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effect of the periodic potential Vi is the modification
of the relation between the momentum and the
kinetic energy of the electron, from the free relation
Etee (k) = %kz to the function k — E, (k) given
by the nth Bloch band. Therefore, the semiclassical
equations of motion are

F=VE,(k)
kK =-=VV(r)+ 7 x B(r)

(1)

where r € R? is the macroscopic position of the
electron, k = k — A(r) is the kinetic momentum
with k € T the Bloch momentum, —VV' the external
electric field and B = V x A the external magnetic
field.

In fact, one can derive also the first-order correction
to (11). At this higher accuracy, the electron acquires
an effective k-dependent electric moment 4, (k) and
magnetic moment M, (k). If the nth Bloch band is
non-degenerate (hence isolated), the former is given by
the Berry connection

Au(k) = 1 {un (k) , Viun(k))qy,

= 1/ un(k, y)* Viuy (k, y) dy,
Y

and the latter reads M, (k) = % (Vieun (k), X (Hper (k)
—Ey(k))Viun (k)) 4, , 1.€., explicitly

i

[Mn(k)]l = Z €ijl (akj Mn(k)’ (Hper(k)

1<j.1<3

—E, (k))ak/ Uy (k))q_[‘

\S]

where ¢;;; is the totally antisymmetric symbol. The
refined semiclassical equations read

I =V (Ep(k) —eB(r) - M, (k) — ek x 82, (k)

kK ==V, (V(r) —eB(r) - My (x)) + 7 x B(r)

(12)
where £2,(k) = V x A, (k) corresponds to the curva-
ture of the Berry connection. The previous equations
have a hidden Hamiltonian structure [14]. Indeed,
by introducing the semiclassical Hamiltonian function
Hy(r,k) = Ey(k) + V(r) — eB(r) - My(k), (12)
become
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B(r) -I F V, Hy(r, k) 13

I eA,(k) ) \&) \VeHy(r.«) (13)
where I is the identity matrix and B (resp. A,) is
the 3 x 3 matrix corresponding to the vector field
B (resp. £2,), i.e., By, (r) = 215]53 €mjBi(r) =
(01 Ay — 0, A7) (7). Since the matrix appearing on the
L.h.s corresponds to a symplectic form @p . (i.e., a non-
degenerate closed 2-form) on R®, (13) has Hamiltonian
form with respect to Op .

The mathematical derivation of the semiclassical
model (12) from (10) as ¢ — 0 has been accomplished
in Panati et al. [14]. The first-order correction to the
semiclassical (11) was previously investigated in Sun-
daram and Niu [19], but the heuristic derivation in the
latter paper does not yield the term of order ¢ in the
second equation. Without such a term, it is not clear if
the equations have a Hamiltonian structure.

As for mathematically related problems, both the
semiclassical asymptotic of the spectrum of H, and the
corresponding scattering problem have been studied in
detail (see [7] and references therein). The effective
quantum Hamiltonians corresponding to (10) for ¢ —
0 have also been deeply investigated [13].

The connection between (10) and (12) can be ex-
pressed either by an Egorov-type theorem involving
quantum observables, or by using Wigner functions.
Here we focus on the second approach.

First we define the Wigner function. We consider
the space C = C° (R??) equipped with the standard
distance d¢, and the subspace of I"*-periodic observ-
ables

Cor ={a€C:alrk+1)=a(r k) VA eI}
Recall that, according to the Calderon-Vaillancourt

theorem, there is a constant C such that for a € C its
Weyl quantization @ € B(L?(R?)) satisfies

| (¥, @Y) 12wy | < Cde(a,0) |y
Hence, the map C > a — (Y, ay) € C is linear

continuous and thus defines an element WQ& of the dual
space C’, the Wigner function of 1. Writing

(yoay) = (W), a)ec

: / a(g. p) WY (q. p)dqdp
RZd
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and inserting the definition of the Weyl quantization for
a one arrives at the formula

1 .
WX .0) = G [ 48570 @+ e8/2)
XUl — €6/2), (14)

which yields wY e L*(R??). Although WY is real-
valued, it attains also negative values in general, so
it does not define a probability distribution on phase
space.

After this preparation, we can vaguely state the link
between (10) and (12), see [20] for the precise for-
mulation. Let £, be an isolated, nondegenerate Bloch
band. Denote by 5; (r,k) the flow of the dynamical
system (12) in canonical coordinates (r,k) = (r,x +
A(r)) (recall that the Weyl quantization, and hence the
definition of Wigner function, is not invariant under
non-linear changes of canonical coordinates). Then for
each finite time-interval / C R there is a constant
C such that for t € I, a € Cpe and for ¥y “well-
concentrated on the nth Bloch band” one has

U a(q. p)(%‘””(q, p)-WYod, '(q. p)) dqdp‘
RZd

<&’ Cdc(a,0) ||yol?,

where ¥ (¢) is the solution to the Schrodinger equation
(10) with initial datum .

Slowly Varying Deformations and
Piezoelectricity

To investigate the contribution of the electrons to
the macroscopic polarization and to the piezoelectric
effect, it is crucial to know how the electrons move in
a crystal which is strained at the macroscopic scale.
Assuming the usual fixed-lattice approximation, the
problem can be reduced to study the solutions to

ioy(t,x) = (—%A + Vp(x,et)) v, x) (15)

for ¢ « 1, where Vp(-,t) is I'-periodic for every
t € R, i.e., the periodicity lattice does not depend on
time. While a model with a fixed lattice might seem
unrealistic at first glance, we refer to Resta [18] and
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King-Smith and Vanderbilt [9] for its physical justifica-
tion. The analysis of the Hamiltonian H (1) = —1A +
Vr(x,t) yields a family of time-dependent Bloch func-
tions {u, (k,t)},en and Bloch bands {E, (k, 1) },en.
Assuming that the relevant Bloch band is isolated
from the rest of the spectrum, so that (6) holds true
at every time, and that the initial datum is well-
concentrated on the nth Bloch band, one obtains a
semiclassical description of the dynamics analogous to
(12). In this case, the semiclassical equations read

F=ViE,(k,t) —e0,(k,t)

k=0

(16)

where
On(k,t) = =0, Ay (k1) — Vi (k, 1)
with

An(k,t) = i(un(k, 1), Viun(k 1))z,
Gu(k, 1) = —i(un(k, 1), Orun(k, 1))y, .

The notation emphasizes the analogy with the electro-
magnetism: if A, (k,?) and ¢, (k, ) are interpreted as
the geometric analogous of the vector potential and
of the electrostatic scalar potential, then ®,(k,t) and
£2,,(k, t) correspond, respectively, to the electric and to
the magnetic field.

One can rigorously connect (15) and the semiclas-
sical model (16), in the spirit of the result stated at
the end of the previous section, see [15]. From (16)
one obtains the King-Smith and Vanderbilt formula
[9], which approximately predicts the contribution A P
of the electrons to the macroscopic polarization of a
crystalline insulator strained in the time interval [0, 77,
namely,

1

AP =Gy

> [ )= A0y dk,
nENee ¥ T*

17)
where the sum runs over all the occupied Bloch bands,
i€, Noce = {n €N : E,(k,t) < Ep} with Ep the
Fermi energy. Notice that (17) requires the computa-
tion of the Bloch functions only at the initial and at
the final time; in view of that, the previous formula
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is the starting point of any state-of-the-art numerical
simulation of macroscopic polarization in insulators.

Cross-References

Born—Oppenheimer  Approximation, Adiabatic

Limit, and Related Math. Issues
Mathematical Theory for Quantum Crystals
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General Problem

Let A be a partial differential operator of second order

Au = f in Q2. 1)
In the inverse source problem, one is looking for the
source term f from the boundary data

u=go, dyu=gronlyCIf, 2)
where go, g1 are given functions. In this short expos-
itory note, we will try to avoid technicalities, so we
assume that (in general nonlinear) A is defined by a
known C2?-function and f is a function of x € £
where 2 is a given bounded domain in R” with C?
boundary. v denotes the exterior unit normal to the
boundary of a domain. H*(£2) is the Sobolev space
with the norm ||{| x)(£2).

A first crucial question is whether there is enough
data to (uniquely) find f'. If A4 is a linear operator, then
solution f of this problem is not unique. Indeed, let
uo be a function in the Sobolev space H2(£2) with
zero Cauchy data uy = d,up = 0 on [, and let

Source Location

fo = Aug. Due to linearity, A(u + ug) = f + fo.
Obviously, # and u + uy have the same Cauchy data
on Iy, so f and f + fy produce the same data (2),
but they are different in £2. It is clear that there is a
very large (infinite dimensional) manifold of solutions
to the inverse source problem (1) and (2). To regain
uniqueness, one has to restrict unknown distributions to
a smaller but physically meaningful uniqueness class.

Inverse Problems of Potential Theory

We start with an inverse source problem which has a
long and rich history. Let @ be a fundamental solution
of a linear second-order elliptic partial differential
operator A in R”. The potential of a (Radon) measure
M supported in 2 is

u(x: p) = /g B, (). 3)

The general inverse problem of potential theory is
to find w, supppu C §2, from the boundary data (2).

Since Au(;pu) = p (in generalized sense), the
inverse problem of potential theory is a particular case
of the inverse source problem. In the inverse problem
of gravimetry, one considers 4 = —A,

1
D(x.y) = g
and the gravity field is generated by volume mass
distribution f € L'(£2). We will identify f with a
measure (. Since f with the data (2) is not unique,
one can look for f with the smallest (L?($2)-) norm.
The subspace of harmonic functions f;, is L2-closed,
so for any f, there is a unique f; such that f =
fi + fo where f is (L?)-orthogonal to f;,. Since the
fundamental solution is a harmonic function of y when
x is outside £2, the term fy produces zero potential
outside £2. Hence, the harmonic orthogonal component
of f has the same exterior data and minimal L2-
norm. Applying the Laplacian to the both sides of the
equation —Au(; f;) = f, we arrive at the biharmonic
equation A%u(; ;) = 0 in £2. When I, = 082, we
have a well-posed first boundary value problem for
the biharmonic equation for u(; f;). Solving this prob-
lem, we find f; from the previous Poisson equation.
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However, it is hard to interpret f; (geo)physically,
knowing f;, does not help much with finding f.

A (geo)physical intuition suggests looking for a
perturbing inclusion D of constant density, i.e., for
f = xp (characteristic function of an open set D).

Since (in distributional sense) —Au(; ) = p in
£2, by using the Green’s formula (or the definition of
a weak solution), we yield

- f wrdy = / (o™ — Qo) ()
2 92

for any function u* € H'(£2) which is harmonic in £2.
If Iy = 042, then the right side in (4) is known; we are
given all harmonic moments of w. In particular, letting
u* = 1, we obtain the total mass of y, and by letting u*
to be coordinate (linear) functions, we obtain moments
of u of first order and hence the center of gravity of u.

Even when one assumes that f = yp, there is a
nonuniqueness due to possible disconnectedness of the
complement of D. Indeed, it is well known that if D
is the ball B(a, R) with center a of radius R, then
its Newtonian potential u(x, D) = M m, where
M is the total mass of D. So the exterior potentials
of all annuli B(a, R,) \ B(a, R;) are the same when
Rf—R% = C where C is a positive constant. Moreover,
by using this simple example and some reflections in
R”, one can find two different domains with connected
boundaries and equal exterior Newtonian potentials.
Augmenting this construction by the condensation of
singularities argument from the theory of functions
of complex variables, one can construct a continuum
of different domains with connected boundaries and
the same exterior potential. So there is a need to have
geometrical conditions on D.

A domain D is called star shaped with respect to a
point a if any ray originated at a intersects D over an
interval. An open set D is x| convex if any straight line
parallel to the x;-axis intersects D over an interval.

In what follows I is a non-void open subset of 0£2.

Theorem 1 Let Dy, D, be two domains which are star
shaped with respect to their centers of gravity or two
x1 convex domains in R". Let uy,uy be potentials of
D = Dy, D,.

If uy = up, 0,uy = d,u on Iy, then Dy = Ds.

Returning to the uniqueness proof, we assume that
there are two x;-convex D;, D, with the same data.
By uniqueness in the Cauchy problem for the Laplace
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equation, u; = uy near 9§2. Then from (4) (with du =
(xp, — xp,)dm, dm is the Lebesgue measure)

/u*:/ o
Dy D,

for any function u* which is harmonic in §2. Novikov’s
method of orthogonality is to assume that D and D,
are different and then to select #* in such way that the
left integral is less than the right one. To achieve this
goal, u* is replaced by its derivative, and one integrates
by parts to move integrals to boundaries and makes use
of the maximum principles to bound interior integrals.

The inverse problem of potential theory is a severely
(exponentially) ill-conditioned problem of mathemat-
ical physics. The character of stability, conditional
stability estimates, and regularization methods of nu-
merical solutions of such problems are studied starting
from pioneering work of Fritz John and Tikhonov in
1950-1960s.

To understand the degree of ill conditioning, one can
consider harmonic continuation from the circle Iy =
{x : |x| = R} onto the inner circle I' = {x : |x| =
p}. By using polar coordinates (7, ¢), any harmonic
function decaying at infinity can be (in a stable way)
approximated by u(r,¢: M) = Y M_ u,rmeim?,
Let us define the linear operator of the continuation
as A(0,(,R)) = 0d,u(,p). Using the formula for
u(; M), it is easy to see that the condition number of
the corresponding matrix is (%)M which is growing
exponentially with respect to M. If % = 10, then
the use of computers is only possible when M < 16,
and typical practical measurements errors of 0.01 allow
meaningful computational results when M < 3.

The following logarithmic stability estimate holds
and can be shown to be best possible. We denote by
[|2(S?) the standard norm in the space C2(S?).

Theorem 2 Let Dy, D, be two domains given in polar
coordinates (r,0) by the equations 0D; = {r =
dj(U)} where |dj|2(52) < MZ’MLZ < dj,j = 1,2
Let & = |luy; — ua||(1)(Io) + |10y (1 — u2)||0)(10).

Then there is a constant C depending only on
M, Ty such that |dy — d»| < C(—loge)™<.

A proof in [4] is using some ideas from the proof
of Theorem 1 and stability estimates for harmonic
continuation.

Moreover, while it is not possible to obtain (even lo-
cal) existence results, a special local existence theorem
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is available [4], chapter 5. In more detail, if one
assumes that i is a potential of some C3-domain D,
that the Cauchy data for a function u are close to
the Cauchy data of up, and that, moreover, u admits
harmonic continuation across dDy, as well as suitable
behavior at infinity, then u is a potential of a domain D
which is close to Dy.

The exterior gravity field of a polygon (polyhedron)
D develops singularities at the corner points of D.
Indeed, 0;0xu(x; xp) where D is a polyhedron with
corner at xo behaves as —Clog|x — xo|, [4], section
4.1. Since these singularities are uniquely identified by
the Cauchy data, one has obvious uniqueness results
under mild geometrical assumptions on D. Moreover,
the use of singularities provides us with constructive
identification tools, based on range type algorithms
in the harmonic continuation, using, for example, the
operator of the single layer potential.

For proofs and further results on inverse problems
of potential theory, we refer to the work of V. Ivanov,
Isakov, and Prilepko [4, 7].

An inverse source problem for nonlinear elliptic
equations arises when detecting doping profile (source
term in equations modeling semiconductors).

In the inverse problem of magnetoencephalogra-
phy, A is defined to be Maxwell’s system, and f is
a first-order distribution supported in £2 (e.g., head
of a patient). As above, there are difficulties due to
nonuniqueness and severe instability. One of the simple
cases is when f = Z%:l Am04(my0(—x(m)), where
8(—x(m)) is the Dirac delta function with the pole
x(m) and d(m) is a direction. Then uniqueness of
f is obvious, and for not large M, the problem of
determining a,,, x (m) is well conditioned. However,
such simplification is not satisfactory for medical di-
agnostics. For simplicity of exposition, we let now
A = —A. One of the more realistic assumptions is
that f is a double layer distributed with density g over
a so-called cortical surface I, i.e., f = gd,dI". I’
can be found by using different methods, so one can
assume that it is known. So one looks for a function
g € LY(I') on I' from the Cauchy data (2) for the
double layer potential

u(x: f) = /F £ ®(x. Y)AT ().

Uniqueness of g (up to a constant) is obvious, and
stability is similar to the inverse problem of gravimetry.
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For biomedical inverse (source) problems, we refer
to [1].

Finding Sources of Stationary Waves

Stationary waves of frequency k in a simple case are
solutions to the Helmholtz equation, i.e., A = —A—k2
The radiating fundamental solution of this equation is

ekl

d(x,y) = ——.
(x,») yrep—

The inverse source problem at a fixed k has many
similarities with the case k = 0, except that maximum
principles are not valid anymore. In particular, Theo-
rem 1 is not true: potential of a ball u(; y ) can be zero
outside §2 containing B for certain choices of k and the
radius of B.

Looking for f supported in D (D is a subdomain
of £2) can be viewed as finding acoustical sources
distributed over D. Besides, this inverse source prob-
lem has immediate applications to so-called acoustical
holography. This is a method to detect (mechanical)
vibrations of I” = 0D from measurements of acousti-
cal pressure u on Iy C 952. In simple accepted models,
the normal speed of I" is d,u on I". By solving the
exterior Dirichlet problem for the Helmholtz equation
outside §2, one can uniquely and in a stable way
determine 0,u on I. One can show that if k& is not
a Dirichlet eigenvalue, then any H'(£2) solution u to
the Helmholtz equation can be uniquely represented by
u(; gdI'), so we can reduce the continuation problem
to the inverse source problem for u = gdI" (single
layer distribution over I™).

The continuation of solutions of the Helmholtz
equation is a severely ill-posed problem, but its ill
conditioning is decreasing when k grows, and if one is
looking for the “low frequency” part of g, then stability
is Lipschitz. This “low frequency” part is increasing
with growing k.

As above, the inverse source problem at fixed k
has the similar uniqueness features. However, if [ =
fo + kfi1, where fy, fi1, depend only on x, one regains
uniqueness. This statement is easier to understand con-
sidering u as the time Fourier transform of a solution of
a wave equation with fj, fi as the initial data. In tran-
sient (nonstationary) problems, one collects additional
boundary data over a period of time.
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Hyperbolic Equations

The inverse source problem in a wave motion is to find
(u, f) € HP(2) x L*(£2) from the following partial
differential equation

Pu—Au=f, 3*f =0in2 =G x(0,T),
with natural lateral boundary and initial conditions

dyu=00n0dR2 x(0,T), u=du=0o0n 2 x {0},
)
and the additional data
u=gonly=Syx(0,T),

where Sy is a part of dG. Assuming 9’u € H*(£2) and
letting

(6)

and differentiating twice with respect to ¢ transform
this problem into finding the initial data in the follow-
ing hyperbolic mixed boundary value problem

v = 0%u

Btzv—Av =0in £2, 7
with the lateral boundary condition
dy,v =00ndG x (0,7), ®)
from the additional data
v =0*g onIy. ©)

Indeed, one can find u from (6) and the initial condi-
tions (5).

Theorem 3 Let
2dist(x,S0;G) < T,x € 9G.

Then the data (9) on I for a solution v of (7) and
(8) uniquely determine v on 2.
If, in addition, Sy = 0G, then

(01 (G) + 119:v(. 0|0 (G) = ClIa7g Iy (To)-
(10)

Here, d(x, So; G) is the (minimal) distance from x
to Sy inside G.

1343

The statement about uniqueness for arbitrary Sy
follows from the sharp uniqueness of the continua-
tion results for second-order hyperbolic equations and
some geometric ideas [5], section 3.4. For hyperbolic
equations with analytic coefficients, these sharp results
are due to Fritz John and are based on the Holmgren
Theorem. For C'-space coefficients, the Holmgren
Theorem was extended by Tataru. Stability of con-
tinuation (and hence in the inverse source problem)
is (as for the harmonic continuation) at best of the
logarithmic type (i.e., we have severely ill-conditioned
inverse problem).

When Sy = 0G, one has a very strong (best
possible) Lipschitz stability estimate (10). This esti-
mate was obtained by Lop-Fat Ho (1986) by using the
technique of multipliers; for more general hyperbolic
equations by Klibanov, Lasiecka, Tataru, and Triggiani
(1990s) by using Carleman-type estimates; and by
Bardos, Lebeau, and Rauch (1992) by propagation of
singularities arguments. Similar results are available
for general linear hyperbolic equations of second or-
der with time-independent coefficients. However, for
Lipschitz stability, one has to assume the existence of a
suitable pseudo-convex function or absence of trapped
bicharacteristics. Looking for the source of the wave
motion (in the more complicated elasticity system), in
particular, can be interpreted as finding location and
intensity of earthquakes. The recent medical diagnostic
technique called thermoacoustical tomography can
be reduced to looking for the initial displacement .
One of the versions of this problem is a classical one
of looking for a function from its spherical means.
In a limiting case when radii of spheres are getting
large, one arrives at one of the most useful problems of
tomography whose mathematical theory was initiated
by Radon (1917) and Fritz John (1940s). For a recent
advance in tomography in case of general attenuation,
we refer to [2]. Detailed references are in [4, 5].

In addition to direct applications, the inverse source
problems represent linearizations of (nonlinear) prob-
lems of finding coefficients of partial differential equa-
tions and can be used in the study of uniqueness and
stability of identification of coefficients. For example,
subtracting two equations Btzug—azAuz = 0and afu 1—
ai;Au; = 0yields Bfu—agAu = of witha = Auj (as
a known weight function) and unknown f = a; — a;.
A general technique to show uniqueness and stability
of such inverse source problems by utilizing Carleman
estimates was introduced in [3].
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Definition

The aim of sparse approximation is to represent an
object — usually a vector, matrix, function, image,
or operator — by a linear combination of only few
elements from a basis, or more generally, from a
redundant system such as a frame. The tasks at hand are
to design efficient computational methods for finding
sparse representations and to estimate the approxima-
tion error that can be achieved for certain classes of
objects.

Overview

Sparse approximations are motivated by several types
of applications. An important source is the various
tasks in signal and image processing tasks, where it
is an empirical finding that many types of signals
and images can indeed be well approximated by a
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sparse representation in an appropriate basis/frame.
Concrete applications include compression, denois-
ing, signal separation, and signal reconstruction (com-
pressed sensing).

On the one hand, the theory of sparse approximation
is concerned with identifying the type of vectors, func-
tions, etc. which can be well approximated by a sparse
expansion in a given basis or frame and with quantify-
ing the approximation error. For instance, when given
a wavelet basis, these questions relate to the area of
function spaces, in particular, Besov spaces. On the
other hand, algorithms are required to actually find a
sparse approximation to a given vector or function.
In particular, if the frame at hand is redundant or if
only incomplete information is available — as it is the
case in compressed sensing — this is a nontrivial task.
Several approaches are available, including convex
relaxation (£;-minimization), greedy algorithms, and
certain iterative procedures.

Sparsity

Let x be a vector in RY or CV or {,(I") for some
possibly infinite set I". We say that x is s-sparse if

[x[lo := #{€: x¢ # 0} <.

For a general vector X, the error of best s-term approx-
imation quantifies the distance to sparse vectors,

inf

[x —zl| .
z:|zllo<s

05(X)p i=

Here, x|, = (Zj |x;17)1/? is the usual £ ,-norm for
0 < p < oo and [x[lec = sup; |x;|. Note that the
vector z minimizing o,(c), equals x on the indices
corresponding to the s largest absolute coefficients
of x and is zero on the remaining indices. We say
that x is compressible if o,(x), decays quickly in s,
that is, for suitable s we can approximate x well by
an s-sparse vector. This occurs for instance in the
particular case when x is taken from the £,-unit ball
B, = {x:|x|l; < 1} for small . Indeed, an inequality
due to Stechkin (see, e.g., [21, Lemma 3.1]) states that,
for0 < g < p,

ey

05(x)p, < s'/p=/a ||X||q~
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This inequality enlightens the importance of £,-spaces
with ¢ < 1 in this context.

The situation above describes sparsity with respect
to the canonical basis. For a more general setup, con-
sider a (finite- or infinite-dimensional) Hilbert space ‘H
(often a space of functions) endowed with an orthonor-
mal basis {/;, j € J}. Given an element f € #, our
aim is to approximate it by a finite linear combination
of the ¥, that is, by

Y oxv;,

jes

where S C J is of cardinality at most s, say. In contrast
to linear approximation, the index set S is not fixed a
priori but is allowed to depend on f. Analogously as
above, the error of best s-term approximation is then
defined as

ol(a = _inf |f = x;9;ln

1
X:[X]|lo=<s
Ixlo< =

and the element }_; x;¥; with [x|lo < s realizing
the infimum is called a best s-term approximation to
f. Due to the fact that the support set of x (i.e.,
the index set of nonzero entries of Xx) is not fixed a
priori, the set of such elements does not form a linear
space, so that one sometimes simply refers to nonlinear
approximation [12,30].

One may generalize this setup further. For instance,
instead of requiring that {y; : j € J} forms an
orthonormal basis, one may assume that it is a frame
[7,19,23], that is, there are constants 0 < A < B < o0
such that

ANfIGe = D15, 1P < BILS I

jed

This definition includes orthonormal bases but allows
also redundancy, that is, the coefficient vector x in the
expansion f = Zjej X;; is no longer unique. Re-
dundancy has several advantages. For instance, since
there are more possibilities for a sparse approximation
of f, the error of s-sparse approximation may poten-
tially be smaller. On the other hand, it may get harder to
actually find a sparse approximation (see also below).
In another direction, one may relax the assump-
tion that H is a Hilbert space and only require it to
be a Banach space. Clearly, then the notion of an
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orthonormal basis also does not make sense anymore,
so that {y;,j € J} is then just some system of
elements spanning the space — possibly a basis.

Important types of systems {y;, j € J} consid-
ered in this context include the trigonometric system
{e?™ K k € 7} C L?[0, 1], wavelet systems [9, 36], or
Gabor frames [23].

Quality of a Sparse Approximation

One important task in the field of sparse approximation
is to quantify how well an element f € H or a
whole class B C ‘H of elements can be approximated
by sparse expansions. An abstract way [12, 20] of
describing good approximation classes is to introduce

B, ={feH:f =ZX_/1/fj,||X||p < oo}

jed

with norm || /|5, = inf{[x|l, : f = X}, x;y;} If
{¢; : j € J} is an orthonormal basis, then it follows
directly from (1) that, for 0 < p < 2,

05 (fr <272 fllg,. 2)

In concrete situations, the task is then to characterize
the spaces B,. In the case, that {y; j € J}
is a wavelet system, then one obtains Besov spaces
[32, 36], and in the case of the trigonometric system,
this results in the classical Fourier algebra when p = 1.
If {y; : j € J}is a frame, then (2) remains valid
up to a multiplicative constant. In the special case of
Gabor frames, the space B, coincides with a class of
modulation spaces [23].

Algorithms for Sparse Approximation

For practical purposes, it is important to have algo-
rithms for computing optimal or at least near-optimal
sparse approximations. When # = CV is finite di-
mensional and {y;,j = 1,...,N} C CV is an
orthonormal basis, then this is easy. In fact, the coef-
ficients in the expansion [ = Zjv: | X;j¥; are given
by x; = (f, V), so that a best s-term approximation
to f in H is given by
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Ui

jes

where S is an index set of s largest absolute entries of
the vector ({ f, wj));v:l

When {y;,j = 1,..., M} C CV is redundant, that
is, M > N, then it becomes a nontrivial problem to
find the sparsest approximation to a given f € CV.
Denoting by ¥ the N x M matrix whose columns
are the vectors v/;, this problem can be expressed as
finding the minimizer of

min ||x|]|[p  subjectto ||[¥x— fl, <& (3)

for a given threshold ¢ > 0. In fact, this problem
is known to be NP hard in general [11, 25]. Sev-
eral tractable alternatives have been proposed. We
discuss the greedy methods matching pursuit and or-
thogonal matching pursuit as well as the convex re-
laxation method basis pursuit (£;-minimization) next.
Other sparse approximation algorithms include itera-
tive schemes, such as iterative hard thresholding [1]
and iteratively reweighted least squares [10].

Matching Pursuits

Given a possibly redundant system {y;,j € J} C
‘H — often called a dictionary — the greedy algorithm
matching pursuit [24,27,31,33] iteratively builds up the
support set and the sparse approximation. Starting with
ro = f,So = @ and k = 0 it performs the following
steps:

L. Jjk =argmax{‘( V)l

v, ||

]eJ}

2. Sk+1 = Sk L(' {]k})

3. Fk+1 =Tk — ITkV/;fjlfz ij.
4. k—k + 1.

5

. Repeat from step (1) with k +— k + 1 until a
stopping criterion is met.
6. Output f = f = Zz 1 |rf/,Zj||[, Vje-
Clearly, if s steps of matching pursuit are performed,
then the output f has an s-sparse representation with
respect to f. It is known that the sequence fj con-
verges to f when k tends to infinity [24]. A possible
stopping criterion for step (5) is a maximal number of
iterations, or that the residual norm ||r || < € for some
prescribed tolerance € > 0.
Matching pursuit has the slight disadvantage that an
index k may be selected more than once. A variation
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on this greedy algorithm which avoids this drawback
consists in the orthogonal matching pursuit algorithm
[31,33] outlined next. Again, starting with ry = f,

So = @ and k = 0, the following steps are con-
ducted:
1. ji = argmax{‘(r”"xﬁﬂ 1j € J}.

2. Skt1 = Sk U {Ji}.

3. x(k+l) = argminz:supp(z)CSk+l ”f -
2 ¥l

4. i1 = f - ZjESk-H X§k+l)l/fj.

5. Repeat from step (1) with k& +— k + 1 until a
stopping criterion is met.

6. Output f = fr =Y ;5 ¥

The essential difference to matching pursuit is the

orthogonal projection step in (3). Orthogonal matching

pursuit may require a smaller number of iterations than

matching pursuit. However, the orthogonal projection

makes an iteration computationally more demanding

than an iteration of matching pursuit.

Zjesk-ﬁ-l

Convex Relaxation

A second tractable approach to sparse approximation
is to relax the £y-minimization problem to the convex
optimization problem of finding the minimizer of

min | x||; subjectto ||[¥x— f><e (4)

This program is also known as basis pursuit [6] and
can be solved using various methods from convex
optimization [2]. At least in the real-valued case, the
minimizer x* of the above problem will always have at
most N nonzero entries, and the support of x* defines a
linear independent set {y/; : x7 # 0}, which is a basis
of CV if x* has exactly N nonzero entries — thus, the
name basis pursuit.

Finding the Sparsest Representation

When the dictionary {v;} is redundant, it is of great
interest to provide conditions which ensure that a spe-
cific algorithm is able to identify the sparsest possible
representation. For this purpose, it is helpful to define
the coherence u of the system {1/; }, or equivalently of
the matrix ¥ having the vectors ¥; as its columns. As-
suming the normalization ||y |l» = 1, it is defined as
the maximal inner product between different dictionary
elements,

wo=max |y Y.
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Suppose that f has a representation with s terms, that
is, f = >_; x;¥; with |x[lo < s. Then s iterations
of orthogonal matching pursuit [3,33] as well as basis
pursuit (4) with ¢ = 0 [3, 14, 34] find the sparsest
representation of f with respect to {1; } provided that

2s—1u < 1. 5)
Moreover, for a general f, both orthogonal matching
pursuit and basis pursuit generate an s-sparse approx-
imation whose approximation error is bounded by the
error of best s-term approximation up to constants; see
[3,18,31] for details.

For typical “good” dictionaries {/,;}}_, C CV, the
coherence scales as y ~ VN [29], so that the bound
(5) implies that s-sparse representations in such dictio-
naries with small enough sparsity, that is, s < c/N s
can be found efficiently via the described algorithms.

Applications of Sparse Approximation

Sparse approximation find a variety of applications.
Below we shortly describe compression, denoising,
and signal separation. Sparse representations play also
a major role in adaptive numerical methods for solving
operator equations such as PDEs. When the solution
has a sparse representation with a suitable basis, say
finite elements or wavelets, then a significant accel-
eration with respect to standard linear methods can
be achieved. The algorithms used in this context are
of different nature than the ones described above. We
refer to [8] for details.

Compression

An obvious application of sparse approximation is
image and signal compression. Once a sparse approx-
imation is found, one only needs to store the nonzero
coefficients of the representation. If the representation
is sparse enough, then this requires significantly less
memory than storing the original signal or image.
This principle is exploited, for instance, in the JPEG,
MPEG, and MP3 data compression standards.

Denoising

Often acquired signals and images are corrupted by
noise, that is, the observed signal can be written as f =
f + n, where f is the original signal and 7 is a vector
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representing the noise. The additional knowledge that
the signal at hand can be approximated well by a
sparse representation can be exploited to clean the
signal by essentially removing the noise. The essential
idea is to find a sparse approximation Z_/ x;y; of

7 with respect to a suitable dictionary {y;} and to
use it as an approximation to the original f. One
algorithmic approach is to solve the £;-minimization
problem (4), where € is now a suitable estimate of
the £,-norm of the noise 7. If ¥ is a wavelet basis,
this principle is often called wavelet thresholding or
wavelet shrinkage [16] due to connection of the soft-
thresholding function [13].

Signal Separation

Suppose one observes the superposition f = f; + f>
of two signals fi and f; of different nature, for in-
stance, the “harmonic” and the “spiky” component
of an acoustic signal, or stars and filaments in an
astronomical image. The task is to separate the two
components f; and f; from the knowledge of f.
Knowing that both f; and f, have sparse represen-
tations in dictionaries {w]{} and {wjz-} of “different
nature,” one can indeed recover both f; and f, by
similar algorithms as outlined above, for instance, by
solving the £;-minimization problem

: 1 2 : _ 1.1 2.2
min 2" |+ (2”1 subjectto f =} Zvi+) 5]
J J

The solution (x',x?) defines the reconstructions
f1=2;x;¥jand fr = 3, X797 If, for instance,
{yj}Y_, and {y?})_, are mutually incoherent bases
in CV, that is, ||¢]1 |l = ||1p/2||2 = 1 for all j and the
maximal inner product i = [(¥}, ¥/7)| is small, then
the above optimization problem recovers both f; and
f> provided they have representations with altogether
s terms where s < 1/(2u) [15]. An example of two
mutually incoherent bases are the Fourier basis and
the canonical basis, where ¢ = 1/+/N [17]. Under
a probabilistic model, better estimates are possible
[5,35].

Compressed Sensing

The theory of compressed sensing [4,21,22,26] builds
on sparse representations. Assuming that a vector
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x € CV is s-sparse (or approximated well by a sparse
vector), one would like to reconstruct it from only
limited information, that is, from

y = Ax, with A e C"™N

where m is much smaller than N. Again the algorithms
outlined above apply, for instance, basis pursuit (4)
with A replacing ¥. In this context, one would like
to design matrices A with the minimal number m
of rows (i.e., the minimal number of linear measure-
ments), which are required to reconstruct x from y.
The recovery criterion based on coherence p of A
described above applies but is highly suboptimal. In
fact, it can be shown that for certain random matrices
m > cslog(eN/s) measurements suffice to (stably)
reconstruct an s-sparse vector using £;-minimization
with high probability, where ¢ is a (small) universal
constant. This bound is sufficiently better than the ones
that can be deduced from coherence based bounds as
described above. A particular case of interest arise
when A consists of randomly selected rows of the
discrete Fourier transform matrix. This setup corre-
sponds to randomly sampling entries of the Fourier
transform of a sparse vector. When m > cslog* N,
then £;-minimization succeeds to (stably) recover s-
sparse vectors from m samples [26,28].

This setup generalizes to the situation that one takes
limited measurements of a vector f € C¥, which
is sparse with respect to a basis or frame {y; }?4:1.
In fact, then f = Wx for a sparse x € CM and with
a measurement matrix 4 € C™*V, we have

y = Af = AUx,

so that we reduce to the initial situation with A’ = AY
replacing A. Once X is recovered, one forms f = ¥x.
Applications of compressed sensing can be found in
various signal processing tasks, for instance, in medical
imaging, analog-to-digital conversion, and radar.
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Overview

The special functions of mathematical physics [4]
are those functions that play a key role in many
problems in science and engineering. For example,

1349

Bessel, Legendre, or parabolic cylinder functions are
well known for everyone involved in physics. This is
not surprising because Bessel functions appear in the
solution of partial differential equations in cylindri-
cally symmetric domains (such as optical fibers) or
in the Fourier transform of radially symmetric func-
tions, to mention just a couple of applications. On
the other hand, Legendre functions appear in the so-
lution of electromagnetic problems involving spherical
or spheroidal geometries. Finally, parabolic cylinder
functions are involved, for example, in the analysis of
the wave scattering by a parabolic cylinder, in the study
of gravitational fields or quantum mechanical problems
such as quantum tunneling or particle production.

But there are many more functions under the term
“special functions” which, differently from the ex-
amples mentioned above, are not of hypergeometric
type, such as some cumulative distribution functions
[3, Chap. 10]. These functions also need to be evalu-
ated in many problems in statistics, probability theory,
communication theory, or econometrics.

Basic Methods

The methods used for the computation of special func-
tions are varied, depending on the function under
consideration as well as on the efficiency and the
accuracy demanded. Usual tools for evaluating special
functions are the evaluation of convergent and diver-
gent series, the computation of continued fractions, the
use of Chebyshev approximations, the computation of
the function using integral representations (numerical
quadrature), and the numerical integration of ODEs.
Usually, several of these methods are needed in order
to build an algorithm able to compute a given function
for a large range of values of parameters and argument.
Also, an important bonus in this kind of algorithms
will be the possibility of evaluating scaled functions:
if, for example, a function f(z) increases exponentially
for large |z|, the factorization of the exponential term
and the computation of a scaled function (without the
exponential term) can be used to avoid degradations in
the accuracy of the functions and overflow problems
as z increases. Therefore, the appropriate scaling of a
special function could be useful for increasing both the
range of computation and the accuracy of the computed
expression.
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Next, we briefly describe three important techniques
for computing special functions which appear ubiqui-
tously in algorithms for special function evaluation:
convergent and divergent series, recurrence relations,
and numerical quadrature.

Convergent and Divergent Series
Convergent series for special functions usually arise in
the form of hypergeometric series:

i, -+,

qu

Z (al)n ' (ap)n Z_ )

(b1 -+ (bg)n nt

by,--- ,bq

where p < g + 1 and (a), is the Pochhammer symbol,
also called the shifted factorial, defined by

(@o=1, (@p=a@+1)---(a+n—-1)@n=>1),
_Tla+n)
(@), = W )

The series is easy to evaluate because of the recur-
sion (a),+1 = (a +n)(a),,n > 0, of the Pochhammer
symbols. For example, for the modified Bessel function

p 2 (1Z2)n
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this is a stable representation when z > O and v > 0
and it is an efficient representation when z is not large
compared with v.

With divergent expansion we mean asymptotic ex-
pansions of the form
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The series usually diverges, but it has the property
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for N = 0,1,2,..., and the order estimate holds for
fixed N. This is the Poincaré-type expansion and for
special functions like the gamma and Bessel functions
they are crucial for evaluating these functions. Other
variants of the expansion are also important, in partic-
ular expansions that hold for a certain range of addi-
tional parameters (this leads to the uniform asymptotic
expansions in terms of other special functions like Airy
functions, which are useful in turning point problems).

Recurrence Relations
In many important cases, there exist recurrence rela-
tions relating different values of the function for differ-
ent values of its variables; in particular, one can usu-
ally find three-term recurrence relations [3, Chap. 4].
In these cases, the efficient computation of special
functions uses at some stage the recurrence relations
satisfied by such families of functions. In fact, it is dif-
ficult to find a computational task which does not rely
on recursive techniques: the great advantage of having
recursive relations is that they can be implemented with
ease. However, the application of recurrence relations
can be risky: each step of a recursive process generates
not only its own rounding errors but also accumulates
the errors of the previous steps. An important aspect
is then the study of the numerical condition of the
recurrence relations, depending on the initial values for
starting recursion.

If we write the three-term recurrence satisfied by the
function y, as

Y41+ bnyn +ayyn—1 =0, (6)

then, if a solution y\™
(m)
=5y =0 for all solutions y

of (6) exists that satisfies
lim ) that are linearly
n—+o00 Y
independent of ynm , we will call y,(lm) the minimal
solution. The solution y,(lD) is said to be a dominant
solution of the three-term recurrence relation. From a
computational point of view, the crucial point is the
identification of the character of the function to be
evaluated (either minimal or dominant) because the
stable direction of application of the recurrence relation
is different for evaluating the minimal or a dominant
solution of (6): forward for dominant solutions and
backward for minimal solutions.
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For analyzing whether a special function is minimal
or not, analytical information is needed regarding its
behavior as n — 4o0.

Assume that for large values of n the coefficients
a,, b, behave as follows.

a, ~an®, b, ~bnP, ab #0

)

with o and § real; assume that ¢, t, are the zeros of

the characteristic polynomial ®(¢) = > 4+ bt + a

with |#;| > |t,]. Then it follows from Perron’s theorem

[3, p. 93] that we have the following results:

1. If 8 > %a, then the difference equation (6) has two
linearly independent solutions f, and g,, with the

property

fo a4 g &

~ , ~ —bn?,
fn—l b 8n—1

n — oQ.

(@)
In this case, the solution f, is minimal.
2.If B = Lo and || > ||, then the difference
equation (6) has two linear independent solutions f,
and g,, with the property

o

~ rn",

Ja

~t2n’3, n — oo,

©)

n—1

In this case, the solution f, is minimal.
3.If B = L and |t1] = ||, or if B < la, then
some information is still available, but the theorem
is inconclusive with respect to the existence of
minimal and dominant solutions.
Let’s consider three-term recurrence relations sat-
isfy by Bessel functions as examples. Ordinary Bessel
functions satisfy the recurrence relation

2n

Yn+1— ?yn + V-1 = 0, z 7£ 0, (10)

with solutions J,(z) (the Bessel function of the first
kind) and Y,(z) (the Bessel function of the second
kind). This three-term recurrence relation corresponds
to (8), with the valuesa = 1, = 0, b = —%, B =1
Then, there exist two independent solutions f, and g,
satisfying
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2n

Jat1 Z 8n+1

o 2n gy

(11)

As the known asymptotic behavior of the Bessel func-
tions reads

no~2(3) ne~-C ()

2 T Z

n — oo, (12)
it is easy to identify J,(z) and Y,(z) as the minimal
(fy) and a dominant (g,) solutions, respectively, of the
three-term recurrence relation (10).

Similar results hold for the modified Bessel func-
tions, with recurrence relation

2n
Yn+1+ Tyn —Yn1=0, z ?é 0,

(13)
with solutions 7, (z) (minimal) and (—1)" K,,(z) (domi-
nant).

Numerical Quadrature
Another example where the study of numerical
stability is of concern is the computation of special
functions via integral representations. It is tempting,
but usually wrong, to believe that once an integral
representation is given, the computational problem
is solved. One has to choose a stable quadrature
rule and this choice depends on the integral
under consideration. Particularly problematic is the
integration of strongly oscillating integrals (Bessel
and Airy functions, for instance); in these cases
an alternative approach consists in finding non-
oscillatory representations by properly deforming the
integration path in the complex plane. Particularly
useful is the saddle point method for obtaining
integral representations which are suitable for
applying the trapezoidal rule, which is optimal for
computing certain integrals in R. Let’s explain the
saddle point method taking the Airy function Ai(z)
as example. Quadrature methods for evaluating
complex Airy functions can be found in, for
example, [1,2].

We start from the following integral representation
in the complex plane:

1
Alg) = 7— /Ceéws‘”d w, (14)
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tours for 8 = 0, %n, %7‘[.7{ andr =5

where z € C and C is a contour starting at coe /3

and terminating at ooe™/3 (in the valleys of
the integrand). In the example we take phz €
[0, %n]

Let p(w) = 1w’
wo = 4/z and —wy and follow from solving ¢'(w) =
w? — z = 0. The saddle point contour (the path of
steepest descent) that runs through the saddle point wy
is defined by I[p (w)] = I[¢p (wo)].

— zw. The saddle points are

We write
z=x+1iy =rei0, w=u-+1iv, wy=uy-+iv.
(15)
Then
uy = ﬁcos%@, vy = ﬁsin%@, X = u%—vg,
Y = 2ugvo. (16)

The path of steepest descent through wy is given by the
equation

(v —vg) (v + 2vy)

3 |:uo + \/%(vz + 2vpv + 3u(2))i|

U= uy+

—00 < v < 00. (17

Examples for r = 5 and a few §—values are shown
in Fig. 1. The relevant saddle points are located on
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the circle with radius /7 and are indicated by small
dots.

The saddle point on the positive real axis corre-
sponds with the case # = 0 and the two saddles
on the imaginary axis with the case 8 = . It is
interesting to see that the contour may split up and run
through both saddle points £wy. When 6 = %n both
saddle points are on one path, and the half-line in the
z—plane corresponding with this 6 is called a Stokes
line.

Integrating with respect to Tt = v — vy (and writing
0 = u— ug), we obtain

_é' o0 d
Ay = [ ereo (24 i)ar, a3
271 J_oo dt

3
where ¢ = %zz and

(T + 3vg)

3 |:u0 + \/%(‘52 + 4vot + 3r):|

o= , —00 < T < 00,

19)

¥r(0,7) = R[pW) — p(wo)] = up(0” — %)

—2v90T + %03 —ot?. (20)

The integral representation for the Airy function
in (18) is now suitable for applying the trapezoidal
rule. The resulting algorithm will be flexible and
efficient.
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Synonyms

Fractional step methods; Operator-splitting methods

Introduction

Splitting methods constitute a general class of nu-
merical integration schemes for differential equations
whose vector field can be decomposed in such a way
that each subproblem is simpler to integrate than the
original system. For ordinary differential equations
(ODEs), this idea can be formulated as follows. Given
the initial value problem

X' = f(x), xo=x(0)eRP 1)
with f : R? — RP and solution ¢, (x¢), assume
that f can be expressed as f = Y ', 1l for certain
functions £, such that the equations

¥ = f(x), xo=x(0)eR?, i=1,...

can be integrated exactly, with solutions x(h) =
(p;[ll] (xo) att = h, the time step. The different parts of f
may correspond to physically different contributions.
Then, by combining these solutions as

2 1
1= o 0l og)!

(3)
and expanding into series in powers of 4, one finds
that y5,(x0) = @n(xo) + O(h?), so that y; provides a
first-order approximation to the exact solution. Higher-
order approximations can be achieved by introducing
more flows with additional coefficients, gz)([lg ;» N com-
position (3).
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Splitting methods involve thus three steps: (i)
choosing the set of functions f! such that f =
Y. £ (ii) solving either exactly or approximately
each equation x’ = fl1(x), and (iii) combining these
solutions to construct an approximation for (1) up to
the desired order.

The splitting idea can also be applied to partial
differential equations (PDEs) involving time and one or
more space dimensions. Thus, if the spatial differential
operator contains parts of a different character (such as
advection and diffusion), then different discretization
techniques may be applied to each part, as well as for
the time integration.

Splitting methods have a long history and have
been applied (sometimes with different names)
in many different fields, ranging from parabolic
and reaction-diffusion PDEs to quantum statistical
mechanics, chemical physics, and Hamiltonian
dynamical systems [7].

Some of the advantages of splitting methods are the
following: they are simple to implement, are explicit
if each subproblem is solved with an explicit method,
and often preserve qualitative properties the differential
equation might possess.

Splitting Methods for ODEs

Increasing the Order

Very often in applications, the function f in the ODE
(1) can be split in just two parts, f(x) = fl(x) +
fPl(x). Then both y, = (p,E] o ga}[:l] and its adjoint,
0 = )(:}1, = go}[la] o (p,[lb], are first-order integration
schemes. These formulae are often called the Lie—
Trotter splitting. On the other hand, the symmetric
version

2 b
St =gl o o )

provides a second-order integrator, known as the
Strang—Marchuk splitting, the leapfrog, or the
Stormer—Verlet method, depending on the context
where it is used [2]. Notice that S}[lz] = XZ/z O Xh/2-

More generally, one may consider a composition of
the form

_ la] [b] [a] [a] (5] [a]
I//h - (pay_Hh © (pblyh ° (pa.yh 0-+-0 (pazh ° gDblh © ¢a1h

)

and try to increase the order of approximation by
suitably determining the parameters a;, b;. The number
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s of (p;[lb] (or (p;[la]) evaluationsin (5) is usually referred to
as the number of stages of the integrator. This is called
time-symmetric if ¥, = v, in which case one has
a left-right palindromic composition. Equivalently, in
(5), one has
by = by, by = bs_1, ...
(6)
The order conditions the parameters a;, b; have to
satisfy can be obtained by relating the previous in-
tegrator v, with a formal series ¥}, of differential
operators [1]: it is known that the h-flow ¢; of the
original system x’ = fll(x) + fPl(x) satisfies,
for each g € C®(RP”,R), the identity g(¢(x)) =
P+ F01(x), where FI9 and FP! are the Lie
derivatives corresponding to £ and f!, respec-
tively, acting as

ay = ds+1, az = dg,

D
’ a
Filg0) = Y £ 75 0.

j=1 /

D
d
FUgl0) = Y- £ (). %
J

j=1

Similarly, the approximation ¥,(x) &~ ¢;(x) given
by the splitting method (5) satisfies the identity

gWn(x)) = ¥(h)[g](x), where

W(h) — eath[“] ebth[b] . eaShF[“] ebShF[b] eaH_th[“].

@)

Hence, the coefficients a;, b; must be chosen in such a

way that the operator ¥ (h) is a good approximation of

eh(F[“]+F[b]), or equivalently, 2~ log(¥) ~ Fld 4 Fl,

Applying repeatedly the Baker—Campbell-
Hausdorff (BCH) formula [2], one arrives at

1
S 10g(W() = (va F) + vy F) + hvgy FU)

+h2(vabbF[abb] + Vaba F[aba])
+h? Vapph FEPP) + vgppq F14P04

+Vabaa FEP4) + O (1), ©)

where

Flabl — [l pbl]  plabh) — [pleb] plo))

Splitting Methods

F[aba] — [F[ab]’ F[a]]’ F[abbb]z[F[abb]’ F[b]],
F[abba] — [F[abb]’ F[a]]’ F[abaa] — [F[aba]7 F[a]]7

the symbol [,-] stands for the Lie bracket, and
Vg, Vb, Vabs Vabbs Vabas Vabbb, - - - are polynomials in
the parameters a;,b; of the splitting scheme (5). In
particular, one gets v, = Zf:iai, v = Y i bi,
Vgp = % — Y b Z;‘:l aj. The order conditions
then read v, = v, = 1 and vy, = Vzpp =
Vgha = -+ = 0 up to the order considered. To
achieve order r = 1,2,3,...,10, the number
of conditions to be fulfilled is Z_r/:l n;, where
n; = 2,1,2,3,6,9,18,30,56,99. This number is
smaller for r > 3 when dealing with second-order
ODEs of the form y” = g(y) when they are rewritten
as (1) [1].

For time-symmetric methods, the order conditions
at even orders are automatically satisfied, which leads
ton; + n3 + --- + ny—1 order conditions to achieve
order r = 2k. For instance, n; + n3 = 4 conditions
need to be fulfilled for a symmetric method (5-6) to be
of order 4.

Splitting and Composition Methods
When the original system (1) is split in m > 2 parts,
higher-order schemes can be obtained by considering
a composition of the basic first-order splitting method
(3) and its adjoint y = (p,[ll] 0---0 (p}[lm_l] o go}[lm]. More
specifically, compositions of the general form
Vn = )(szh O Xage—1h © "+ © X;zh O Xarhs (10)

can be considered with appropriately chosen coeffi-
cients (a1, ..., aa) € R? so as to achieve a prescribed
order of approximation.

In the particular case when system (1) is split in
m = 2 parts so that y;, = (p}[lb] o gp}[:l], method (10)
reduces to (5) with a; = oy and

bj =ayj1 +oapj, ajy1 =0 +az41,

for j=1,...,s, (11)

where ans4+1 = 0. In that case, the coefficients @; and
b; are such that

s+1

>a

i=1

i=1

(12)
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Conversely, any splitting method (5) satisfying (12) can
be written in the form (10) with y, = (p}[lb] o (p,[la].

Moreover, compositions of the form (10) make
sense for an arbitrary basic first-order integrator xj
(and its adjoint yj) of the original system (1). Obvi-
ously, if the coefficients «; of a composition method
(10) are such that ¥, is of order r for arbitrary basic
integrators y;, of (1), then the splitting method (5) with
(11) is also of order r. Actually, as shown in [6], the
integrator (5) is of order r for ODEs of the form (1)
with f = fld + Pl if and only if the integrator (10)
(with coefficients «; obtained from (11)) is of order r
for arbitrary first-order integrators yj.

This close relationship allows one to establish in an
elementary way a defining feature of splitting methods
(5) of order r > 3: at least one a; and one b;
are necessarily negative [1]. In other words, splitting
schemes of order r > 3 always involve backward
fractional time steps.

Preserving Properties A

Assume that the individual flows (p,[; I share with the ex-
act flow ¢;, some defining property which is preserved
by composition. Then it is clear that any composition
of the form (5) and (10) with y, given by (3) also
possesses this property. Examples of such features are
symplecticity, unitarity, volume preservation, conser-
vation of first integrals, etc. [7]. In this sense, splitting
methods form an important class of geometric numer-
ical integrators [2]. Repeated application of the BCH
formula can be used (see (9)) to show that there exists
a modified (formal) differential equation

= fi®) = fR) +hAHE) + R fE) + -
X(0) = xo, (13)

associated to any splitting method ¥, such that the
numerical solution x, = ¥,(x,—) (n = 1,2,...)
satisfies x, = X(nh) for the exact solution Xx(¢)
of (13). An important observation is that the vector
fields fr in (13) belong to the Lie algebra generated
by fU, ..., fI"] In the particular case of autonomous
Hamiltonian systems, if fll are Hamiltonian, then
each f is also Hamiltonian. Then one may study
the long-time behavior of the numerical integrator by
analyzing the solutions of (13) viewed as a small
perturbation of the original system (1) and obtain
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rigorous statements with techniques of backward error
analysis [2].

Further Extensions

Several extensions can be considered to reduce the
number of stages necessary to achieve a given order
and get more efficient methods. One of them is the
use of a processor or corrector. The idea consists in
enhancing an integrator y;, (the kernel) with a map
(the processor) as 1};, = mp oYy om, ! Then, after
n steps, one has 1/};; = mpoYy o 7rh_1, and so only
the cost of iy, is relevant. The simplest example of a
processed integrator is provided by the Stormer—Verlet
method (4). In that case, ¥y, = yp = (p}[lb o (p}[la] and
Ty = (p,[f/]z. The use of processing allows one to get
methods with fewer stages in the kernel and smaller
error terms than standard compositions [1].

The second extension uses the flows corresponding
to other vector fields in addition to F and F[.
For instance, one could consider methods (5) such
that, in addition to (p;[la] and (p;[lb], use the A-flow (p;[labb]
of the vector field FI*’’l when its computation is
straightforward. This happens, for instance, for second-
order ODEs y” = g(y) [1,7].

Splitting is particularly appropriate when || 19| «
I £®1 in (1). Introducing a small parameter &, we can
write X’ = efl(x) + fPl(x), so that the error of
scheme (5) is O(g). Moreover, since in many practi-
cal applications ¢ < h, one is mainly interested in
eliminating error terms with small powers of ¢ instead
of satisfying all the order conditions. In this way, it is
possible to get more efficient schemes. In addition, the
use of a processor allows one to eliminate the errors of
order ¢h* forall 1 <k < n and all n [7].

Although only autonomous differential equations
have been considered here, several strategies exist
for adapting splitting methods also to nonau-
tonomous systems without deteriorating their overall
efficiency [1].

Some Good Fourth-Order Splitting Methods

In the following table, we collect the coefficients of
a few selected fourth-order symmetric methods of the
form (5-6). Higher-order and more elaborated schemes
can be found in [1,2, 7] and references therein. They
are denoted as X4, where s indicates the number of
stages. Se4 is a general splitting method, whereas SN¢4
refers to a method tailored for second-order ODEs of
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the form y” = g(y) when they are rewritten as a first-
order system (1), and the coefficients a; are associated
to g(y). Finally, SNIs4 is a method especially designed
for problems of the form x’ = efl(x) + fPl(x).
With s = 3 stages, there is only one solution, S34,
given by a; = b/2, by = 2/(2 —2'3). In all cases,
the remaining coefficients are fixed by symmetry and
consistency (3, a; =) ; b; = 1).

Se¢4 a1 =0.07920369643119565 b; =0.209515106613362

ap =0.353172906049774 by =—0.143851773179818

a3 = —0.04206508035771952
SNg4 a; =0.08298440641740515

a, =0.396309801498368

by =0.245298957184271
by =0.604872665711080

a3 =—0.3905630492234859
SNIs4a, =0.81186273854451628884  b; = —0.0075869131187744738

a, =—0.67748039953216912289 b, =0.31721827797316981388

Numerical Example: A Perturbed Kepler
Problem
To illustrate the performance of the previous splitting
methods, we apply them to the time integration of the
perturbed Kepler problem described by the Hamilto-
nian

€

L, 2y 1 2 2
H=3pi+p)=--55(@-2). (4
where r = qi +q3. We take ¢ = 0.001
and integrate the equations of motion ¢/ = p;,

p; = —0H/dq;, i = 1,2, with initial conditions
g1 = 4/5.¢ = p1 = 0, py = /3/2. Splitting
methods are used with the partition into kinetic
and potential energy. We measure the two-norm
error in the position at 1y = 2,000, (¢1,q2) =
(0.318965403761932, 1.15731646810481), for
different time steps and plot the corresponding error
as a function of the number of evaluations for each
method in Fig. 1. Notice that although the generic
method S¢4 has three more stages than the minimum
given by S34, this extra cost is greatly compensated by
a higher accuracy. On the other hand, since this system
corresponds to the second-order ODE ¢” = g(q),
method SNg¢4 leads to a higher accuracy with the
same computational cost. Finally, SNIs4 takes profit of
the near-integrable character of the Hamiltonian (14)

Splitting Methods

and the two extra stages to achieve an even higher
efficiency. It requires solving the Kepler problem
separately from the perturbation. This requires a more
elaborated algorithm with a slightly increase in the
computational cost (not reflected in the figure). Results
provided by the leapfrog method S2 and the standard
fourth-order Runge—Kutta integrator RK4 are also
included for reference.

Splitting Methods for PDEs

In the numerical treatment of evolutionary PDEs of
parabolic or mixed hyperbolic-parabolic type, splitting
time-integration methods are also widely used. In this
setting, the overall evolution operator is formally writ-
ten as a sum of evolution operators, typically repre-
senting different aspects of a given model. Consider
an evolutionary PDE formulated as an abstract Cauchy
problem in a certain function space U C {u : R? x

R — R},
u, = L(u),

u(ty) = uy, (15)

where L is a spatial partial differential operator. For
instance,

d

9 0 < i
Eu(x,t) = Z E Eci(x)a—)qu(x,t)

7=l

+f(x u(x, 1)),  u(x,ty) = up(x)
or in short, L(x,u) = V - (¢cVu) + f(u) corresponds
to a diffusion-reaction problem. In that case, it makes
sense to split the problem into two subequations, cor-
responding to the different physical contributions,
u, = Lo(u) =V -(cVu), u =Lyu)= f(u,
(16)

solve numerically each equation in (16), thus giving
ull(hy = go}[la](uo), ull(hy = go}[lb](uo), respectively,
for a time step h, and then compose the operators

,[1“], go}[lb] to construct an approximation to the solu-
tion of (15). Thus, u(h) = go,[lb](go,[la](uo)) provides
a first-order approximation, whereas the Strang split-
ting u(h) ~ (p}[f/]z(w}[f](gz)}[la/]z(uo))) is formally second-
order accurate for sufficiently smooth solutions. In
this way, especially adapted numerical methods can
be used to integrate each subproblem, even in parallel

[3,4].
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Splitting Methods, Fig. 1
Error in the solution
(@1(1).42(t7)) vs. the
number of evaluations for
different fourth-order splitting
methods (the extra cost in the
method SNIs4, designed for
perturbed problems, is not
taken into account)

LOG,,(ERROR)

-8 1

4.2

Systems of hyperbolic conservation laws, such as

u + [ + gy = 0. ulx.to) = uo(x),

can also be treated with splitting methods, in this
case, by fixing a step size & and applying a especially
tailored numerical scheme to each scalar conserva-
tion law u, + f(u)y = 0 and u, + g(u), = 0.
This is a particular example of dimensional splitting
where the original problem is approximated by solv-
ing one space direction at a time. Early examples of
dimensional splitting are the so-called locally one-
dimensional (LOD) methods (such as LOD-backward
Euler and LOD Crank—Nicolson schemes) and al-
ternating direction implicit (ADI) methods (e.g., the
Peaceman—Rachford algorithm) [4].

Although the formal analysis of splitting methods
in this setting can also be carried out by power se-
ries expansions, several fundamental difficulties arise,
however. First, nonlinear PDEs in general possess
solutions that exhibit complex behavior in small re-
gions of space and time, such as sharp transitions and
discontinuities. Second, even if the exact solution of
the original problem is smooth, it might happen that
the composition defining the splitting method provides
nonsmooth approximations. Therefore, it is necessary
to develop sophisticated tools to analyze whether the
numerical solution constructed with a splitting method

48 5 52
LOGi(N. EVALUATIONS)

44 46 54 56

leads to the correct solution of the original problem or
not [3].

On the other hand, even if the solution is sufficiently
smooth, applying splitting methods of order higher
than two is not possible for certain problems. This
happens, in particular, when there is a diffusion term
in the equation; since then the presence of negative
coefficients in the method leads to an ill-posed prob-
lem. When ¢ 1 in (16), this order barrier has
been circumvented, however, with the use of complex-
valued coefficients with positive real parts: the operator
‘/’Z[Z] corresponding to the Laplacian L, is still well
defined in a reasonable distribution set for z € C,
provided that 9i(z) > 0.

There exist also relevant problems where high-order
splitting methods can be safely used as is in the inte-
gration of the time-dependent Schrodinger equation
iu —ﬁAu + V(x)u split into kinetic T
—(2m)~'A and potential V energy operators and
with periodic boundary conditions. In this case,
the combination of the Strang splitting in time and
the Fourier collocation in space is quite popular in
chemical physics (with the name of split-step Fourier
method). These schemes have appealing structure-
preserving properties, such as unitarity, symplecticity,
and time-symmetry [5]. Moreover, it has been shown
that for a method (5) of order r with the splitting into
kinetic and potential energy and under relatively mild
assumptions on 7' and V, one has an rth-order error
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bound || Y} ug — u(nh)|| < Cnh't! maxo<s<nh [|U($)]lr
in terms of the rth-order Sobolev norm [5].
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Stability, Consistency, and Convergence
of Numerical Discretizations

Douglas N. Arnold
School of Mathematics, University of Minnesota,
Minneapolis, MN, USA

Overview

A problem in differential equations can rarely be
solved analytically, and so often is discretized,
resulting in a discrete problem which can be solved
in a finite sequence of algebraic operations, efficiently
implementable on a computer. The error in a

Stability, Consistency, and Convergence of Numerical Discretizations

discretization is the difference between the solution
of the original problem and the solution of the discrete
problem, which must be defined so that the difference
makes sense and can be quantified. Consistency of
a discretization refers to a quantitative measure of
the extent to which the exact solution satisfies the
discrete problem. Stability of a discretization refers to
a quantitative measure of the well-posedness of the
discrete problem. A fundamental result in numerical
analysis is that the error of a discretization may be
bounded in terms of its consistency and stability.

A Framework for Assessing Discretizations

Many different approaches are used to discretize
differential equations: finite differences, finite ele-
ments, spectral methods, integral equation approaches,
etc. Despite the diversity of methods, fundamental
concepts such as error, consistency, and stability are
relevant to all of them. Here, we describe a framework
general enough to encompass all these methods,
although we do restrict to linear problems to avoid
many complications. To understand the definitions, it
is good to keep some concrete examples in mind, and
so we start with two of these.

A Finite Difference Method

As a first example, consider the solution of the Poisson
equation, Au = f, on a domain £2 C R?, subject to
the Dirichlet boundary condition # = 0 on 92. One
possible discretization is a finite difference method,
which we describe in the case £2 = (0, 1) x (0, 1) is the
unit square. Making reference to Fig. 1,let h = 1/n,
n > 1 integer, be the grid size, and define the grid
domain, 2, = {({h,mh)|0 < [,m < n}, as the set
of grid points in £2. The nearest neighbors of a grid
point p = (pi, p2) are the four grid points py =
(pr—h, p2), pe = (p1 + h, p2), ps = (p1, p2 — h),
and py = (p1, p2 + h). The grid points which do
not themselves belong to £2, but which have a nearest
neighbor in §2 constitute the grid boundary, d£2;,, and
we set £2, = £2,U382;. Now letv : 2, — Rbea grid
function. Its five-point Laplacian Ajv is defined by

v(pe) +v(pw)+v(ps)+v(py) —4v(p)

Apv(p) = %

P E Qh~

The finite difference discretization then seeks uy
2, — R satisfying
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Stability, Consistency, and O O O O O O
Convergence of Numerical
Discretizations, Fig. 1 The
grid domain £2,, consists of Q ° ° ° 4 ° ° Q
the points in §2;,, marked with
solid dots, and in 082y,, o Py Py Py P Py °® o
marked with hollow dots. On
the right is the stencil of the
five-point Laplacian, which O @ @ @ L ® ® 0]
consists of a grid point p and
its four nearest neighbors
O @ @ @ L @ @ ®)
®pnN
O @ @ @ @ @ @ ®)
h
O @ @ @ L @ @ ®) .pw ‘p ‘pE
O—O0—0—0—0—0 ors

Apun(p) = f(p), p € 21, up(p) =0, p € 982
If we regard as unknowns, the N = (n — 1)? values
un(p) for p € §24, this gives us a systems of N linear
equations in N unknowns which may be solved very
efficiently.

A Finite Element Method

A second example of a discretization is provided by
a finite element solution of the same problem. In this
case we assume that £2 is a polygon furnished with
a triangulation 7, such as pictured in Fig. 2. The
finite element method seeks a function uy, 2 —
R which is continuous and piecewise linear with re-
spect to the mesh and vanishing on 92, and which
satisfies

—/ Vuh~Vvdx=/fvdx,
2 2

for all test functions v which are themselves continuous
and piecewise linear with respect to the mesh and
vanish on 9£2. If we choose a basis for this set of
space of test functions, then the computation of u,
may be reduced to an efficiently solvable system of
N linear equations in N unknowns, where, in this
case, N is the number of interior vertices in the
triangulation.

Discretization
We may treat both these examples, and many other
discretizations, in a common framework. We regard

the discrete operator as a linear map L;, from a vector
space V}, called the discrete solution space, to a second
vector space W, called the discrete data space. In the
case of the finite difference operator, the discrete solu-
tion space is the space of mesh functions on £2;, which
vanish on d£2;, the discrete data space is the space
of mesh functions on £2;, and the discrete operator
L, = Ay, the five-point Laplacian. In the case of the
finite element method, V), is the space of continuous
piecewise linear functions with respect to the given
triangulation that vanish on 92, and W), = Vh*, the
dual space of V},. The operator Ly, is given by

(Lpw)(v) = —/ Vw-Vvdx, w,veV,.
Q

For the finite difference method, we define the discrete
data f, € Wy by fr = f|a,, while for the finite
element method f, € W is given by f,(v) =
f fvdx. In both cases, the discrete solution u, € V),
is found by solving the discrete equation

Lpup = f. (D
Of course, a minimal requirement on the discretization
is that the finite dimensional linear system (1) has
a unique solution, i.e., that the associated matrix is
invertible (so V}, and W) must have the same dimen-
sion). Then, the discrete solution u; is well-defined.
The primary goal of numerical analysis is to ensure
that the discrete solution is a good approximation of
the true solution u in an appropriate sense.
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Stability, Consistency, and Convergence of Numerical Discretizations, Fig. 2 A finite element mesh of the domain §2. The
solution is sought as a piecewise linear function with respect to the mesh

Representative and Error

Since we are interested in the difference between u
and u,, we must bring these into a common vector
space, where the difference makes sense. To this end,
we suppose that a representative U, € V) of u is
given. The representative is taken to be an element of
Vi which, though not practically computable, is a good
approximation of u. For the finite difference method,
a natural choice of representative is the grid function
U, = ulg,. If we show that the difference U, — uy
is small, we know that the grid values u,(p) which
determine the discrete solution are close to the exact
values u(p). For the finite element method, a good
possibility for Uy is the piecewise linear interpolant
of u, that is, U, is the piecewise linear function that
coincides with u at each vertex of the triangulation.
Another popular possibility is to take Uy, to be the best
approximation of u in V} in an appropriate norm. In
any case, the quantity U, — uy, which is the differ-
ence between the representative of the true solution
and the discrete solution, defines the error of the
discretization.

At this point we have made our goal more concrete:
we wish to ensure that the error, U, — u;, € Vj, is
small. To render this quantitative, we need to select a
norm on the finite dimensional vector space V) with
which to measure the error. The choice of norm is
an important aspect of the problem presentation, and
an appropriate choice must reflect the goal of the
computation. For example, in some applications, a
large error at a single point of the domain could be
catastrophic, while in others only the average error over
the domain is significant. In yet other cases, derivatives
of u are the true quantities of interest. These cases
would lead to different choices of norms. We shall
denote the chosen norm of v € Vj}, by ||v]|;. Thus, we

now have a quantitative goal for our computation that
the error ||Uy, — uy ||, be sufficiently small.

Consistency and Stability

Consistency Error

Having used the representative U, of the solution to
define the error, we also use it to define a second sort
of error, the consistency error, also sometimes called
the truncation error. The consistency error is defined
to be LU, — f5, which is an element of W,. Now
U), represents the true solution u, so the consistency
error should be understood as a quantity measuring the
extent to which the true solution satisfies the discrete
equation (1). Since Lu = f, the consistency error
should be small if L, is a good representative of L and
fn a good representative of f. In order to relate the
norm of the error to the consistency error, we need a
norm on the discrete data space W), as well. We denote
this norm by |lw||; for w € W, and so our measure of
the consistency error is || L, Uy, — full},-

Stability
If a problem in differential equations is well-posed,
then, by definition, the solution u depends continuously
on the data f. On the discrete level, this continuous
dependence is called stability. Thus, stability refers to
the continuity of the mapping L, : W, — Vj,, which
takes the discrete data fj to the discrete solution u,.
Stability is a matter of degree, and an unstable dis-
cretization is one for which the modulus of continuity
of L; ! is very large.

To illustrate the notion of instability, and to motivate
the quantitative measure of stability we shall introduce
below, we consider a simpler numerical problem than
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the discretization of a differential equation. Suppose
we wish to compute the definite integral

1
Vnt1 =/ x"e* dx, (2)
0

for n = 15. Using integration by parts, we obtain a
simple recipe to compute the integral in short sequence
of arithmetic operations:

Vn+1 =1 —ny,, n=1,...,15,

yi=1-e'=0632121.... 3)
Now suppose we carry out this computation, beginning
with y; = 0.632121 (so truncated after six decimal
places). We then find that y;4 = —576, 909, which is
truly a massive error, since the correct value is y14 =
0.0590175 .. .. If we think of (3) as a discrete solution
operator (analogous to L;‘ above) taking the data y;
to the solution y¢, then it is a highly unstable scheme:
a perturbation of the data of less than 107° leads to
a change in the solution of nearly 6 x 10°. In fact, it is
easy to see that for (3), a perturbation € in the data leads
to an error of 15! x € in solution — a huge instability.
It is important to note that the numerical computation
of the integral (2) is not a difficult numerical problem.
It could be easily computed with Simpson’s rule, for
example. The crime here is solving the problem with
the unstable algorithm (3).

Returning to the case of the discretization (1), imag-
ine that we perturb the discrete data f;, to some fh =
fn + €p, resulting in a perturbation of the discrete
solution to &, = L; /». Using the norms in W, and
V), to measure the perturbations and then computing
the ratio, we obtain

solution perturbation [|ity — uplln 1L}, €nlln
data perturbation ||, — s llenll)

We define the stability constant C,‘:‘ab, which is our
quantitative measure of stability, as the maximum value
this ratio achieves for any perturbation €, of the data.
In other words, the stability constant is the norm of the
operator L;lz

1L enlln

Cstab —
! llenlly

0756;1 ewy

—1
=Ly lzow,.vi-
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Relating Consistency, Stability, and Error

The Fundamental Error Bound

Let us summarize the ingredients we have introduced
in our framework to assess a discretization:

* The discrete solution space, V}, a finite dimensional

vector space, normed by || - ||
e The discrete data space, W}, a finite dimensional
vector space, normed by || - ||,

* The discrete operator, Ly, : V;, — W}, an invertible
linear operator

e The discrete data f; € W,

» The discrete solution u;, determined by the equation
Lyuy = fi

* The solution representative U, € V},

e Theerror U, —u, €V

e The consistency error L, U, — f, € W,

« The stability constant C;* = || L, || 2w,

With this framework in place, we may prove a rigorous

error bound, stating that the error is bounded by the

product of the stability constant and the consistency

error:

1Uy — unlln < C°N\ Ly Uy — fill)- “)

The proof is straightforward. Since L, is invertible,

Uy —up = L' [Ly(Uy — up)] = Ly (LyUy — Lyuy)
= Ll;l(Lh Un — fn).

Taking norms, gives

1O = willw < 1L N eom v | LaUn = fillys
as claimed.

The Fundamental Theorem

A discretization of a differential equation always en-
tails a certain amount of error. If the error is not small
enough for the needs of the application, one generally
refines the discretization, for example, using a finer
grid size in a finite difference method or a triangulation
with smaller elements in a finite element method.
Thus, we may consider a whole sequence or family of
discretizations, corresponding to finer and finer grids
or triangulations or whatever. It is conventional to
parametrize these by a positive real number £ called
the discretization parameter. For example, in the finite
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difference method, we may use the same / as before,
the grid size, and in the finite element method, we
can take /& to be the maximal triangle diameter or
something related to it. We shall call such a family
of discretizations a discretization scheme. The scheme
is called convergent if the error norm || U, — uyl|,
tends to 0 as /& tends to 0. Clearly convergence is a
highly desirable property: it means that we can achieve
whatever level of accuracy we need, as long as we do a
fine enough computation. Two more definitions apply
to a discretization scheme. The scheme is consistent if
the consistency error norm | L, U, — fj||) tends to 0
with h. The scheme is stable if the stability constant
C; is bounded uniformly in h: C;** < C*# for
some number C*# and all 4. From the fundamental
error bound, we immediately obtain what may be
called the fundamental theorem of numerical analysis:
a discretization scheme which is consistent and stable
is convergent.

Historical Perspective

Consistency essentially requires that the discrete equa-
tions defining the approximate solution are at least
approximately satisfied by the true solution. This is
an evident requirement and has implicitly guided the
construction of virtually all discretization methods,
from the earliest examples. Bounds on the consistency
error are often not difficult to obtain. For finite differ-
ence methods, for example, they may be derived from
Taylor’s theorem, and, for finite element methods, from
simple approximation theory. Stability is another mat-
ter. Its central role was not understood until the mid-
twentieth century, and there are still many differential
equations for which it is difficult to devise or to assess
stable methods.

That consistency alone is insufficient for the conver-
gence of a finite difference method was pointed out in
a seminal paper of Courant, Friedrichs, and Lewy [2]
in 1928. They considered the one-dimensional wave
equation and used a finite difference method, analo-
gous to the five-point Laplacian, with a space-time grid
of points (jh,lk) with0 < j <n,0 <[ < m integers
and h, k > 0 giving the spatial and temporal grid size,
respectively. It is easy to bound the consistency error by
O(h?>+k?), so setting k = Ah for some constant A > 0
and letting % tend to 0, one obtains a consistent scheme.
However, by comparing the domains of dependence
of the true solution and of the discrete solution on
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the initial data, one sees that this method, though
consistent, cannot be convergentif A > 1.

Twenty years later, the property of stability of dis-
cretizations began to emerge in the work of von Neu-
mann and his collaborators. First, in von Neumann’s
work with Goldstine on solving systems of linear
equations [5], they studied the magnification of round-
off error by the repeated algebraic operations involved,
somewhat like the simple example (3) of an unsta-
ble recursion considered above. A few years later,
in a 1950 article with Charney and Fjgrtoft [1] on
numerical solution of a convection diffusion equation
arising in atmospheric modeling, the authors clearly
highlighted the importance of what they called com-
putational stability of the finite difference equations,
and they used Fourier analysis techniques to assess
the stability of their method. This approach developed
into von Neumann stability analysis, still one of the
most widely used techniques for determining stability
of finite difference methods for evolution equations.

During the 1950s, there was a great deal of
study of the nature of stability of finite difference
equations for initial value problems, achieving its
capstone in the 1956 survey paper [3] of Lax and
Richtmeyer. In that context, they formulated the
definition of stability given above and proved that, for a
consistent difference approximation, stability ensured
convergence.

Techniques for Ensuring Stability

Finite Difference Methods

We first consider an initial value problem, for example,
the heat equation or wave equation, discretized by a
finite difference method using grid size /& and time step
k. The finite difference method advances the solution
from some initial time #y to a terminal time 7 by
a sequence of steps, with the /th step advancing the
discrete solution from time (! — 1)k to time /k. At
each time level /k, the discrete solution is a spatial
grid function uél, and so the finite difference method
defines an operator G (h, k) mapping uél_l to "‘51’ called
the amplification matrix. Since the amplification matrix
is applied many times in the course of the calculation
(m = (T — ty)/k times to be precise, a number
which tends to infinity as k tends to 0), the solution
at the final step u; involves a high power of the
amplification matrix, namely G (&, k)™, applied to the
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Stability, Consistency, and Convergence of Numerical Dis-
cretizations, Fig. 3 Finite difference solution of the heat equa-
tion using (5). Left: initial data. Middle: discrete solution at

data u2. Therefore, the stability constant will depend
on a bound for ||G(k, k)™||. Usually this can only be
obtained by showing that ||G(h, k)| < 1 or, at most,
IG(h,k)|| <1+ O(k). As a simple example, we may
consider an initial value problem for the heat equation
with homogeneous boundary conditions on the unit
square:

ad
—uzAu, xe€R,0<t<T,
ot

u(x,t) =0, x€0dR2,0<t<T,

u(x,0) = up(x), xe€ £,

which we discretize with the five-point Laplacian and
forward differences in time:

Ml _ul—l B
(p) (p) — Ahul l(p)’p e th

k
0<l <m, ©)
ul(p)=0, pe€is2, 0<l<m,
u’(p) =uo(p). p € 2 (6)

In this case the norm condition on the amplification
matrix ||G(h,k)|| < 1 holds if 4k < K2, but not
otherwise, and, indeed, it can be shown that this dis-
cretization scheme is stable, if and only if that con-
dition is satisfied. Figure 3 illustrates the tremendous
difference between a stable and unstable choice of time
step.

t = 0.03 computed with & = 1/20, k = 1/2,000 (stable).
Right: same computation with k = 1/1,000 (unstable)

Several methods are used to bound the norm of the
amplification matrix. If an L° norm is chosen, one
can often use a discrete maximum principle based on
the structure of the matrix. If an L2 norm is chosen,
then Fourier analysis may be used if the problem
has constant coefficients and simple enough boundary
conditions. In other circumstances, more sophisticated
matrix or eigenvalue analysis is used.

For time-independent PDEs, such as the Poisson
equation, the requirement is to show that the inverse
of the discretization operator is bounded uniformly in
the grid size h. Similar techniques as for the time-
dependent problems are applied.

Galerkin Methods
Galerkin methods, of which finite element methods are
an important case, treat a problem which can be put
into the form: find u € V such that B(u, v) = F(v) for
allv € V. Here, V is a Hilbert space, B : V x V — R
is a bounded bilinear form, and F € V*, the dual
space of V. (Many generalizations are possible, e.g.,
to the case where B acts on two different Hilbert
spaces or the case of Banach spaces.) This problem
is equivalent to a problem in operator form, find u
such Lu = F, where the operator L : V — V*
is defined by Lu(v) = B(u,v). An example is the
Dirichlet problem for the Poisson equation considered
earlier. Then, V = IEII(Q), B(u,v) = [, Vu-Vvdx,
and F(v) = [, fvdx. The operator is L = —A :
H'(2) - H'(2)*.

A Galerkin method is a discretization which seeks
uy, in a subspace Vj, of V satisfying B(u;,v) = F(v)
for all v € V. The finite element method discussed
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Stability, Consistency, and Convergence of Numerical Dis-
cretizations, Fig. 4 Approximation of the problem (7), with
u = cos wx shown on left and 0 = u’ on the right. The exact
solution is shown in blue, and the stable finite element method,
using piecewise linears for o and piecewise constants for u, is

above took V, to be the subspace of continuous piece-
wise linears. If the bilinear form B is coercive in the
sense that there exists a constant y > 0 for which
Bv,v) zylvly, veV,

then stability of the Galerkin method with respect to
the V' norm is automatic. No matter how the subspace
V}, is chosen, the stability constant is bounded by 1/y.
If the bilinear form is not coercive (or if we consider
a norm other than the norm in which the bilinear
form is coercive), then finding stable subspaces for
Galerkin’s method may be quite difficult. As a very
simple example, consider a problem on the unit interval
I = (0,1), to find (o,u) € H'(I) x L*(I) such
that

1 1 1 1
/ atdx—i—f r'udx—}—f J'dez/ fudx,
0 0 0 0

(r.v) € H'(I) x L*(I). (7)

This is a weak formulation of system o = v/, 0’ = f,
with Dirichlet boundary conditions (which arise from
this weak formulation as natural boundary conditions),
so this is another form of the Dirichlet problem for
Poisson’s equation u” = f on I, u(0) = u(1) = 0. In
higher dimensions, there are circumstances where such
a first-order formulation is preferable to a standard
second-order form. This problem can be discretized by
a Galerkin method, based on subspaces S, C H'(I)
and W, C L*(I). However, the choice of subspaces
is delicate, even in this one-dimensional context.

shown in green (in the right plot, the blue curve essentially
coincides with the green curve, and so is not visible). An unstable
finite element method, using piecewise quadratics for o, is shown
in red

If we partition / into subintervals and choose S
and W), both to be the space of continuous piecewise
linears, then the resulting matrix problem is singular,
so the method is unusable. If we choose S, to
continuous piecewise linears, and W), to be piecewise
constants, we obtain a stable method. But if we choose
Sp to contain all continuous piecewise quadratic
functions and retain the space of piecewise constants
for W), we obtain an unstable scheme. The stable
and unstable methods can be compared in Fig. 4.
For the same problem of the Poisson equation in
first-order form, but in more than one dimension,
the first stable elements were discovered in 1975

[4].
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To solve an inverse problem means to recover an un-
known object from indirect noisy observations. As an
illustration, consider an idealized example of the blur-
ring of a one-dimensional signal, f(x), by a measuring
instrument. Assume the function is parametrized so
that x € [0, 1] and that the actual data can be modeled
as noisy observations of a blurred version of f. We
may model the blurring as a convolution with a ker-
nel, K(x), determined by the instrument. The forward
operator maps f to the blurred function p given by
wix) = fol K(x —1t)f(t)drt (i.e., a Fredholm integral
equation of the first kind.) The statistical model for
the data is then y(x) = p(x) + e(x), where &(x)
is measurement noise. The inverse problem consists
of recovering f from finitely many measurements
y(x1),...,y(x,). However, inverse problems are usu-
ally ill-posed (e.g., the estimates may be very sensitive
to small perturbations of the data) and deblurring is one
such example. A regularization method is required to
solve the problem. An introduction to regularization of
inverse problems can be found in [11] and more general
references are [10,27].

Since the observations y(x;) are subject to system-
atic errors (e.g., discretization) as well as measure-
ment errors that will be modeled as random variables,
the solution of an inverse problem should include a
summary of the statistical characteristics of the inver-
sion estimate such as means, standard deviations, bias,
mean squared errors, and confidence sets. However, the
selection of proper statistical methods to assess esti-
mators depends, of course, on the class of estimators,
which in turn is determined by the type of inverse
problem and chosen regularization method. Here we
use a general framework that encompasses several
different and widely used approaches.

We consider the problem of assessing the statistics
of solutions of linear inverse problems whose data are
modeled as y; = K;[f]+ & ( = 1,...,n), where
the functions f belong to a linear space H, each K;
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is a continuous linear operator defined on H, and the
errors & are random variables. Since the errors are
random, an estimate f of f is arandom variable taking
values in H. Given the finite amount of data, we can
only hope to recover components of f that admit a
finite-dimensional parametrization. Such parametriza-
tions also help us avoid defining probability measures
in function spaces. For example, we can discretize
the operators and the function so that the estimate f
is a vector in R”. Alternatively, one may be able to
use a finite-dimensional parametrization such as f =
Z',:’: 1 4k Y, where v are fixed functions defined on
H . This time the random variable is the estimate a of
the vector of coefficients @ = (ay). In either case the
problem of finding an estimate of a function reduces to
a finite-dimensional linear algebra problem.

Example 1 Consider the inverse problem for a Fred-
holm integral equation:

1
yi:y(xi):/() K(x;—t) f(t)dt+e;, (=1,...,n).

To discretize the integral, we can use m equally spaced
points #; in [0, 1] and define ¢} = (¢; + ¢;-1)/2. Then,

1 1 m—1
px) = [ K= S0 dy 2 Kt £16).

Hence we have the approximation g = (u(xy),...,
p(xn)) ~ K f with K = K(x; —t}) and fi = f(t)).
Writing the discretization error as § = u — K f, we
arrive at the following model for the data vector y:

y=Kf +68+e. €))
Asm — oo the approximation of the integral improves
but the matrix K becomes more ill-conditioned. To
regularize the problem, we define an estimate f of f
using penalized least squares:

A

f =argmin [ly — Kg|* + A*|Dg|?
gERM
=(K'K+AD'D)y"'K'y=Ly,

where A > 0 is a fixed regularization parameter and
D is a chosen matrix (e.g., a matrix that computes
discrete derivatives). This regularization addresses the
ill-conditioning of the matrix K; it is a way of adding
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the prior information that we expect | Df || to be small.
The case D = I is known as (discrete) Tikhonov-
Phillips regularization. Note that we may write f (x;)
as a linear function of y: f(xi) = e!Ly where {e;} is
the standard orthonormal basis in R™. [J

In the next two examples, we assume that H is a
Hilbert space, and each K; : H — R is a bounded lin-
ear operator (and thus continuous). We write K[ f] =

Krlf1 - Kl fD'

Example 2 Since KC(H) C R” is finite dimensional,
it follows that K is compact as is its adjoint K*
R" — H, and K*K is a self-adjoint compact operator
on H . In addition, there is a collection of orthonormal
functions { ¢ } in H, orthonormal vectors { v } in R",
and a positive, nonincreasing sequence (4;) such that
[22]: (a) { ¢ } is an orthonormal basis for Null()*;
(b) {vx } is an orthonormal basis for the closure of
Range(K) in R"; and (c) K[¢x] = Axvix and K*[vg] =
Acdr. Write f = fo + fi, with fo € Null(K) and
fi € Null(X)L. Then, there are constants a; such
that fi = Y y_, ar¢x. The data do not provide any
information about f; so without any other information
we have no way of estimating such component of
f. This introduces a systematic bias. The problem of
estimating f is thus reduced to estimating f, that is,
the coefficients ay. In fact, we may transform the data
to (y,vx) = Arar + (&, v;) and use them to estimate
the vector of coefficients @ = (ay); the transformed
data based on this sequence define a sequence space
model [7, 18]. We may also rewrite the data as y =
Va+ e, where V. = (Av;---A,v, ). An estimate of
f is obtained using a penalized least-squares estimate
of a:

@ = argmin ||y — VB|* + A%|b]*.

This leads again to an estimate that is linear in y; write
itas @ = Ly for some matrix L. The estimate of f(x)
is then similar to that in Example 1:

f(x)=¢x)a=e¢>x) Ly, @)

with ¢(x) = (¢1(x). ... ¢a(x))". O

If the goal is to estimate pointwise values of f €
H, then the Hilbert space H needs to be defined
appropriately. For example, if H = L?([0, 1]), then
pointwise values of f are not well defined. The fol-
lowing example introduces spaces where evaluation
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at a point (i.e., f — f(x)) is a continuous linear
functional.

Example 3 Let I = [0,1]. Let W, (I) be the linear
space of real-valued functions on / such that f has
m— 1 continuous derivatives on 7, £ =1 is absolutely
continuous on / (so f ™ exists almost everywhere on
I),and £ e L?(I). The space W,,(I) is a Hilbert
space with inner product

m—1

(f.8) = Y 000 + [ 1700 " o) dx

k=0 Y

and has the following properties [2,29]: (a) For every
x € I, there is a function p, € W, (I) such that
the linear functional f — f(x) is continuous on
W,,(I) and given by f — (p., f). The function
R : I xI — R, R(x,y) = {px.py) is called
a reproducing kernel of the Hilbert space, and (b)
Wn(I) = Nyu—1 & H,, where N,,_; is the space
of polynomials of degree at most m — 1 and H,, =
{(f e WuI) : fOO)=0fork =0,...,m—1}.
Since the space W, ([) satisfies (a), it is called a
reproducing kernel Hilbert space (RKHS). To control
the smoothness of the Tikhonov estimate, we put a
penalty on the derivative of f;, which is the projection
fi = Puf onto H,. To write the penalized sum
of squares, we use the fact that each functional K; :
W,(I) — R is continuous and thus K; f = («;, f)
for some function k; € W,,,(I). We can then write

| y—KF |2 + 22 / (O () dx
1

=Y il )P+ X Paf P 3

Jj=1

Define ¢y (x) = x*~! fork = 1,...,m and ¢ =
Pykj—pm for k = m + 1,...,m + n. Then f =
> rardr + S, where § belongs to the orthogonal
complement of the span of {¢}. It can be shown that
the minimizer f of (3) is again of the form (2) [29]. To
estimate a we rewrite (3) as a function of @ and use the
following estimate:

a= argmbin |y —Xb|*+ A*b"; Pby,

where X is the matrix of inner products (k;, ¢;), P;j =
(Puki, Pak;)and ayg = (m41,. .., dntn)". O
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These examples describe three different frameworks
where the functional estimation is reduced to a finite-
dimensional penalized least-squares problem. They
serve to motivate the framework we will use in
the statistical analysis. We will focus on frequentist
statistical methods. Bayesian methods for inverse
problems are discussed in [17]; [1,23] provide a tutorial
comparison of frequentist and Bayesian procedures for
inverse problems.

Consider first the simpler case of general linear
regression: the n x 1 data vector is modeled as y =
Ka + e, where K is an n x m matrix, n > m, K'K is
non-singular and & is a random vector with mean zero
and covariance matrix o2I. The least-squares estimate
of a is

a= argmbin ly —Kb||>=(K'K) 'K'y, 4)

and it has the following properties: Its expected value
is E(a) = a regardless of the true value a; that is, a is
an unbiased estimator of a. The covariance matrix of @
is Var(a) = 0*(K'K)™'. An unbiased estimator of o2
is 62 = |y —Ka||*/(n—m). Note that the denominator
is the difference between the number of observations;
it is a kind of “effective number of observations.” It can
be shown that m = tr(H), where H = K(K'K)™'K'
is the hat matrix; it is the matrix defined by Hy =
y = Ka. The degrees of freedom (dof) of y is defined
as the sum of the covariances of (K a); with y; divided
by o [24]. For linear regression we have dof(Ka) =
m = tr(H). Hence we may write 62 as the residual
sum of squares normalized by the effective number of
observations:

o Iy =3Iy -
n—dof(y) tr(I—-H)

(&)

We now return to ill-posed inverse problems and
define a general framework motivated by Examples 1—-
2 that is similar to general linear regression. We assume
that the data vector has a representation of the form
y =K[f]+e = Ka+ § + &, where K is a linear
operator H — R”, K is an n x m matrix, § is a fixed
unknown vector (e.g., discretization error), and & is
a random vector of mean zero and covariance matrix
021. We also assume that there is an n x 1 vector a
and a vector function ¢ such that f(x) = ¢(x)"a for
all x. The vector a is estimated using penalized least
squares:
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a= argmbin||y — Kb|> +A*b'Sh

=(K'K+A*S)"'K'y, (6)
where S is a symmetric non-negative matrix and A > 0
is a fixed regularization parameter. The estimate of f
is defined as f(x) = ¢(x)'a.

Bias, Variance, and MSE

For a fixed regularization parameter A, the estimator
f (x) is linear in y, and therefore its mean, bias,
variance, and mean squared error can be determined
using only knowledge of the first two moments of the
distribution of the noise vector €. Using (6) we find the
mean, bias, and variance of f (x):

E(f(x)) = ¢(x)' G, 'K'K[f],
Bias( £ (x)) = ¢(x)' G, K'K[f] - f(x)
Var( f(x)) = 0*|KG, ¢(x)|>%

where G, = (K'K + A28 )~!. Hence, unlike the
least-squares estimate of a (4), the penalized least-
squares estimate (6) is biased even when § = 0. This
bias introduces a bias in the estimates of f. In terms of
a and §, this bias is

Bias(f(x)) = E( f(x)) — f(x)

=¢(x)Bra+¢(x)G,K'8,  (7)
where B, = —MA?G,S. Prior information about a
should be used to choose the matrix S so that || B a||
is small. Note that similar formulas can be derived
for correlated noise provided the covariance matrix
is known. Also, analogous closed formulas can be
derived for estimates of linear functionals of f.

The mean squared error (MSE) can be used to
include the bias and variance in the uncertainty eval-
uation of f (x); it is defined as the expected value of
(f (x)— f(x))?, which is equivalent to the squared bias
plus the variance:

MSE( f (x)) = Bias( f (x))* + Var( f (x)).

The integrated mean squared error of f is

IMSE(/) = E / | F () = f) P

= Bias(a)' F Bias(a)+t( FG,K'KG ),
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where F = [ ¢(x)p(x)" dx.

The bias component of the MSE is the most difficult
to assess as it depends on the unknown f (or a and §),
but, depending on the available prior information, some
inequalities can be derived [20, 26].

Example 4 1f H is a Hilbert space and the functionals
K; are bounded, then there are function x; € H such
that /C; [ f] = («;, f), and we may write

E[f ()] = () aix)i. f)=(Ac. [).

where the function A, (y) = Y, a; (x)k; () is called
the Backus-Gilbert averaging kernel for f at x [3].
In particular, since we would like to have f(x) =
(Ax, f ), we would like A, to be as concentrated as
possible around x; a plot of the function A, may pro-
vide useful information about the mean of the estimate
f (x). One may also summarize characteristics of |A,|
such as its center and spread about the center (e.g.,
[20]). Heuristically, |A,| should be like a §-function
centered at x. This can be formalized in an RKHS H.
In this case, there is a function p, € H such that
f(x) = {px, f) and the bias of f (x) can be written

A

as Bias( f(x)) = (Ax — px, f ) and therefore

|Bias( f(x)) | < || Ax — pu [ 1 £]I-

We can guarantee a small bias when A, is close to p,
in H. In actual computations, averaging kernels can
be approximated using splines. A discussion of this
topic as well as information about available software
for splines and reproducing kernels can be found in
[14,20]. O

Another bound for the bias follows from (7) via the
Cauchy-Schwarz and triangle inequalities:

| Bias( ./ (x)) | < G160 (A*]|Sal + [K'S]).

Plots of ||G ;¢ (x)| (or | Ax — px ||) as a function of
x may provide geometric information (usually con-
servative) about the bias. Other measures such as the
worst or an average bias can be obtained depending
on the available prior information we have on f or
its parametric representation. For example, if @ and §
are known to lie in convex sets S; and S5, respectivgly,
then we may determine the maximum of | Bias( /) |
subject to @ € S; and § € S,. Or, if the prior
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information leads to the modeling of @ and § as random
variables with means and covariance matrices g, =
Ea, ¥, = Var(a), ps = E§ and X5 = Var(§), then
the average bias is

E[Bias(f(x))] = ¢(x)' Bap, + ¢(x)' G2 K .

Similarly, we can easily derive a bound for the mean
squared bias that can be used to put a bound on the
average MSE.

Since the bias may play a significant factor in the
inference (in some geophysical applications the bias is
the dominant component of the MSE), it is important to
study the residuals of the fit to determine if a significant
bias is present. The mean and covariance matrix of the
residual vectorr = y — Ka are

Er = —KBias(a) + 8§ = —KBja + (I — H,)8 (8)

Var(r) = o?(I — H,)?, 9)
where H; = KG K" is the hat matrix. Equation (8)
shows that if there is a significant bias, then we may
see a trend in the residuals. From (8) we see that
the residuals are correlated and heteroscedastic (i.e.,
Var(r;) depends on i) even if the bias is zero, which
complicates the interpretation of the plots. To stabilize
the variance, it is better to plot residuals that have been
corrected for heteroscedasticity, for example, ri’ =

ri/(1 = (Hp)i).

Confidence Intervals

In addition to the mean and variance of f (x), we
may construct confidence intervals that are expected to
contain [E( f (x)) with some prescribed probability. We
now assume that the noise is Gaussian, & ~ N(0,021I).
We use @ to denote the cumulative distribution func-
tion of the standard Gaussian N (0, 1) and write z, =
o711 —a).

Since f(x) is a biased estimate of f(x), we can
only construct confidence intervals for E f (x). We
should therefore interpret the intervals with caution
as they may be incorrectly centered if the bias is
significant.

Under the Gaussianity assumption, a confidence
interval I, (x, o) for E f (x) of coverage 1 — « is

Iy(x,0) = f(xX) + 202 0| KG 3 ¢(x)].
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That is, for each x the probability that /,(x,0) con-
tains E f () is 1 — «. If we have prior information to
find an upper bound for the bias, |Bias( f (x))| < B(x),
then a confidence interval for f(x) with coverage at
least 1 —ais f(x) £ (zo2 0| K Gy d(x)| + B(x)).

If the goal is to detect structure by studying the
confidence intervals /,(x, o) for a range of values of
X, then it is advisable to correct for the total number of
intervals considered so as to control the rate of incor-
rect detections. One way to do this is by constructing
1 — « confidence intervals of the form [, (x, o) with
simultaneous coverage for all x in some closed set S.
This requires finding a constant 8 > 0 such that

P[Ef (x) € Io(x.0B8).¥x € S]>1—a,

which is equivalent to

]P’|:sup|ZtV(x)| > ﬂi| <a,

X€S

where V(x) = KG¢(x)/|KG¢(x)| and Zi,
..., Z, are independent N (0, 1). We can use results
regarding the tail behavior of maxima of Gaussian
processes to find an appropriate value of 8. For
example, for the case when x € [a, b] [19] (see also
[25]) shows that for 8 large

g [Suplsz(xn > /3} ~ %e_’gz” +2(1-2(8)),
xX€S

where v = fab |V/(x)|| dx. It is not difficult to find
a root of this nonlinear equation; the only potential
problem may be computing v, but even an upper bound
for it leads to intervals with simultaneous coverage at
least 1 — «. Similar results can be derived for the case
when S is a subset of R? or R? [25].

An alternative approach is to use methods based
on controlling the false discovery rate to correct for
the interval coverage after the pointwise confidence
intervals have been selected [4].

Estimating o and A

The formulas for the bias, variance, and confidence
intervals described so far require knowledge of o and
a selection of A that is independent of the data y.
If y is also used to estimate o or choose A, then
f(x) is no longer linear in y and closed formulas
for the moments, bias, or confidence intervals are
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not available. Still, the formulas derived above with
“reasonable” estimates & and A in place of ¢ and A
are approximately valid. This depends of course on the
class of possible functions f, the noise distribution,
the signal-to-noise ratio, and the ill-posedness of the
problem. We recommend conducting realistic simula-
tion studies to understand the actual performance of the
estimates for a particular problem.

Generalized cross-validation (GCV) methods to se-
lect A have proved useful in applications and theoreti-
cal studies. A discussion of these methods can be found
in [13, 14,29, 30]. We now summarize a few methods
for obtaining an estimate of .

The estimate of o2 given by (5) could be readily
used for, once again, dof(Ka) = tr(H ), with the
corresponding hat matrix H, (provided § = 0).
However, because of the bias of K a and the fixed error
8, it is sometimes better to estimate o by considering
the data as noisy observations of g = Ey = K[f]—in
which case we may assume § = 0; thatis, y; = u;+¢;.
This approach is natural as o is the variance of the
errors, &;, in the observations of u;.

To estimate the variance of g;, we need to remove
the trend ;. This trend may be seen as the values of
a function u(x): u; = w(x;). A variety of nonpara-
metric regression methods can be used to estimate the
function p so it can be removed, and an estimate of
the noise variance can be obtained (e.g., [15, 16]). If
the function can be assumed to be reasonably smooth,
then we can use the framework described in 3 with
KCi[] = m(x;) and a penalty in the second derivative
of p. In this case fi(x) = Y a;¢i(x) = a'@d(x) is
called a spline smoothing estimate because it is a finite
linear combination of spline functions ¢; [15,29]. The
estimate of o defined by (5) with the corresponding
hat matrix H j was proposed by [28]. Using (8) and (9)
we find that the expected value of the residual sum of
squares is

Ely —3I> =0’u[(I - H;)*| +a'B,K'KB;a.

(10)
and thus &2 is not an unbiased estimator of o even
if the bias is zero (i.e., Bya = 0, which happens
when p is linear), but it has been shown to have
good asymptotic properties when A is selected using
generalized cross-validation [13,28]. From (10) we see
that a slight modification of 62 leads to an estimate that
is unbiased when B a = 0 [5]
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N ly —y ||2
0p = ———————.
[ (I — H;)?]
Simulation studies seem to indicate that this estimate
has a smaller bias for a wider set of values of A [6]. This
property is desirable as A is usually chosen adaptively.
In some cases the effect of the trend can also be
reduced using first- or second-order finite differences
without having to choose a regularization parameter
A. For example, a first-order finite-difference estimate
proposed by [21] is

1 n—1
2 L 2
Or = 20— 1) ;(%H i)~

The bias of 6% is small if the local changes of u(x)
are small. In particular, the bias is zero for a linear
trend. Other estimators of ¢ as well performance com-
parisons can be found in [5, 6].

Resampling Methods
We have assumed a Gaussian noise distribution for
the construction of confidence intervals. In addition,
we have only considered linear operators and linear
estimators. Nonlinear estimators arise even when the
operator K is linear. For example, if 0 and A are
estimated using the same data or if the penalized least-
squares estimate of @ includes interval constraints (e.g.,
positivity), then the estimate & is no longer linear in
y. In some cases the use of bootstrap (resampling)
methods allows us to assess statistical properties while
relaxing the distributional and linearity assumptions.
The idea is to simulate data y* as follows: the
function estimate f is used as a proxy for the unknown
function f. Noise &* is simulated using a parametric
or nonparametric method. In the parametric bootstrap,
€* is sampled from the assumed distribution whose
parameters are estimated from the data. For example,
if the ¢; are independent N (0, 0?), then e} is sampled
from N(0,62). In the nonparametric bootstrap, €} is
sampled with replacement from the vector of residuals
of the fit. However, as Eqs. (8) and (9) show, even in
the linear case, the residuals have to be corrected to
behave approximately like the true errors. Of course,
due to the bias and correlation of the residuals, these
corrections are often difficult to derive and implement.
Using ¢ and f, one generates simulated data vectors

yi =K 1+ &’ For each such y% one computes
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an estimate f, of f following the same procedure
used to obtain f. The statistics of the sample of f;

are used as estimates of those of f . One problem
with this approach is that the bias of f may lead to a
poor estimate of [ /] and thus to unrealistic simulated
data.

An introduction to bootstrap methods can be found
in [9, 12]. For an example of bootstrap methods to con-
struct confidence intervals for estimates of a function
based on smoothing splines, see [31].
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Introduction

Step size control is used to make a numerical method
that proceeds in a step-by-step fashion adaptive. This
includes time stepping methods for solving initial value
problems, nonlinear optimization methods, and contin-
uation methods for solving nonlinear equations. The
objective is to increase efficiency, but also includes
managing the stability of the computation.

This entry focuses exclusively on time stepping
adaptivity in initial value problems. Special control
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algorithms continually adjust the step size in accor-
dance with the local variation of the solution, at-
tempting to compute a numerical solution to within
a given error tolerance at minimal cost. As a typical
integration may run over thousands of steps, the task
is ideally suited to proven methods from automatic
control.

Assume that the problem to be solved is a dynamical

system,
dy

i SO);

with y(¢t) € R™. Without loss of generality, we may
assume that the problem is solved numerically using
a one-step integration procedure, explicit or implicit,
written formally as

y(0) = yo. ey

Ynt1 = Pu(yn); Yo = y(0), )
where the map ®; advances the solution one step of
size h, from time f, to f,4+1 = ¢, + h. Here the
sequence y, is the numerical approximations to the
exact solution, y(z,). The difference e, = y, — y(t,)
is the global error of the numerical solution. If the
method is of convergence order p, and the vector field
f in (1) is sufficiently differentiable, then |le,| =
O(h?)ash — 0.

The accuracy of the numerical solution can also be
evaluated locally. The local error [, is defined by

y(ln+l) + ln =@, (y(tn)) . (3)

Thus, if the method would take a step of size £, starting
on the exact solution y(#,), it will deviate from the
exact solution at f,4+; by a small amount, /,. If the
method is of order p, the local error will satisfy

]l = guh?t + 0?2 h—0. (@)

Here the principal error function ¢, varies along the
solution, and depends on the problem (in terms of
derivatives of f) as well as on the method.

Using differential inequalities, it can be shown that
the global and local errors are related by the a priori
error bound

ILnll MUl —1q
h M{f]

)
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where M [ f] is the logarithmic Lipschitz constant of
f. Thus, the global error is bounded in terms of the
local error per unit step, [,/ h. For this reason, one can
manage the global error by choosing the step size /& so
as to keep ||/,||/ h = TOL during the integration, where
TOL is a user-prescribed local error tolerance. The
global error is then proportional to TOL, by a factor
that reflects the intrinsic growth or decay of solutions to
(1). Good initial value problem solvers usually produce
numerical results that reflect this folerance proportion-
ality. By reducing TOL, one reduces the local error
as well as the global error, while computational cost
increases, as h ~ TOLY/?,

Although it is possible to compute a posteriori
global error estimates, such estimates are often costly.
All widely used solvers therefore control the local
error, relying on the relation (5), and the possibility of
comparing several different numerical solutions com-
puted for different values of TOL. There is no claim
that the step size sequences are “optimal,” but in all
problems where the principal error function varies by
several orders of magnitude, as is the case in stiff dif-
ferential equations, local error control is an inexpensive
tool that offers vastly increased performance. It is a
necessity for efficient computations.

A time stepping method is made adaptive by provid-
ing a separate procedure for updating the step size as a
function of the numerical solution. Thus, an adaptive
method can be written formally as the interactive
recursion

(6)
@)

Ynt1 = @p, (yn)
hn+1 = q"y,,_H(hn),

where the first equation represents the numerical
method and the second the step size control. If ¥, = [
(the identity map), the scheme reduces to a constant
step size method. Otherwise, the interaction between
the two dynamical systems implies that step size
control interferes with the stability of the numerical
method. For this reason, it is important that step size
control algorithms are designed to increase efficiency
without compromising stability.

Basic Multiplicative Control

Modern time stepping methods provide a local error
estimate. By using two methods of different orders,
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computing two results, y,+1 and y,4+; from y,, the
solver estimates the local error by r,, = || yu41—Vn+1]l-
To control the error, the relation between step size and
error is modeled by

rn = Guhl. )

Here k is the order of the local error estimator. Depend-
ing on the estimator’s construction, X may or may not
equal p + 1, where p is the order of the method used to
advance the solution. For control purposes, however,
it is sufficient that k£ is known, and that the method
operates in the asymptotic regime, meaning that (8) is
an accurate model of the error for the step sizes in use.

The common approach to varying the step size is
multiplicative control

hn+l = 9}1 . hn’ (9)

where the factor 0, needs to be determined so that the
error estimate r, is kept near the target value TOL for
all n.

A simple control heuristic is derived by requiring
that the next step size /1, solves the equation TOL =
(Z)nhﬁ 41> this assumes that ¢, varies slowly. Thus,
dividing this equation by (8), one obtains

1/k
TOL
hn+1 = ( ) hn-

I'n

(10)

This multiplicative control is found in many solvers.
It is usually complemented by a range of safety mea-
sures, such as limiting the maximum step size increase,
preventing “too small” step size changes, and special
schemes for recomputing a step, should the estimated
error be much larger than TOL.

Although it often works well, the control law (10)
and its safety measures have several disadvantages that
call for more advanced feedback control schemes. Con-
trol theory and digital signal processing, both based
on linear difference equations, offer a wide range of
proven tools that are suitable for controlling the step
size. Taking logarithms, (10) can be written as the
linear difference equation

1
loghy+1 = logh, — Elogfn, (11)
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where 7, = r,/TOL. This recursion continually
changes the step size, unless log#, is zero (i.e.,
r, = TOL). If 7, > 1 the step size decreases, and
if 7, < 1 it increases. Thus, the error r, is kept near
the set point TOL. As (11) is a summation process, the
controller is referred to as an integrating controller, or
I control. This integral action is necessary in order to
eliminate a persistent error, and to find the step size
that makes r, = TOL.

The difference equation (11) may be viewed as
using the explicit Euler method for integrating a dif-
ferential equation that represents a continuous control.
Just as there are many different methods for solving
differential equations, however, there are many dif-
ferent discrete-time controllers that can potentially be
optimized for different numerical methods or problem
types, and offering different stability properties.

General Multiplicative Control

In place of (11), a general controller takes the error
sequence log 7 = {log 7, } as input, and produces a step
size sequence logh = {logh,} via a linear difference
equation,
(E—-1)Q(E)logh =—P(E)logr. 12)

Here E is the forward shift operator, and P and Q are
two polynomials of equal degree, making the recursion
explicit. The special case (11) has Q(E) = 1 and
P(E) = 1/k, and is a one-step controller, while (12)
in general is a multistep controller. Finally, the factor
E — 11in (12) is akin to the consistency condition in
linear multistep methods. Thus, if log 7 = 0, a solution
to (12) is log h = const.

If, for example, P(z) = Bi1z+ Poand Q(z) = z +
o, then the recursion (12) is equivalent to the two-step
multiplicative control,

Bi o —ap
hns1 = (E) (TOL)ﬂ ( i ) hy. (13)
I'n n—1 Iyt
By taking logarithms, it is easily seen to correspond
to (12). One could include more factors following
the same pattern, but in general, it rarely pays off
to use a longer step size — error history than two

to three steps. Because of the simple structure of
(13), it is relatively straightforward to include more
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advanced controllers in existing codes, keeping in mind
that a multistep controller is started either by using
(10), or by merely putting all factors representing
nonexistent starting data equal to one. Examples of
how to choose the parameters in (13) are found in
Table 1.

A causal digital filter is a linear difference equation
of the form (12), converting the input signal log?
to an output logh. This implies that digital control
and filtering are intimately related. There are several
important filter structures that fit the purpose of step
size control, all covered by the general controller (13).
Among them are finite impulse response (FIR) filters;
proportional-integral (PI) controllers; autoregressive
(AR) filters; and moving average (MA) filters. These
filter classes are not mutually exclusive but can be
combined.

The elementary controller (10) is a FIR filter, also
known as a deadbeat controller. Such controllers have
the quickest dynamic response to variations in log ¢,
but also tend to produce nonsmooth step size se-
quences, and sometimes display ringing or stability
problems. These problems can be eliminated by using
PI controllers and MA filters that improve stability
and suppress step size oscillations. Filter design is
a matter of determining the filter coefficients with
respect to order conditions and stability criteria, and
is reminiscent of the construction of linear multistep
methods [11].

Stability and Frequency Response

Controllers are analyzed and designed by investigating
the closed loop transfer function. In terms of the z
transform of (12), the control action is

logh = —C(z)logr? (14)
where the control transfer function is given by
P(z)
Clx) = ———F—. (15)
(z=10()
Similarly, the error model (8) can be written
log7 =k -logh + logp — log TOL. (16)
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Step Size Control, Fig. 1 Time step adaptivity viewed as a feed-
back control system. The computational process takes a stepsize
log i as input and produces an error estimate logr = k logh +
log ¢. Representing the ODE, the principal error function log ¢

These relations and their interaction are usually illus-
trated in a block diagram, see Fig. 1.

Overall stability depends on the interaction between
the controller C(z) and the computational process.
Inserting (16) into (14) and solving for log & yields

—C(2) lowd C(2)

loch = ———~ [ A—
2" =T %cr 2 T Txrcw

log TOL.
a7

Here the closed loop transfer function H(z) : log$ +—
log & is defined by

—C@) —P(2) a8)

T1+kC2)  (-1)0@ +kPQ)’

H(z)

It determines the performance of the combined system
of step size controller and computational process, and,
in particular, how successful the controller will be in
adjusting log /1 to log ¢ so that log r ~ log TOL.

For a controller or a filter to be useful, the closed
loop must be stable. This is determined by the poles of
H (z), which are the roots of the characteristic equation
(z—1)Q(z) + kP(z) = 0. These must be located well
inside the unit circle, and preferably have positive real
parts, so that homogeneous solutions decay quickly
without oscillations.

To asses frequency response, one takes log ¢
{el“"} with w € [0, 7] to investigate the output log h =
H(e'“){e'“"}. The amplitude |H(e!”)| measures the
attenuation of the frequency w. By choosing P such
that P(e') = 0 for some w*, it follows that H (e!*”) =
0. Thus, zeros of P(z) block signal transmission. The
natural choice is w* = m so that P(—1) = 0, as
this will annihilate (—1)" oscillations, and produce a
smooth step size sequence. This is achieved by the
two H211 controllers in Table 1. A smooth step size

enters as an additive disturbance, to be compensated by the
controller. The error estimate logr is fed back and compared
to log TOL. The controller constructs the next stepsize through
logh = C(z) - (log TOL — log r) (From [11])

Step Size Control, Table 1 Some recommended two-step con-
trollers. The H211 controllers produce smooth step size se-
quences, using a moving average low-pass filter. In H211b, the
filter can be adjusted. Starting at » = 2 it is a deadbeat (FIR)
filter; as the parameter b increases, dynamic response slows and
high frequency suppression (smoothing) increases. Note that the
B; coefficients are given in terms of the product kB; for use
with error estimators of different orders k. The « coefficient is
however independent of k (From [11])

kB1  kBo Qg Type Name Usage
3/5 —-1/5 - Pl PL4.2 Nonstiff solvers
/b 1/b  1/b MA H211b Stiff solvers;
b €[2,6]
1/6 1/6 -  MA+PI H211PI Stiff problems,

smooth solutions

sequence is of importance, for example, to avoid higher
order BDF methods to suffer stability problems.

Implementation and Modes of Operation

Carefully implemented adaptivity algorithms are cen-
tral for the code to operate efficiently and reliably for
broad classes of problems. Apart from the accuracy
requirements, which may be formulated in many differ-
ent ways, there are several other factors of importance
in connection with step size control.

EPS Versus EPUS

For a code that emphasizes asymptotically correct
error estimates, controlling the local error per unit
step ||ly]|/ hn is necessary in order to accumulate a
targeted global error, over a fixed integration range,
regardless of the number of steps needed to complete
the integration. Abbreviated EPUS, this approach is
viable for nonstiff problems, but tends to be costly for



Step Size Control

stiff problems, where strong dissipation usually means
that the global error is dominated by the most recent
local errors. There, controlling the local error per step
I, 1], referred to as EPS, is often a far more efficient
option, if less well aligned with theory. In modern
codes, the trend is generally to put less emphasis
on asymptotically correct estimates, and control ||/, ||
directly. This has few practical drawbacks, but it makes
it less straightforward to compare the performance of
two different codes.

Computational Stability
Just as a well-conditioned problem depends continu-
ously on the data, the computational procedure should
depend continuously on the various parameters that
control the computation. In particular, for tolerance
proportionality, there should be constants ¢ and C such
that the global error e can be bounded above and below,
c-ToLY < |le|| < C -TOL?, (19)
where the method is tolerance proportional if y = 1.
The smaller the ratio C/c, the better is the compu-
tational stability, but C/c can only be made small
with carefully implemented tools for adaptivity. Thus,
with the elementary controller (10), prevented from
making small step size changes, C/c is typically large,
whereas if the controller is based on a digital filter (here
H?211b with b = 4, cf. Table 1) allowing a continual
change of the step size, the global error becomes a
smooth function of TOL, see Fig. 2. This also shows
that the behavior of an implementation is significantly
affected by the control algorithms, and how they are
implemented.

Absolute and Relative Errors
All modern codes provide options for controlling both
absolute and relative errors. If at any given time, the
estimated erroris / and the computed solution is y, then
a weighted error vector d with components

J

e — (20)
ni + 1yil

i

is constructed, where 7; is a scaling factor, determining
a gradual switchover from relative to absolute error as
yi — 0. The error (and the step) is accepted if ||d| <
TOL, and the expression TOL/||d|| corresponds to the
factors TOL/r in (10) and (13). By (20),

1375

~

d,‘ li

TOL  TOL-7; 4+ TOL - |y;|’

21

Most codes employ two different tolerance parameters,
ATOL and RTOL, defined by ATOL; = TOL - 1; and
RTOL = TOL, respectively, replacing the denominator
in (21) by ATOL; 4 RTOL - | y;|. Thus, the user controls
the accuracy by the vector ATOL and the scalar RTOL.
For scaling purposes, it is also important to note that
TOL and RTOL are dimensionless, whereas ATOL is
not. The actual computational setup will make the step
size control operate differently as the user-selected
tolerance parameters affect both the set point and the
control objective.

Interfering with the Controller

In most codes, a step is rejected if it exceeds TOL
by a small amount, say 20 %, calling for the step to
be recomputed. As a correctly implemented controller
is expectation-value correct, a too large error is al-
most invariably compensated by other errors being too
small. It is, therefore, in general harmless to accept
steps that exceed TOL by as much as a factor of 2, and
indeed often preferable to minimize interference with
the controller’s dynamics.

Other types of interference may come from con-
ditions that prevent “small” step size changes, as this
might call for a refactorization of the Jacobian. How-
ever, such concerns are not warranted with smooth
controllers, which usually make small enough changes
not to disturb the Newton process beyond what can be
managed. On the contrary, a smoothly changing step
size is beneficial for avoiding instability in multistep
methods such as the BDF methods.

It is however necessary to interfere with the con-
troller’s action when there is a change of method order,
or when a too large step size change is suggested. This
is equivalent to encountering an error that is much
larger or smaller than TOL. In the first case, the step
needs to be rejected, and in the second, the step size
increase must be held back by a limiter.

Special Problems

Conventional multiplicative control is not useful in
connection with geometric integration, where it fails
to preserve structure. The interaction (6, 7) shows that
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Step Size Control, Fig. 2 Global error vs. TOL for a linear
multistep code applied to a stiff nonlinear test problem. Left
panel shows results when the controller is based on (10). In the
right panel, it has been replaced by the digital filter H211b.

adaptive step size selection adds dynamics, interfering
with structure preserving integrators.

A one-step method &, Yn B> Ynt1 is called
symmetric if CI>;1 = &®_,,. This is a minimal require-
ment for the numerical integration of, for example,
reversible Hamiltonian systems, in order to nearly pre-
serve action variables in integrable problems. To make
such a method adaptive, symmetric step size control is
also needed. An invertible step size map ¥, : R — R
is called symmetric if —W, is an involution, see Fig. 3.
A symmetric W, then maps h,—; to h, and —h, to
—h,—1, and only depends on y,; with these conditions
satisfied, the adaptive integration can be run in reverse
time and retrace the numerical trajectory that was
generated in forward time, [8]. However, this cannot
be achieved by multiplicative controllers (9), and a
special, nonlinear controller is therefore necessary.

An explicit control recursion satisfying the
requirements is either additive or inverse-additive, with
the latter being preferable. Thus, a controller of the

form
1 1

hn hn—l

= G(yn) (22)

Step Size Control
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Although computational effort remains unchanged, stability is
much enhanced. The graphs also reveal that the code is not
tolerance proportional

Pp_1 7 o h,
3 1
Yn—1 On Un On Yni1
d_yp l d_y
—h, I Ty I —h,

Step Size Control, Fig. 3 Symmetric adaptive integration in
forward time (upper part), and reverse time (lower part) illus-
trate the interaction (6, 7). The symmetric step size map W,
governs both i and —h (From [8])

can be used, where the function G needs to be chosen
with respect to the symmetry and geometric prop-
erties of the differential equation to be solved. This
approach corresponds to constructing a Hamiltonian
continuous control system, which is converted to the
discrete controller (22) by geometric integration of the
control system. This leaves the long-term behavior of
the geometric integrator intact, even in the presence
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of step size variation. It is also worth noting that (22)
generates a smooth step size sequence, as h, — h,—; =
O(hn hn—l)'

This type of control does not work with an error
estimate, but rather tracks a prescribed target function;
it corresponds to keeping 2#Q(y) = const., where Q is
a given functional reflecting the geometric structure of
(1). One can then take G(y) = grad Q(y)-f(y)/ Q(»).
For example, in celestial mechanics, Q(y) could be
selected as total centripetal acceleration; then the step
size is small when centripetal acceleration is large
and vice versa, concentrating the computational effort
to those intervals where the solution of the problem
changes rapidly and is more sensitive to perturbations.

Literature

Step size control has a long history, starting with
the first initial value problem solvers around 1960,
often using a simple step doubling/halving strategy.
The controller (10) was soon introduced, and further
developments quickly followed. Although the schemes
were largely heuristic, performance tests and practical
experience developed working standards. Monographs
such as [1,2,6,7,10] all offer detailed descriptions.

The first full control theoretic analysis is found
in [3, 4], explaining and overcoming some previously
noted difficulties, developing proportional-integral (PI)
and autoregressive (AR) controllers. Synchronization
with Newton iteration is discussed in [5]. A complete
framework for using digital filters and signal process-
ing is developed in [11], focusing on moving average
(MA) controllers. Further developments on how to
obtain improved computational stability are discussed
in [12].

The special needs of geometric integration are dis-
cussed in [8], although the symmetric controllers are
not based on error control. Error control in implicit,
symmetric methods is analyzed in [13].
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Introduction

The behavior of the atmosphere, oceans, and climate
is intrinsically uncertain. The basic physical principles
that govern atmospheric and oceanic flows are well
known, for example, the Navier-Stokes equations for
fluid flow, thermodynamic properties of moist air, and
the effects of density stratification and Coriolis force.
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Notwithstanding, there are major sources of random-
ness and uncertainty that prevent perfect prediction and
complete understanding of these flows.

The climate system involves a wide spectrum of
space and time scales due to processes occurring on
the order of microns and milliseconds such as the
formation of cloud and rain droplets to global phenom-
ena involving annual and decadal oscillations such as
the EL Nio-Southern Oscillation (ENSO) and the Pa-
cific Decadal Oscillation (PDO) [5]. Moreover, climate
records display a spectral variability ranging from 1
cycle per month to 1 cycle per 100,000 years [23]. The
complexity of the climate system stems in large part
from the inherent nonlinearities of fluid mechanics and
the phase changes of water substances. The atmosphere
and oceans are turbulent, nonlinear systems that dis-
play chaotic behavior (e.g., [39]). The time evolutions
of the same chaotic system starting from two slightly
different initial states diverge exponentially fast, so that
chaotic systems are marked by limited predictability.
Beyond the so-called predictability horizon (on the
order of 10 days for the atmosphere), initial state
uncertainties (e.g., due to imperfect observations) have
grown to the point that straightforward forecasts are no
longer useful.

Another major source of uncertainty stems from
the fact that numerical models for atmospheric and
oceanic flows cannot describe all relevant physical
processes at once. These models are in essence
discretized partial differential equations (PDEs), and
the derivation of suitable PDEs (e.g., the so-called
primitive equations) from more general ones that
are less convenient for computation (e.g., the full
Navier-Stokes equations) involves approximations and
simplifications that introduce errors in the equations.
Furthermore, as a result of spatial discretization of
the PDEs, numerical models have finite resolution
so that small-scale processes with length scales
below the model grid scale are not resolved. These
limitations are unavoidable, leading to model error and
uncertainty.

The uncertainties due to chaotic behavior and
unresolved processes motivate the use of stochastic and
statistical methods for modeling and understanding
climate, atmosphere, and oceans. Models can be
augmented with random elements in order to represent
time-evolving uncertainties, leading to stochastic
models. Weather forecasts and climate predictions
are increasingly expressed in probabilistic terms,
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making explicit the margins of uncertainty inherent
to any prediction.

Statistical Methods

For assessment and validation of models, a compar-
ison of individual model trajectories is typically not
suitable, because of the uncertainties described earlier.
Rather, the statistical properties of models are used
to summarize model behavior and to compare against
other models and against observations. Examples are
the mean and variance of spatial patterns of rainfall or
sea surface temperature, the time evolution of global
mean temperature, and the statistics of extreme events
(e.g., hurricanes or heat waves). Part of the statistical
methods used in this context is fairly general, not
specifically tied to climate-atmosphere-ocean science
(CAQOS). However, other methods are rather specific
for CAOS applications, and we will highlight some of
these here. General references on statistical methods in
CAOS are [61,62].

EOFs

A technique that is used widely in CAOS is Principal
Component Analysis (PCA), also known as Empirical
Orthogonal Function (EOF) analysis in CAOS. Con-
sider a multivariate dataset ® € RM*N In CAOS this
will typically be a time series ¢ (1), p(f2), ..., P(tn)
where each ¢(t,) € RM is a spatial field (of, e.g., tem-
perature or pressure). For simplicity we assume that
the time mean has been subtracted from the dataset, so
SN ®pn =0 Vm. Let C be the M x M (sample)
covariance matrix for this dataset:

1
C=——0".
N -1
We denote by (A,,,v"), m =
eigenpairs of C:

1,..., M the ordered

Cv" =L1,V", Ap=>Auy Vm.

The ordering of the (positive) eigenvalues implies that
the projection of the dataset onto the leading eigen-
vector v!' gives the maximum variance among all
projections. The next eigenvector v> gives the max-
imum variance among all projections orthogonal to

v!, v* gives maximum variance among all projections
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orthogonal to v! and v?, etc. The fraction A,/ Y ; A
equals the fraction of the total variance of the data
captured by projection onto the m-th eigenvector v™.

The eigenvectors v are called the Empirical Or-
thogonal Functions (EOFs) or Principal Components
(PCs). Projecting the original dataset ® onto the lead-
ing EOFs, i.e., the projection/reduction

M/
¢r(ln) = Z am([n)vm s M « M,

m=1

can result in a substantial data reduction while retain-
ing most of the variance of the original data.

PCA is discussed in great detail in [27] and [59].
Over the years, various generalizations and alternatives
for PCA have been formulated, for example, Principal
Interaction and Oscillation Patterns [24], Nonlinear
Principal Component Analysis (NLPCA) [49], and
Nonlinear Laplacian Spectral Analysis (NLSA) [22].
These more advanced methods are designed to over-
come limitations of PCA relating to the nonlinear or
dynamical structure of datasets.

In CAOS, the EOFs v™ often correspond to spatial
patterns. The shape of the patterns of leading EOFs
can give insight in the physical-dynamical processes
underlying the dataset ®. However, this must be done
with caution, as the EOFs are statistical constructions
and cannot always be interpreted as having physical
or dynamical meaning in themselves (see [50] for a
discussion).

The temporal properties of the (time-dependent)
coefficients o, (¢) can be analyzed by calculating,
e.g., autocorrelation functions. Also, models for these
coefficients can be formulated (in terms of ordinary
differential equations (ODEs), stochastic differential
equations (SDEs), etc.) that aim to capture the main
dynamical properties of the original dataset or model
variables ¢ (¢). For such reduced models, the emphasis
is usually on the dynamics on large spatial scales and
long time scales. These are embodied by the leading
EOFs v, m = 1,...,M’, and their corresponding
coefficients a,, (¢), so that a reduced model (M’ < M)
can be well capable of capturing the main large-scale
dynamical properties of the original dataset.

Inverse Modeling

One way of arriving at reduced models is inverse mod-
eling, i.e., the dynamical model is obtained through
statistical inference from time series data. The data can
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be the result of, e.g., projecting the dataset ® onto the
EOFs (in which case the data are time series of «(?)).
These models are often cast as SDEs whose parameters
must be estimated from the available time series. If the
SDEs are restricted to have linear drift and additive
noise (i.e., restricted to be those of a multivariate
Ornstein-Uhlenbeck (OU) process), the estimation can
be carried out for high-dimensional SDEs rather easily.
That is, assume the SDEs have the form

da(t) = Ba(t)dt+odW(t), (1)
in which B and o are both a constant real M’ x
M’ matrix and W(¢) is an M’-dimensional vector
of independent Wiener processes (for simplicity we
assume that @ has zero mean). The parameters of this
model are the matrix elements of B an o. They can be
estimated from two (lagged) covariance matrices of the
time series. If we define

R?j = Eo; (1) (1), R =Ea;(t)a; (t +7),
with E denoting expectation, then for the OU process
(1), we have the relations

R® =exp(B 1) R°

and
BR" + R°BT + 60T =0

The latter of these is the fluctuation-dissipation relation
for the OU process. By estimating R® and R” (with
some T > () from time series of o, estimates for
B and A := oo! can be easily computed using
these relations. This procedure is sometimes referred
to as linear inverse modeling (LIM) in CAOS [55].
The matrix o cannot be uniquely determined from A;
however, any o for which A = ool (e.g., obtained
by Cholesky decomposition of A) will result in an OU
process with the desired covariances R° and R*.

As mentioned, LIM can be carried out rather easily
for multivariate processes. This is a major advantage
of LIM. A drawback is that the OU process (1) cannot
capture non-Gaussian properties, so that LIM can only
be used for data with Gaussian distributions. Also, the
estimated B and A are sensitive to the choice of 7,
unless the available time series is a an exact sampling
of (1).
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Estimating diffusion processes with non-Gaussian
properties is much more complicated. There are var-
ious estimation procedures available for SDEs with
nonlinear drift and/or multiplicative noise; see, e.g.,
[30, 58] for an overview. However, the practical use
of these procedures is often limited to SDEs with
very low dimensions, due to curse of dimension or to
computational feasibility. For an example application
in CAOS, see, e.g., [4].

The dynamics of given time series can also be
captured by reduced models that have discrete state
spaces, rather than continuous ones as in the case of
SDEs. There are a number of studies in CAOS that
employ finite-state Markov chains for this purpose
(e.g., [8,48,53]). It usually requires discretization of the
state space; this can be achieved with, e.g., clustering
methods. A more advanced methodology, building on
the concept of Markov chains yet resulting in contin-
uous state spaces, is that of hidden Markov models.
These have been used, e.g., to model rainfall data (e.g.,
[3, 63]) and to study regime behavior in large-scale
atmospheric dynamics [41]. Yet a more sophisticated
methodology that combines the clustering and Markov
chain concepts, specifically designed for nonstationary
processes, can be found in [25].

Extreme Events
The occurrence of extreme meteorological events, such
as hurricanes, extreme rainfall, and heat waves, is
of great importance because of their societal impact.
Statistical methods to study extreme events are there-
fore used extensively in CAOS. The key question for
studying extremes with statistical methods is to be able
to assess the probability of certain events, having only a
dataset available that is too short to contain more than
a few of these events (and occasionally, too short to
contain even a single event of interest). For example,
how can one assess the probability of sea water level
at some coastal location being more than 5m above
average if only 100 years of observational data for that
location is available, with a maximum of 4 m above
average? Such questions can be made accessible using
extreme value theory. General introductions to extreme
value theory are, e.g., [7] and [11]. For recent research
on extremes in the context of climate science, see, e.g.,
[29] and the collection [1].

The classical theory deals with sequences or obser-
vations of N independent and identically distributed

(iid) random variables, denoted here by ry,...,ry.
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Let My be the maximum of this sequence, My =
max{ry, ..., ry}. If the probability distribution for My
can be rescaled so that it converges in the limit of in-
creasingly long sequences (i.e., N — 00), it converges
to a generalized extreme value (GEV) distribution.
More precisely, if there are sequences ay (> 0) and
by such that Prob((My — by)/an < z) — G(z) as
N — oo, then

G(2) = exp (— [1 te (Z;“)_I/ED .

G(z) is a GEV distribution, with parameters u (lo-
cation), 0 > 0 (scale), and & (shape). It combines
the Fréchet (¢ > 0), Weibull (¢ < 0), and Gumbel
(¢ — 0) families of extreme value distributions. Note
that this result is independent of the precise distribution
of the random variables r,,. The parameters u, o, £ can
be inferred by dividing the observations ry,7,,... in
blocks of equal length and considering the maxima on
these blocks (the so-called block maxima approach).

An alternative method for characterizing extremes,
making more efficient use of available data than the
block maxima approach, is known as the peaks-over-
threshold (POT) approach. The idea is to set a thresh-
old, say r*, and study the distribution of all observa-
tions r, that exceed this threshold. Thus, the object
of interest is the conditional probability distribution
Prob(r, — r* > z|r, > r*), with z > 0. Under
fairly general conditions, this distribution converges to
1 — H(z) for high thresholds r*, where H(z) is the
generalized Pareto distribution (GPD):

—1/¢
H(z)=1—(1+%) .

The parameters of the GPD family of distributions are
directly related to those of the GEV distribution: the
shape parameter £ is the same in both, whereas the
threshold-dependent scale parameteris 6 = o +&(r*—
) with o and o as in the GEV distribution.

By inferring the parameters of the GPD or GEV
distributions from a given dataset, one can calculate
probabilities of extremes that are not present them-
selves in that dataset (but have the same underlying
distribution as the available data). In principle, this
makes it possible to assess risks of events that have not
been observed, provided the conditions on convergence
to GPD or GEV distributions are met.
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As mentioned, classical results on extreme value
theory apply to iid random variables. These results
have been generalized to time-correlated random vari-
ables, both stationary and nonstationary [7]. This is
important for weather and climate applications, where
datasets considered in the context of extremes are often
time series. Another relevant topic is the development
of multivariate extreme value theory [11].

Stochastic Methods

Given the sheer complexity of climate-atmosphere-
ocean (CAO) dynamics, when studying the global cli-
mate system or some parts of global oscillation patterns
such ENSO or PDO, it is natural to try to separate
the global dynamics occurring on longer time scales
from local processes which occur on much shorter
scales. Moreover, as mentioned before, climate and
weather prediction models are based on a numerical
discretization of the equations of motion, and due to
limitations in computing resources, it is simply impos-
sible to represent the wide range of space and time
scales involved in CAO. Instead, general circulation
models (GCMs) rely on parameterization schemes to
represent the effect of the small/unresolved scales on
the large/resolved scales. Below, we briefly illustrate
how stochastic models are used in CAO both to build
theoretical models that separate small-scale (noise) and
large-scale dynamics and to “parameterize” the effect
of small scales on large scales. A good snapshot on the
state of the art, during the last two decades or so, in
stochastic climate modeling research can be found in
[26,52].

Model Reduction for Noise-Driven Large-Scale
Dynamics

In an attempt to explain the observed low-frequency
variability of CAO, Hasselmann [23] splits the system
into slow climate components (e.g., oceans, biosphere,
cryosphere), denoted by the vector x, and fast com-
ponents representing the weather, i.e., atmospheric
variability, denoted by a vector y. The full climate
system takes the form

S = u(x.y) @)

dr
dy
i v(x, ),
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where ¢ is time and u(x,v) and v(x, y) contain the
external forcing and internal dynamics that couple the
slow and fast variables.

Hasselmann assumes a large scale-separation
between the slow and fast time scales: 7, =

—1 —1

(0] (yj (ddit]) ) L 1, = 0 (xi (%) ), for
all components i and j. The time scale separation
was used earlier to justify statistical dynamical models
(SDM) used then to track the dynamics of the climate
system alone under the influence of external forcing.
Without the variability due to the internal interactions
of CAO, the SDMs failed badly to explain the observed
“red” spectrum which characterizes low-frequency
variability of CAO.

Hasselmann made the analogy with the Brownian
motion (BM), modeling the erratic movements of a few
large particles immersed in a fluid that are subject to
bombardments by the rapidly moving fluid molecules
as a “natural” extension of the SDM models. Moreover,
Hasselmann [23] assumes that the variability of x can
be divided into a mean tendency (dx/df) = (u(x, y))
(Here (.) denotes average with respect to the joint
distribution of the fast variables.) and a fluctuation
tendency dx'/dt = u(x,y) — (u(x,y)) = u'(x,y)
which, according to the Brownian motion problem, is
assumed to be a pure diffusion process or white noise.
However, unlike BM, Hasselmann argued that for the
weather and climate system, the statistics of y are
not in equilibrium but depend on the slowly evolving
large-scale dynamics and thus can only be obtained
empirically. To avoid linear growth of the covariance
matrix (x" ® x’), Hasselmann assumes a damping
term proportional to the divergence of the background
frequency F(0) of (x’ ® x"), where §(w — ') Fjj(w) =

(Vi(@)Vj(@") with V(o) = 5= [% /' (t)e™'"dt.
This leads to the Fokker-Plank equation: [23]

op(x,t R

LD 9 i) (e,) = V(DY p(x,0)) G

for the distribution p(x,t) of x(¢) as a stochastic
process given that x(0) = xo, where D is the nor-
malized covariance matrix D = (x’ ® x’)/2t and
it = {u)—mV,-F(0). Given the knowledge of the mean
statistical forcing (u), the evolution equation for p can
be determined from the time series of x obtained either
from a climate model simulation of from observations.
Notice also that for a large number of slow variables x;,
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the PDE in (3) is impractical; instead, one can always
resort to Monte Carlo simulations using the associated
Langevin equation:

dx = u(x)dt + Z(x)dW, “4)

where Z(x)Z(x)T = D(x). However, the functional
dependence of # and D remains ambiguous, and rely-
ing on rather empirical methods to define such terms
is unsatisfactory. Nonetheless, Hasselmann introduced
a “linear feedback” version of his model where the
drift or propagation term is a negative definite linear
operator: it(x) = Ux and D is constant, independent
of x as an approximation for short time excursions of
the climate variables. In this case, p(x,t) is simply a
Gaussian distribution whose time-dependent mean and
variance are determined by the matrices D and U as
noted in the inverse modeling section above.

Due to its simplicity, the linear feedback model is
widely used to study the low-frequency variability of
various climate processes. It is, for instance, used in
[17] to reproduce the observed red spectrum of the
sea surface temperature in midlatitudes using simula-
tion data from a simplified coupled ocean-atmosphere
model. However, this linear model has severe limi-
tations of, for example, not being able to represent
deviations from Gaussian distribution of some climate
phenomena [13, 14, 17, 36, 51, 54]. It is thus natural
to try to reincorporate a nonlinearity of some kind
into the model. The most popular idea consisted in
making the matrix D or equivalently ¥ dependent on
x (quadratically for D or linearly for ¥ as a next
order Taylor correction) to which is tied the notion
of multiplicative versus additive (when D is constant)
noise [37, 60]. Beside the crude approximation, the
apparent advantage of this approach is the maintaining
of the stabilizing linear operator U in place although it
is not universally justified.

A mathematical justification for Hasselmann’s
framework is provided by Arnold and his collaborators
(see [2] and references therein). It is based on the
well-known technique of averaging (the law of large
numbers) and the central limit theorem. However, as in
Hasselmann’s original work, it assumes the existence
and knowledge of the invariant measure of the
fast variables. Nonetheless, a rigorous mathematical
derivation of such Langevin-type models for the slow
climate dynamics, using the equations of motion in
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discrete form, is possible as illustrated by the MTV
theory presented next.

The Systematic Mode Reduction MTV Methodology
A systematic mathematical methodology to derive
Langevin-type equations (4) a la Hasselmann, for the
slow climate dynamics from the coupled atmosphere-
ocean-land equations of motion, which yields the
propagation (or drift) and diffusion terms #(x) and
D(x) in closed form, is presented in [44,45] by Majda,
Timofeyev, and Vanden-Eijnden (MTV).

Starting from the generalized form of the discretized
equations of motion

%:Lz—l—B(Z,Z)-i‘f(t)

where L and B are a linear and a bilinear operators
while f(z) represent external forcing, MTV operate
the same dichotomy as Hasselmann did of splitting
the vector z into slow and fast variables x and y, re-
spectively. However, they introduced a nondimensional
parameter € = t,/7, which measures the degree of
time scale separation between the two sets of variables.
This leads to the slow-fast coupled system

dx =e ' (Ljjx 4+ Lipy)dt + Bll1 (x, x)dt

+e (Bh(x.y) + B(y.y)) dt

+ Dxdt + Fi(t)dt + €' fi(e™ 1) (5)

dy =€ " (Laix + Loy + Bh(x.y) + B3,(y. y)) dt
— e Tydt + e 'odW, + € fo(e7 1)

under a few key assumptions, including (1) the non-
linear self interaction term of the fast variables is
“parameterized” by an Ornstein-Uhlenbeck process:
B2, (y, y)dt := — 'Tydt+ /¢ 'dW, and (2) a small
dissipation term eDxdt is added to the slow dynamics
while (3) the slow variable forcing term assumes slow
and fast contributions f1(¢t) = €Fy(et) + fi(t). More-
over, the system in (5) is written in terms of the slow
time 1 — €t.

MTYV used the theory of asymptotic expansion ap-
plied to the backward Fokker-Plank equation associ-
ated with the stochastic differential system in (5) to
obtain an effective reduced Langevin equation (4) for
the slow variables x in the limit of large separation
of time scales ¢ —> 0 [44,45]. The main advantage
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of the MTV theory is that unlike Hasselmann’s ad
hoc formulation, the functional form of the drift and
diffusion coefficients, in terms of the slow variables,
are obtained and new physical phenomena can emerge
from the large-scale feedback besides the assumed
stabilization effect. It turns out that the drift term is
not always stabilizing, but there are dynamical regimes
where growing modes can be excited and, depending
on the dynamical configuration, the Langevin equation
(4) can support either additive or multiplicative noise.

Even though MTV assumes strict separation of
scales, ¢ < 1, it is successfully used for a wide
range of examples including cases where € = O(1)
[46]. Also in [47], MTV is successfully extended
to fully deterministic systems where the requirement
that the fast-fast interaction term By (y, y) in (5) is
parameterized by an Ornstein-Uhlenbeck process is
relaxed. Furthermore, MTV is applied to a wide range
of climate problems. It is used, for instance, in [19] for
a realistic barotropic model and extended in [18] to a
three-layer quasi-geostrophic model. The example of
midlatitude teleconnection patterns where multiplica-
tive noise plays a crucial role is studied in [42]. MTV is
also applied to the triad and dyad normal mode (EOF)
interactions for arbitrary time series [40].

Stochastic Parametrization
In a typical GCM, the parametrization of unresolved
processes is based on theoretical and/or empirical
deterministic equations. Perhaps the area where
deterministic parameterizations have failed the
most is moist convection. GCMs fail very badly
in simulating the planetary and intra-seasonal
variability of winds and rainfall in the tropics due
to the inadequate representation of the unresolved
variability of convection and the associated cross-
scale interactions behind the multiscale organization
of tropical convection [35]. To overcome this problem,
some climate scientists introduced random variables to
mimic the variability of such unresolved processes.
Unfortunately, as illustrated below, many of the
existing stochastic parametrizations were based on
the assumptions of statistical equilibrium and/or of a
stationary distribution for the unresolved variability,
which are only valid to some extent when there is scale
separation.

The first use of random variables in CGMs appeared
in Buizza et al. [6] as means for improving the skill
of the ECMWF ensemble prediction system (EPS).
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Buizza et al. [6] used uniformly distributed random
scalars to rescale the parameterized tendencies in the
governing equations. Similarly, Lin and Neelin [38]
introduced a random perturbation in the tendency of
convective available potential energy (CAPE). In [38],
the random noise is assumed to be a Markov process of
the form &4 A, = €& + z where z; is a white noise
with a fixed standard deviation and ¢, is a parameter.
Plant and Craig [57] used extensive cloud-permitting
numerical simulations to empirically derive the param-
eters for the PDF of the cloud base mass flux itself
whose Poisson shape is determined according to ar-
guments drawn from equilibrium statistical mechanics.
Careful simulations conducted by Davoudi et al. [10]
revealed that while the Poisson PDF is more or less
accurate for isolated deep convective clouds, it fails to
extend to cloud clusters where a variety of cloud types
interact with each other: a crucial feature of organized
tropical convection.

Majda and Khouider [43] borrowed an idea from
material science [28] of using the Ising model of
ferromagnetization to represent convective inhibition
(CIN). An order parameter o, defined on a rectangular
lattice, embedded within each horizontal grid box of
the climate model, takes values 1 or 0 at a given
site, according to whether there is CIN or there is
potential for deep convection (PAC). The lattice model
makes transitions at a given site according to intuitive
probability rules depending both on the large-scale cli-
mate model variables and on local interactions between
lattice sites based on a Hamiltonian energy principle.
The Hamiltonian is given by

Ho,U) = =5 Y (=3 oo +h0) Y o,

where J(r) is the local interaction potential and 2 (U)
is the external potential which depends on the climate
variables U and where the summations are taken over
all lattice sites x, y. A transition (spin-flip by analogy
to the Ising model of magnetization) occurs at a site
y if for a small time t, we have o,4.(y) = 1 —
0:(y) and 0;4.(x) = o,(x) if x # y. Transitions
occur at a rate C(y, 0, U) set by Arrhenius dynamics:
C(x,0,U) = % exp(—A,H(o,U)) if o, = 0 and
C(x,0,U) = # if o, = 1 so that the resulting Markov
process satisfies detailed balance with respect to the
Gibbs distribution p(o,U) o exp(—H(o,U). Here
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AyH(o,U)) = Hlo+[1—0(x)]ey),U)—H(o,U) =
—> . J(x —z])o(z) + h(U) with e, (y) = 1if y = x
and 0 otherwise.

For computational efficiency, a coarse graining of
the stochastic CIN model is used in [34] to derive a
stochastic birth-death process for the mesoscopic area
coverage Ny = .y 0(x) where X represents a
generic site of a mesoscopic lattice, which in practice
can be considered to be the GCM grid. The stochastic
CIN model is coupled to a toy GCM where it is
successfully demonstrated how the addition of such a
stochastic model could improve the climatology and
waves dynamics in a deficient GCM [34,42].

This Ising-type modeling framework is extended in
[33] to represent the variability of organized tropical
convection (OTC). A multi-type order parameter is
introduced to mimic the multimodal nature of OTC.
Based on observations, tropical convective systems
(TCS) are characterized by three cloud types, cumulus
congestus whose height does not exceed the freezing
level develop when the atmosphere is dry, and there is
convective instability, positive CAPE. In return conges-
tus clouds moisten the environment for deep convective
towers. Stratiform clouds that develop in the upper
troposphere lag deep convection as a natural freezing
phase in the upper troposphere. Accordingly, the new
order parameter o takes the multiple values 0,1,2,3, on
a given lattice site, according to whether the given site
is, respectively, clear sky or occupied by a congestus,
deep, or stratiform cloud.

Similar Arrhenius-type dynamics are used to build
transition rates resulting in an ergodic Markov process
with a well-defined equilibrium measure. Unphysi-
cal transitions of congestus to stratiform, stratiform
to deep, stratiform to congestus, clear to stratiform,
and deep to congestus were eliminated by setting the
associated rates to zero. When local interactions are
ignored, the equilibrium measure and the transition
rates depend only on the large-scale climate variables
U where CAPE and midlevel moisture are used as
triggers and the coarse-graining process is carried with
exact statistics. It leads to a multidimensional birth-
death process with immigration for the area fractions
of the associated three cloud types. The stochastic
multicloud model (SMCM) is used very successfully
in [20, 21] to capture the unresolved variability of
organized convection in a toy GCM. The simula-
tion of convectively coupled gravity waves and mean
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climatology were improved drastically when compared
to their deterministic counterparts. The realistic statis-
tical behavior of the SMCM is successfully assessed
against observations in [56]. Local interaction effects
are reintroduced in [32] where a coarse-graining ap-
proximation based on conditional expectation is used
to recover the multidimensional birth-death process
dynamics with local interactions. A Bayesian method-
ology for inferring key parameters for the SMCM is
developed and validated in [12]. A review of the basic
methodology of the CIN and SMCM models, which is
suitable for undergraduates, is found in [31].

A systematic data-based methodology for inferring
a suitable stochastic process for unresolved processes
conditional on resolved model variables was proposed
in [9]. The local feedback from unresolved processes
on resolved ones is represented by a small Markov
chain whose transition probability matrix is made de-
pendent on the resolved-scale state. The matrix is
estimated from time series data that is obtained from
highly resolved numerical simulations or observations.
This approach was developed and successfully tested
on the Lorenz *96 system [39] in [9]. [16] applied it to
parameterize shallow cumulus convection, using data
from large eddy simulation (LES) of moist atmospheric
convection. A two-dimensional lattice, with at each
lattice node a Markov chain, was used to mimic (or
emulate) the convection as simulated by the high-
resolution LES model, at a fraction of the computa-
tional cost.

Subsequently, [15] combined the conditional
Markov chain methodology with elements from the
SMCM [33]. They applied it to deep convection
but without making use of the Arrhenius functional
forms of the transition rates in terms of the large-scale
variables (as was done in [33]). Similar to [16], LES
data was used for estimation of the Markov chain
transition probabilities. The inferred stochastic model
in [15] was well capable of generating cloud fractions
very similar to those observed in the LES data. While
the main cloud types of the original SMCM were
preserved, an important improvement in [15] resides
in the addition of a fifth state for shallow cumulus
clouds. As an experiment, direct spatial coupling of
the Markov chains on the lattice was also considered
in [15]. Such coupling amounts to the structure of
a stochastic cellular automaton (SCA). Without this
direct coupling, the Markov chains are still coupled,
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but indirectly, through their interaction with the large-
scale variables (see, e.g., [9]).
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Abstract

We present approaches for the study of fluid-structure
interactions subject to thermal fluctuations. A me-
chanical description is utilized combining Eulerian
and Lagrangian reference frames. We establish general
conditions for the derivation of operators coupling
these descriptions and for the derivation of stochastic
driving fields consistent with statistical mechanics. We
present stochastic numerical methods for the fluid-
structure dynamics and methods to generate efficiently
the required stochastic driving fields. To help establish
the validity of the proposed approach, we perform
analysis of the invariant probability distribution of the
stochastic dynamics and relate our results to statisti-
cal mechanics. Overall, the presented approaches are
expected to be applicable to a wide variety of systems
involving fluid-structure interactions subject to thermal
fluctuations.
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Introduction

Recent scientific and technological advances motivate
the study of fluid-structure interactions in physical
regimes often involving very small length and time
scales [26, 30, 35, 36]. This includes the study of
microstructure in soft materials and complex fluids,
the study of biological systems such as cell motil-
ity and microorganism swimming, and the study of
processes within microfluidic and nanofluidic devices.
At such scales thermal fluctuations play an important
role and pose significant challenges in the study of
such fluid-structure systems. Significant past work has
been done on the formulation of descriptions for fluid-
structure interactions subject to thermal fluctuations.
To obtain descriptions tractable for analysis and nu-
merical simulation, these approaches typically place
an emphasis on approximations which retain only the
structure degrees of freedom (eliminating the fluid
dynamics). This often results in simplifications in the
descriptions having substantial analytic and compu-
tational advantages. In particular, this eliminates the
many degrees of freedom associated with the fluid
and avoids having to resolve the potentially intricate
and stiff stochastic dynamics of the fluid. These ap-
proaches have worked especially well for the study
of bulk phenomena in free solution and the study
of many types of complex fluids and soft materials
[3,3,9,13,17,23].

Recent applications arising in the sciences and in
technological fields present situations in which resolv-
ing the dynamics of the fluid may be important and
even advantageous both for modeling and computation.
This includes modeling the spectroscopic responses
of biological materials [19, 25, 37], studying trans-
port in microfluidic and nanofluidic devices [16,30],
and investigating dynamics in biological systems [2,
11]. There are also other motivations for represent-
ing the fluid explicitly and resolving its stochastic
dynamics. This includes the development of hybrid
fluid-particle models in which thermal fluctuations
mediate important effects when coupling continuum
and particle descriptions [12, 14], the study of hy-
drodynamic coupling and diffusion in the vicinity of
surfaces having complicated geometries [30], and the
study of systems in which there are many interacting
mechanical structures [8, 27, 28]. To facilitate the de-
velopment of methods for studying such phenomena
in fluid-structure systems, we present a rather general
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formalism which captures essential features of the
coupled stochastic dynamics of the fluid and struc-
tures.

To model the fluid-structure system, a mechanical
description is utilized involving both Eulerian and
Lagrangian reference frames. Such mixed descriptions
arise rather naturally, since it is often convenient to
describe the structure configurations in a Lagrangian
reference frame while it is convenient to describe
the fluid in an Eulerian reference frame. In practice,
this presents a number of challenges for analysis
and numerical studies. A central issue concerns how
to couple the descriptions to represent accurately
the fluid-structure interactions, while obtaining a
coupled description which can be treated efficiently
by numerical methods. Another important issue
concerns how to account properly for thermal
fluctuations in such approximate descriptions. This
must be done carefully to be consistent with
statistical mechanics. A third issue concerns the
development of efficient computational methods.
This requires discretizations of the stochastic
differential equations and the development of efficient
methods for numerical integration and stochastic field
generation.

We present a set of approaches to address these
issues. The formalism and general conditions for the
operators which couple the Eulerian and Lagrangian
descriptions are presented in section ‘“Stochastic
Eulerian Lagrangian Method.” We discuss a convenient
description of the fluid-structure system useful
for working with the formalism in practice in
section “Derivations for the Stochastic Eulerian
Lagrangian Method.” A derivation of the stochastic
driving fields used to represent the thermal fluctuations
is also presented in section “Derivations for the
Stochastic Eulerian Lagrangian Method.” Stochastic
numerical methods are discussed for the approximation
of the stochastic dynamics and generation of
stochastic fields in sections “Computational Method-
ology.” To validate the methodology, we perform
analysis of the invariant probability distribution
of the stochastic dynamics of the fluid-structure
formalism. We compare this analysis with results
from statistical mechanics in section “Equilibrium
Statistical Mechanics of SELM Dynamics.” A
more detailed and comprehensive discussion of the
approaches presented here can be found in our

paper [6].
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Stochastic Eulerian Lagrangian Method

To study the dynamics of fluid-structure interactions
subject to thermal fluctuations, we utilize a mechanical
description involving Eulerian and Lagrangian refer-
ence frames. Such mixed descriptions arise rather nat-
urally, since it is often convenient to describe the struc-
ture configurations in a Lagrangian reference frame
while it is convenient to describe the fluid in an Eu-
lerian reference frame. In principle more general de-
scriptions using other reference frames could also be
considered. Descriptions for fluid-structure systems
having these features can be described rather generally
by the following dynamic equations

p% = Lut APV=TWl+ A+, (D)
dv

m——- = T (v—Tu)—Vx®X]+¢+F,, ()
TR

The u denotes the velocity of the fluid, and p the
uniform fluid density. The X denotes the configuration
of the structure, and v the velocity of the structure.
The mass of the structure is denoted by m. To simplify
the presentation, we treat here only the case when

Lagrangian Reference Frame

p and m are constant, but with some modifications
these could also be treated as variable. The A, ¢ are
Lagrange multipliers for imposed constraints, such as
incompressibility of the fluid or a rigid body constraint
of a structure. The operator £ is used to account for
dissipation in the fluid, such as associated with New-
tonian fluid stresses [1]. To account for how the fluid
and structures are coupled, a few general operators are
introduced, I, 7, A.

The linear operators I, A, 7" are used to model the
fluid-structure coupling. The I" operator describes how
a structure depends on the fluid flow, while —7 is
a negative definite dissipative operator describing the
viscous interactions coupling the structure to the fluid.
We assume throughout that this dissipative operator
is symmetric, ¥ = 77T. The linear operator A is
used to attribute a spatial location for the viscous
interactions between the structure and fluid. The linear
operators are assumed to have dependence only on the
configuration degrees of freedom I' = I'[X], A =
A[X]. We assume further that 7" does not have any
dependence on X. For an illustration of the role these
coupling operators play, see Fig. 1.

To account for the mechanics of structures, @[X]
denotes the potential energy of the configuration X.
The total energy associated with this fluid-structure
system is given by

Eulerian Reference Frame

11
1

Stochastic Eulerian-Lagrangian Methods, Fig. 1 The de-
scription of the fluid-structure system utilizes both Eulerian and
Lagrangian reference frames. The structure mechanics are often
most naturally described using a Lagrangian reference frame.
The fluid mechanics are often most naturally described using
an Eulerian reference frame. The mapping X(q) relates the
Lagrangian reference frame to the Eulerian reference frame. The

I

operator I" prescribes how structures are to be coupled to the
fluid. The operator A prescribes how the fluid is to be coupled
to the structures. A variety of fluid-structure interactions can
be represented in this way. This includes rigid and deformable
bodies, membrane structures, polymeric structures, or point
particles
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1
Elu.v.X] = [ Zpluy)Pdy
2

[
+ My + ?[X]. )
The first two terms give the kinetic energy of the fluid
and structures. The last term gives the potential energy
of the structures.

As we shall discuss, it is natural to consider cou-
pling operators A and I" which are adjoint in the sense

/ (Fu)(@) - v(@)dq = / u(x) - (A Edx ()
S 2

for any u and v. The S and §2 denote the spaces used to
parameterize respectively the structures and the fluid.
We denote such an adjoint by A = I't or I' =
AT. This adjoint condition can be shown to have the
important consequence that the fluid-structure coupling
conserves energy when 77 — oo in the inviscid and
zero temperature limit.

To account for thermal fluctuations, a random force
density f,,, is introduced in the fluid equations and F,,
in the structure equations. These account for sponta-
neous changes in the system momentum which occurs
as a result of the influence of unresolved microscopic
degrees of freedom and unresolved events occurring in
the fluid and in the fluid-structure interactions.

The thermal fluctuations consistent with the form of
the total energy and relaxation dynamics of the system
are taken into account by the introduction of stochastic
driving fields in the momentum equations of the fluid
and structures. The stochastic driving fields are taken
to be Gaussian processes with mean zero and with §-
correlation in time [29]. By the fluctuation-dissipation
principle [29], these have covariances given by

(£ (1)) = — kpT) (L — ATT) 8(t —5)
(6)
(Fun($)FL (1)) = 2kgT) Y 8(t — 5) (7
{fun(9)F,, (1)) = — 2kpT) AT 8(1 —5). (®)

We have used that ' = AT and ¥ = T'7. We remark
that the notation gh” which is used for the covariance
operators should be interpreted as the tensor product.
This notation is meant to suggest the analogue to the
outer-product operation which holds in the discrete set-
ting [5]. A more detailed discussion and derivation of
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the thermal fluctuations is given in section “Derivations
for the Stochastic Eulerian Lagrangian Method.”

It is important to mention that some care must be
taken when using the above formalism in practice and
when choosing operators. An important issue concerns
the treatment of the material derivative of the fluid,
du/dt = 0u/dt 4+ u - Vu. For stochastic systems
the field u is often highly irregular and not defined in
a point-wise sense, but rather only in the sense of a
generalized function (distribution) [10, 24]. To avoid
these issues, we shall treat du/dt = du/dt in this
initial presentation of the approach [6]. The SELM pro-
vides a rather general framework for the study of fluid-
structure interactions subject to thermal fluctuations.
To use the approach for specific applications requires
the formulation of appropriate coupling operators A
and I' to model the fluid-structure interaction. We
provide some concrete examples of such operators in
the paper [6].

Formulation in Terms of Total Momentum Field
When working with the formalism in practice, it turns
out to be convenient to reformulate the description in
terms of a field describing the total momentum of the
fluid-structure system at a given spatial location. As we
shall discuss, this description results in simplifications
in the stochastic driving fields. For this purpose, we
define

p(x, 1) = pu(x,?) + Almv(1)](x). ©))
The operator A is used to give the distribution in
space of the momentum associated with the structures
for given configuration X(¢). Using this approach, the
fluid-structure dynamics are described by

d
d_f =Lu + A[-Vx@(X)]
+ (VxA[mV]) -V + A' + glhm (10)
dv
m—==T(v=Tw=Vx@X) +{+F, (1D
dt
where u = p~'(p— A[mv]) and g, fom +

A[F,.]. The third term in the first equation arises
from the dependence of A on the configuration of
the structures, A[mv] = (A[X])[mv]. The Lagrange
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multipliers for imposed constraints are denoted by
A, ¢. For the constraints, we use rather liberally the
notation with the Lagrange multipliers denoted here
not necessarily assumed to be equal to the previous
definition. The stochastic driving fields are again Gaus-
sian with mean zero and §-correlation in time [29]. The
stochastic driving fields have the covariance structure
given by

(gum()gl (1)) = — QkpT) LS —s)  (13)
(Fon()FL (1)) = QkpT) T 8(t —s)  (14)
(8un(FL (1)) = 0. (15)

This formulation has the convenient feature that the
stochastic driving fields become independent. This is
a consequence of using the field for the total momen-
tum for which the dissipative exchange of momentum
between the fluid and structure no longer arises. In the
equations for the total momentum, the only source of
dissipation remaining occurs from the stresses of the
fluid. This approach simplifies the effort required to
generate numerically the stochastic driving fields and
will be used throughout.

Derivations for the Stochastic Eulerian
Lagrangian Method

We now discuss formal derivations to motivate the
stochastic differential equations used in each of
the physical regimes. For this purpose, we do not
present the most general derivation of the equations.
For brevity, we make simplifying assumptions when
convenient.

In the initial formulation of SELM, the fluid-
structure system is described by

p% =Lu+ A[Y(v—Tuw)]+ A +1£,, (16)
dv
m—— =—T(v—-Tuw —Vx®(X) + ¢
+Flhm (17)
dX
= =v. 1
7 = (18)

The notation and operators appearing in these
equations have been discussed in detail in section

Stochastic Eulerian-Lagrangian Methods

“Stochastic Eulerian Lagrangian Method.” For these
equations, we focus primarily on the motivation for
the stochastic driving fields used for the fluid-structure
system.

For the thermal fluctuations of the system, we
assume Gaussian random fields with mean zero and §-
correlated in time. For such stochastic fields, the central
challenge is to determine an appropriate covariance
structure. For this purpose, we use the fluctuation-
dissipation principle of statistical mechanics [22, 29].
For linear stochastic differential equations of the
form

dZ, = LZ,dt + QdB, 19)
the fluctuation-dissipation principle can be expressed
as

G=00"=—(LC)—(LC)". (20)
This relates the equilibrium covariance structure C of
the system to the covariance structure G of the stochas-
tic driving field. The operator L accounts for the
dissipative dynamics of the system. For the Eqs. 16-18,
the dissipative operators only appear in the momentum
equations. This can be shown to have the consequence
that there is no thermal forcing in the equation for X(¢);
this will also be confirmed in section “Formulation in
Terms of Total Momentum Field.” To simplify the pre-
sentation, we do not represent explicitly the stochastic
dynamics of the structure configuration X.

For the fluid-structure system, it is convenient to
work with the stochastic driving fields by defining

q=[p" o™ Fu] " 1)
The field q formally is given by q = QdB,/dt and de-
termined by the covariance structure G = Q Q7. This
covariance structure is determined by the fluctuation-
dissipation principle expressed in Eq. 20 with

—1 —1
C[p ' (L—AYT) p AT
L= [m—lrr —m_lTi| @2)
-1
1P kBTIO
€= [0 m_‘kBTI] 23)

The Z denotes the identity operator. The covariance
C was obtained by considering the fluctuations at
equilibrium. The covariance C is easily found since
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the Gibbs-Boltzmann distribution is a Gaussian with
formal density ¥(u,v) = - exp[—E/kpT]. The Zo
is the normalization constant for ¥. The energy is given
by Eq.4. For this purpose, we need only consider the
energy E in the case when @ = 0. This gives the
covariance structure
-2 —1 1
G = (2ksT) [_;_I;L_IT/;TF) Y AT}.
(24)

To obtain this result, we use that I’ = At and ¥ = 7.
From the definition of ¢, it is found that the covariance
of the stochastic driving fields of SELM is given by
Eqgs. 6-8. This provides a description of the thermal
fluctuations in the fluid-structure system.

Formulation in Terms of Total Momentum Field

It is convenient to reformulate the description of the
fluid-structure system in terms of a field for the total
momentum of the system associated with spatial loca-
tion Xx. For this purpose we define

p(x, 1) = pu(x,t) + Amv(?)](x). (25)

The operator A is used to give the distribution in
space of the momentum associated with the structures.
Using this approach, the fluid-structure dynamics are
described by

P _ryy A[-Vx®(X)]
dt
+ (VxA[mv]) - v+ A + g (26)
m% =—7T(v—-Tu)—Vx®X)+¢
+ F[hm (27)
ax =v (28)
dr

where u = p~! (p — A[mv]) and g, = fo, + A[Fonl.
The third term in the first equation arises from the
dependence of A on the configuration of the structures,
Almv(@)] = (A[X])[mv(1)].

The thermal fluctuations are taken into account by
two stochastic fields g, and F,,. The covariance of
g 15 obtained from
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(gmgl ) =(Eunfl ) + (£, FL AT)

thm

+ (AF,.f" ) + (AF,,FT AT)

thm thm

=(2kT)(— L+ AYT
— ATAT — ATAT + ATAT)

=—(2kgT) L. 29)
This makes use of the adjoint property of the coupling
operators AT = I'.

One particularly convenient feature of this reformu-
lation is that the stochastic driving fields F,,, and g,
become independent. This can be seen as follows:

(8wF! ) = (£, FT ) + (AF,,FT )

= (2kpT)(—AY + AY) = 0.

(30)

This decoupling of the stochastic driving fields greatly
reduces the computational effort to generate the fields
with the required covariance structure. This shows that
the covariance structure of the stochastic driving fields
of SELM is given by Eqgs. 13-15.

Computational Methodology

We now discuss briefly numerical methods for the
SELM formalism. For concreteness we consider the
specific case in which the fluid is Newtonian and
incompressible. For now, the other operators of the
SELM formalism will be treated rather generally. This
case corresponds to the dissipative operator for the
fluid

Lu = uAu. 3D
The A denotes the Laplacian Au = 9,,u+9,,u+0d..u.
The incompressibility of the fluid corresponds to the
constraint

V.u=0. (32)
This is imposed by the Lagrange multiplier A. By the
Hodge decomposition, A is given by the gradient of a
function p with A = —V p. The p can be interpreted
as the local pressure of the fluid.

A variety of methods could be used in practice
to discretize the SELM formalism, such as finite
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difference methods, spectral methods, and finite
element methods [20, 32, 33]. We present here
discretizations based on finite difference methods.

Numerical Semi-discretizations for

Incompressible Newtonian Fluid

The Laplacian will be approximated by central differ-
ences on a uniform periodic lattice by

3
u, - — Uy + Um—e;
[Lll]m _ Z m+e; m m—e; )

AX2 33)

Jj=1

The m = (m,, m, m3) denotes the index of the lattice
site. The e; denotes the standard basis vector in three
dimensions. The incompressibility of the fluid will be
approximated by imposing the constraint

3 4/

u
+ .
[D-uly = 37 =
j=1

J
- um—ej

(34)

The superscripts denote the vector component. In prac-
tice, this will be imposed by computing the projection
of a vector u* to the subspace {u € R3 | D -u = 0},
where N is the total number of lattice sites. We denote
this projection operation by

u = pu*, (35)

The semi-discretized equations for SELM to be used in
practice are

d
d_lz) = Lu+ A[-Vx®] + (VxA[mv]) -V + A + g,
(36)

dv
—=-T[v-r Fi.
' [v—I"u] +F, (37)
X _, (38)
dr

The component Uy, = p '(pm — A[mV]m). Each
of the operators now appearing is understood to be
discretized. We discuss specific discretizations for I”
and A in paper [6]. To obtain the Lagrange multiplier A
which imposes incompressibility, we use the projection
operator and

A=—-IZ-p)Lu+T[v-Tu]+1.) (39

Stochastic Eulerian-Lagrangian Methods

In this expression, we let £, = gy, — A[Fy.] for the
particular realized values of the fields g, and F,,,.

We remark that in fact the semi-discretized equa-
tions of the SELM formalism in this regime can also
be given in terms of u directly, which may provide
a simpler approach in practice. The identity f,, =
Zim — A[Fyun] could be used to efficiently generate the
required stochastic driving fields in the equations for
u. We present the reformulation here, since it more
directly suggests the semi-discretized equations to be
used for the reduced stochastic equations.

For this semi-discretization, we consider a total
energy for the system given by

m
E[u,v.X] = g - luxm) P Ax;, + v + (X,
m
(40)

This is useful in formulating an adjoint condition 5 for
the semi-discretized system. This can be derived by
considering the requirements on the coupling operators
I' and A which ensure the energy is conserved when
T — oo in the inviscid and zero temperature limit.

To obtain appropriate behaviors for the thermal
fluctuations, it is important to develop stochastic driv-
ing fields which are tailored to the specific semi-
discretizations used in the numerical methods. Once
the stochastic driving fields are determined, which is
the subject of the next section, the equations can be
integrated in time using traditional methods for SDE:s,
such as the Euler-Maruyama method or a stochastic
Runge-Kutta method [21]. More sophisticated inte-
grators in time can also be developed to cope with
sources of stiffness but are beyond the scope of this
entry [7]. For each of the reduced equations, similar
semi-discretizations can be developed as the one pre-
sented above.

Stochastic Driving Fields for

Semi-discretizations

To obtain behaviors consistent with statistical mechan-
ics, it is important stochastic driving fields be used
which are tailored to the specific numerical discretiza-
tion employed [5-7, 15]. To ensure consistency with
statistical mechanics, we will again use the fluctuation-
dissipation principle but now apply it to the semi-
discretized equations. For each regime, we then discuss
the important issues arising in practice concerning the
efficient generation of these stochastic driving fields.



Stochastic Eulerian-Lagrangian Methods

Formulation in Terms of Total Momentum Field

To obtain the covariance structure for this regime, we
apply the fluctuation-dissipation principle as expressed
in Eq. 20 to the semi-discretized Eqs. 36—38. This gives
the covariance

—p 2Ax3L 0 0
= (2k3T) |0 m=27 0| .
0 0 0
(41)

G =-2LC

The factor of Ax~ arises from the form of the energy
for the discretized system which gives covariance for
the equilibrium fluctuations of the total momentum
o 'Ax3kpT; see Eq.40. In practice, achieving the
covariance associated with the dissipative operator of
the fluid L is typically the most challenging to generate
efficiently. This arises from the large number N of
lattice sites in the discretization.

One approach is to determine a factor Q such that
the block Gpp 0 QT subscripts indicate block
entry of the matrix. The required random field with
covariance Gpp is then given by g = Q§&, where
& is the uncorrelated Gaussian field with the covari-
ance structure Z. For the discretization used on the
uniform periodic mesh, the matrices L and C are
cyclic [31]. This has the important consequence that
they are both diagonalizable in the discrete Fourier
basis of the lattice. As a result, the field f,,, can be
generated using the fast Fourier transform (FFT) with
at most O(N log(N)) computational steps. In fact, in
this special case of the discretization, “random fluxes”
at the cell faces can be used to generate the field in
O(N) computational steps [5]. Other approaches can
be used to generate the random fields on nonperiodic
meshes and on multilevel meshes; see [4, 5].

Equilibrium Statistical Mechanics of SELM
Dynamics

We now discuss how the SELM formalism and the
presented numerical methods capture the equilibrium
statistical mechanics of the fluid-structure system. This
is done through an analysis of the invariant probability
distribution of the stochastic dynamics. For the fluid-
structure systems considered, the appropriate proba-
bility distribution is given by the Gibbs-Boltzmann
distribution
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Uen(z) = = eXp [—E(z)/kpT]. (42)
The z is the state of the system, E is the energy,
kp is Boltzmann’s constant, 7' is the system tem-
perature, and Z is a normalization constant for the
distribution [29]. We show that this Gibbs-Boltzmann
distribution is the equilibrium distribution of both the
full stochastic dynamics and the reduced stochastic
dynamics in each physical regime.

We present here both a verification of the invariance
of the Gibbs-Boltzmann distribution for the general
formalism and for numerical discretizations of the
formalism. The verification is rather formal for the
undiscretized formalism given technical issues which
would need to be addressed for such an infinite dimen-
sional dynamical system. However, the verification is
rigorous for the semi-discretization of the formalism,
which yields a finite dimensional dynamical system.
The latter is likely the most relevant case in practice.
Given the nearly identical calculations involved in the
verification for the general formalism and its semi-
discretizations, we use a notation in which the key
differences between the two cases primarily arise in
the definition of the energy. In particular, the energy is
understood to be given by Eq. 4 when considering the
general SELM formalism and Eq. 40 when considering
semi-discretizations.

Formulation in Terms of Total Momentum Field
The stochastic dynamics given by Eqgs.10-12 is a
change of variable of the full stochastic dynamics of
the SELM formalism given by Eqs. 1-3. Thus verifying
the invariance using the reformulated description is
also applicable to Eqgs. 1-3 and vice versa. To verify
the invariance in the other regimes, it is convenient to
work with the reformulated description. The energy as-
sociated with the reformulated description is given by

f Ip(y) —

+ 3|v|2 + ?[X].

E[p.v.X] = Almv](y)dy

(43)

The energy associated with the semi-discretization is

Elp,v,X] (44)

1
:% Z Ip(xm) — A[mv]m|*Ax;,
m

m
+ E|v|2 + ?[X].
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The probability density ¥ (p, v, X, ¢) for the current
state of the system under the SELM dynamics is
governed by the Fokker-Planck equation

v
— =-V. 45
y J (45)
with probability flux
L+A+VxA-v+2A
J=|-T-Vx® +¢ v
v
1(V G)¥ Love (46)
2 2 ’

The covariance operator G is associated with the Gaus-
sian field g = (g, Fun, 0] by (g(s)g” (1)) = G8(1 — 5).

Stochastic Eulerian-Lagrangian Methods

In this regime, G is given by Eq.13 or 41. In the
notation [V - G(z)]; = 0;;G;;(z) with the summation
convention for repeated indices. To simplify the
notation, we have suppressed denoting the specific
functions on which each of the operators acts; see
Egs. 10-12 for these details.

The requirement that the Gibbs-Boltzmann distri-
bution ¥, given by Eq.42 be invariant under the
stochastic dynamics is equivalent to the distribution
yielding V-J = 0. We find it convenient to group terms
and express this condition as

V. J=414+A4,+V - A3+ V-Ay =0 47)

where

Al =[(A+ VXA V+ A1) VpE + (=Vx®@ + 1) - WE + (V) - VXE | (—kpT) ™" W

Ay =

1
A3 _E(V G)lI/GB

[Vo - (A+VxA-v+ A1)+ Vy- (=Vx® + &) + Vx - (V)| Ve

Lu+ Ay + [GppVpE + GpyVyE + Gpx VX E| (2kpT)™!

Ay =

T + & + [GpVpE + GwVWyE + GixVxE| (2kT)™!

Y. (48)

[GXprE + GxyVvE + GXvaE] (2kp T)_l

We assume here that the Lagrange multipliers can be
split A = A; + A, and { = {; + {, to impose the
constraints by considering in isolation different terms
contributing to the dynamics; see Eq. 48. This is always
possible for linear constraints. The block entries of
the covariance operator G are denoted by G; ; with
i,j € {p,v,X}. For the energy of the discretized
system given by Eq. 4, we have
Voo E = u(xn)Ax; (49)
Vo, E =) u(xm) - (—Vy, Almvlm) Axj, + mv,

m

(50)

Vx, E = u(xm) - (=Vx, A[mvlm) Axy, + Vx, ®.
m

(51

where u = p~! (p—A[mv]). Similar expressions for the
energy of the undiscretized formalism can be obtained
by using the calculus of variations [18].

We now consider V-J and each term Ay, A>, Az, Ay.
The term A; can be shown to be the time derivative
of the energy A, = dE/dt when considering only a
subset of the contributions to the dynamics. Thus, con-
servation of the energy under this restricted dynamics
would result in A, being zero. For the SELM formal-
ism, we find by direct substitution of the gradients of
E given by Egs.49-51 into Eq. 48 that A = 0. When
there are constraints, it is important to consider only
admissible states (p, v, X). This shows in the inviscid
and zero temperature limit of SELM, the resulting dy-
namics are nondissipative. This property imposes con-
straints on the coupling operators and can be viewed as
a further motivation for the adjoint conditions imposed
in Eq. 5.
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The term A, gives the compressibility of the phase-
space flow generated by the nondissipative dynamics
of the SELM formalism. The flow is generated by the
vector field (A + VxA - v+ Ay, —=Vx® + {;, v) on
the phase-space (p, v, X). When this term is nonzero,
there are important implications for the Liouville the-
orem and statistical mechanics of the system [34].
For the current regime, we have A, = 0 since in
the divergence each component of the vector field is
seen to be independent of the variable on which the
derivative is computed. This shows in the inviscid and
zero temperature limit of SELM, the phase-space flow
is incompressible. For the reduced SELM descriptions,
we shall see this is not always the case.

The term Ajz corresponds to fluxes arising from
multiplicative features of the stochastic driving fields.
When the covariance G has a dependence on the
current state of the system, this can result in pos-
sible changes in the amplitude and correlations in
the fluctuations. These changes can yield asymmetries
in the stochastic dynamics which manifest as a net
probability flux. In the SELM formalism, it is found
that in the divergence of G, each contributing entry is
independent of the variable on which the derivative is
being computed. This shows for the SELM dynamics
there is no such probability fluxes, Az = 0.

The last term A4 accounts for the fluxes arising from
the primarily dissipative dynamics and the stochastic
driving fields. This term is calculated by substituting
the gradients of the energy given by Eqs. 49-51 and us-
ing the choice of covariance structure given by Eq. 13
or 41. By direct substitution this term is found to be
zero, A, = 0.

This shows the invariance of the Gibbs-Boltzmann
distribution under the SELM dynamics. This provides
a rather strong validation of the stochastic driving
fields introduced for the SELM formalism. This shows
the SELM stochastic dynamics are consistent with
equilibrium statistical mechanics [29].

Conclusions

An approach for fluid-structure interactions subject
to thermal fluctuations was presented based on a
mechanical description utilizing both Eulerian and
Lagrangian reference frames. General conditions were
established for operators coupling these descriptions.
A reformulated description was presented for the
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stochastic dynamics of the fluid-structure system
having convenient features for analysis and for
computational methods. Analysis was presented
establishing for the SELM stochastic dynamics that
the Gibbs-Boltzmann distribution is invariant. The
SELM formalism provides a general framework
for the development of computational methods for
applications requiring a consistent treatment of
structure elastic mechanics, hydrodynamic coupling,
and thermal fluctuations. A more detailed and
comprehensive discussion of SELM can be found
in our paper [6].
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Short Definition

Let Ty and T, be either a time interval [0, 7] or a
discrete set. The stochastic filtering problem consists
in estimating an unobservable signal X, ¢ € T, based
on an observation {y;, s < ¢, s € T,}, where the
process Y, is related to X, via a stochastic model.

Description

We restrict ourselves to the case when an unobservable
signal and observation are continuous time processes
with Ty = T, = [0,T] (see discrete filtering in,
e.g., [1,3,7]). Let (2, F,P) be a complete probability
space, F;, 0 < t < T, be a filtration satisfying
the usual hypotheses, and (w;, ;) and (v;, F;) be di-
dimensional and r-dimensional independent standard
Wiener processes, respectively. We consider the classi-
cal filtering scheme in which the unobservable signal
process (“hidden” state) X, € R? and the observation
process y, € R’ satisfy the system of fto stochastic
differential equations (SDE):

dX = a(X)ds + o(X)dw, + y(X)dvy,
Xo = x, ()
dy = B(X)ds + dvg, yo =0, 2)
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where «(x) and B(x) are d-dimensional and r-
dimensional vector functions, respectively, and o (x)
and y(x) are d xd;-dimensional and d x r-dimensional
matrix functions, respectively. The vector Xp = x in
the initial condition for (1) is usually random (i.e.,
uncertain), it is assumed to be independent of both w
and v, and its density ¢(-) is assumed to be known.

Let f(x) be a function on R?. We assume that the
coefficients in (1), (2) and the function f are bounded
and have bounded derivatives up to some order. The
stochastic filtering problem consists in constructing
the estimate f (X;) based on the observation y,, 0 <
s < t, which is the best in the mean-square sense,
i.e., the problem amounts to computing the conditional
expectation:

FX) =E(f(X) |y, 0<s<1)
(EY f(X0).

[ f]

3)

Applications of nonlinear filtering include track-
ing, navigation systems, cryptography, image process-
ing, weather forecasting, financial engineering, speech
recognition, and many others (see, e.g., [2, 11] and ref-
erences therein). For a historical account, see, e.g., [1].

Optimal Filter Equations
In this section we give a number of expressions for the
optimal filter which involve solving some stochastic
evolution equations. Proofs of the results presented in
this section and their detailed exposition and exten-
sions are available, e.g., in [1,4,6—11].

The solution ;[ f] to the filtering problem (3), (1)—
(2) satisfies the nonlinear stochastic evolution equa-
tion:

dm[f] = m[Lfldt + (m[MT f]
(dy — m[Bld1),

— [ f1m[BT1)
@)

where L is the generator for the diffusion process X;:

d d
1 Pf f
£ =g 2 g ¥ 2 g,

i,j=

with a = {a;;} being a d x d-dimensional matrix de-
fined by a(x) = o(x)o " (x) + y(x)y " (x) and M =
(Ml, ..., M,)T is a vector of the operators M f :=
Z -1 Yij 3f + B; /- The equation of optimal nonlinear
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filtering (4) is usually called the Kushner-Stratonovich
equation or the Fujisaki-Kallianpur-Kunita equation. If
the conditional measure E(/(X(z) € dx) | ys;, 0 <
s < t) has a smooth density 7 (¢, x) with respect to
the Lebesgue measure, then it solves the following
nonlinear stochastic equation:

dn(t,x) = L¥(t, x)dt + (M* — m,[B]) T n(t, x)

(dy —m[pldt) . w(0.x) = ¢(x). ()

where L* is2 an adjoint operator to L : L*f =
d 9 :

S o e (ai ) = X1 5% (@ f) and M* i

an adjoint operator to M : M* = (M7,..., ’,")T

with M7 f = —Zld_l 32, (vij ) + B; f- We note that

7 f] = Jpa f(X)7(t, x)dx. We also remark that the
process vy 1= y; — fo 7s[B]ds is called the innovation
process.

Now we will give another expression for the optimal
filter. Let

t 1 t
no:= eXp{/O BT (X5)dvs + 5/0 B*(X;)ds

According to our assumptions, we have En! = 1,
0 < t < T. We introduce the new probability
measure P on (Q,F) : P(I') = [.n7'dP(w). The
measures P and P are mutually absolutely continuous.
Due to the Girsanov theorem, y; is a Wiener process on
(Q,F, F, ]f") the processes X and y, are independent

on (2, F, Fy, }f”), and the process X; satisfies the fto
SDE

s [ 4T Ctodv 5 [ B 0xos

= (@(X) —y(X)B(X)) ds + o (X)dw;

+y(X)dys, Xo = x. ©)

Due to the Kallianpur-Striebel formula (a particular
case of the general Bayes formula [7, 9]) for the
conditional mean (3), we have

mlf]= E(f(X)n | ys. 0 <5 <1) _ E (f(X)n)
t = = = = ,
E |y, 0<5=1) E>n,
) @)
where X; is froEn 6), IEE means e§pectati0n according
to the measure P, and EY (1) ;= E(- | y5, 0 <s <1).

Let

pilgl =B (g(X)n.).
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where g is a scalar function on R?. The process p; is
often called the unnormalized optimal filter. It satisfies
the linear evolution equation

dpi[g] = pilLgldt + pi[MT gldyr. polg] = molg).
®)
which is known as the Zakai equation. Assuming
that there is the corresponding smooth unnormalized
filtering density p(¢, x), it solves the linear stochastic
partial differential equation (SPDE) of parabolic type:

dp(t.x) = L*p(t. x)dt + (M*p(t.x)) " dy,.

p(0,x) = p(x). )
We note that p;[g] = [pa g(x)p(t, x)dx.

The unnormalized optimal filter can also be found
as a solution of a backward SPDE. To this end, let us
fix a time moment ¢ and introduce the function

ug(s, x;1) = B (g(Xf‘X)nf'X’l) : (10)
where x € RY is deterministic and X", ni;x’l, s’ >,

is the solution of the Ito SDE

dX = (@(X) — y(X)B(X))ds' + o(X)dwy
+y(X)dyS’7 XS = )C,
dn =BT (X)ndyy.ns = 1.

The function ug(s, x;¢), s < ¢, is the solution of the
Cauchy problem for the backward linear SPDE:

—du = Luds + M uxdys, u(t,x)=g(x). (11)

The notation “*dy” means backward fto integral [5,9].
If Xo = x = £ is a random variable with the density
¢(-), we can write

u_ﬁ(p(o, l)

mlfl= 0,00

12)

where ug,(0,1) = [paug(0,x:0)(x)dx =

B (gx/)n"") = pilgl

Generally, numerical methods are required to solve
optimal filtering equations. For an overview of various
numerical approximations for the nonlinear filtering
problem, see [1, Chap.8] together with references
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therein and for a number of recent developments
see [2].

Linear Filtering and Kalman-Bucy Filter

There are a very few cases when explicit formulas for
optimal filters are available [1, 7]. The most notable
case is when the filtering problem is linear. Consider
the system of linear SDE:

dX = (as + A, X) ds + Qsdws + Gydvs,

Xo = x, (13)

dy = (bs + B;X) ds + dvg, yo =0, (14)

where A;, By, Qg, and Gy are deterministic matrix
functions of time s having the appropriate dimensions;
ay and by are deterministic vector functions of time s
having the appropriate dimensions; the initial condition
Xo = x is a Gaussian random vector with mean
M, € RY and covariance matrix C, € R? x R¢ and
it is independent of both w and v; the other notation is
asin (1) and (2).

We note that the solution X;, y, of the SDE (13) and
(14) is a Gaussian process. The conditional distribution
of X; given {y,, 0 < s <t} is Gaussian with mean )2,
and covariance P, which satisfy the following system
of differential equations [1,7, 10, 11]:

X = (as +AS}?) ds + (G, + PB))

(dys — (bs + B, X)ds), Xo = M, (15)

%P = PA] + A,P — (G, + PB]) (G, + PB])"

+0,0" + GG, Py, = C,. (16)

The solution X ¢, Py is called the Kalman-Bucy filter
(or linear quadratic estimation). We remark that (15)
for the conditional mean )@ =EX; |y, 0<s <1)
is a linear SDE, while the solution P, of the matrix
Riccati equation (16) is deterministic and it can be pre-
computed off-line. Online updating of X, with arrival
of new data y, from observations is computationally
very cheap, and the Kalman-Bucy filter and its various
modifications are widely used in practical applications.
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A scalar stochastic ordinary differential equation
(SODE)

dX; = f(t.X,)dt + g(t, X;)dW, (1)

involves a Wiener process W;, ¢t > 0, which is one
of the most fundamental stochastic processes and is
often called a Brownian motion. A Wiener process is a
Gaussian process with Wy = 0 with probability 1 and
normally distributed increments W; — W, for 0 < s < ¢
with

E(W,-W,) =0, EW,-W)>=t-s,
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where the increments W;, — W;, and W;, — W,, on non-
overlapping intervals (i.e., with 0 <1} <t <13 < 14)
are independent random variables. The sample paths of
a Wiener process are continuous, but they are nowhere
differentiable.

Consequently, an SODE is not a differential equa-
tion at all, but just a symbolic representation for the
stochastic integral equation

t t
X =Xy, +/ f(s, X5)ds +/ g(s, X;) d W,
to to

where the first integral is a deterministic Riemann
integral for each sample path. The second integral
cannot be defined pathwise as a Riemann-Stieltjes in-
tegral because the sample paths of the Wiener process
do not have even bounded variation on any bounded
time interval. Thus, a new type of stochastic integral
is required. An It6 stochastic integral szT f@)dw, is
defined as the mean-square limit of sums of products of
an integrand f evaluated at the left end point of each
partition subinterval times [t,, f,+1], the increment of
the Wiener process, i.e.,

Na—1

T
/to f(O)dW, :== m.s. — o 2;) f(t)
iz

(I/th-f-l - I/Vt") ’

where t,41—t, = A/Naforn =0,1,..., Na—1. The
integrand function f may be random or even depend
on the path of the Wiener process, but f(z) should
be independent of future increments of the Wiener
process, i.e., Wy, — W; for h > 0.

The Itd stochastic integral has the important proper-
ties (the second is called the It6 isometry) that

E[/mrf(r)dwt}:o, E[(/t:f(r)dwt)z}

T
=f E[f@)*]d:.

However, the solutions of It6 SODE satisfy a different
chain rule to that in deterministic calculus, called the
1td6 formula, i.e.,
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t
U, X,) = U(to,X,0)+f LU(s, X,) ds

fo

t
+/ L'(s. X,) d W,

fo
where

au

SU U
LU = —— —_—
TR T

LU,
28 o2 T8

An immediate consequence is that the integration rules
and tricks from deterministic calculus do not hold and
different expressions result, e.g.,

T 1, 1
Wy dWy = ~Wi — -T.
0 2 2

The situation for vector-valued SODE and vector-
valued Wiener processes is similar. Details can be
found in Refs. [3, 4, 6].

Stratonovich SODEs

There is another stochastic integral called the
Stratonovich integral, for which the integrand function
is evaluated at the midpoint of each partition
subinterval rather than at the left end point. It is written
with od W; to distinguish it from the It6 integral. A
Stratonovich SODE is thus written

dX, = f(t,X,)dt + g(t, X;) odW,.

Stratonovich stochastic calculus has the same chain
rule as deterministic calculus, which means that
Stratonovich SODE can be solved with the same
integration tricks as for ordinary differential equations.
However, Stratonovich stochastic integrals do not
satisfy the nice properties above for It6 stochastic
integrals, which are very convenient for estimates in
proofs. Nor does the Stratonovich SODE have same
direct connection with diffusion process theory as the
1td6 SODE, e.g., the coefficient of the Fokker-Planck
equation correspond to those of the Itd SODE (1), i.e.,

ap 0 1 ,3p
£ — —o°—— =0
TR TR LT
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The It6 and Stratonovich stochastic calculi are both
mathematically correct. Which one should be used is
really a modeling issue, but once one has been chosen,
the advantages of the other can be used through a mod-
ification of the drift term to obtain the corresponding
SODE of the other type that has the same solutions.

Numerical Solution of SODEs

The simplest numerical method for the above
SODE (1) is the Euler-Maruyama scheme given by

Yiri =Yy + f(t0. Vo) Ay + (10, Vo) AW,

where A, = t,4+1—t, and AW, = W,”Jrl —W,, . Thisis
intuitively consistent with the definition of the It6 inte-
gral. Here Y, is a random variable, which is supposed
to be an approximation on X;,. The stochastic incre-
ments AW, which are N'(0, A,) distributed, can be
generated using, for example, the Box-Muller method.
In practice, however, only individual realizations can
be computed.

Depending on whether the realizations of the solu-
tions or only their probability distributions are required
to be close, one distinguishes between strong and weak
convergence of numerical schemes, respectively, on
a given interval [tp,T]. Let A = max, A, be the
maximum step size. Then a numerical scheme is said
to converge with strong order y if, for sufficiently
small A,

E (‘XT - Y}Vﬂ) < Ky AV
and with weak order B if

E(p(xr) B (pri))] = Kpr &7

for each polynomial p. These are global discretization
errors, and the largest possible values of y and f
give the corresponding strong and weak orders, re-
spectively, of the scheme for a whole class of stochas-
tic differential equations, e.g., with sufficiently often
continuously differentiable coefficient functions. For
example, the Euler-Maruyama scheme has strong order
y = % and weak order 8 = 1, while the Milstein
scheme



Stochastic ODEs

Yn+1 =Y, + f([ann) An +g([n,Yn) AWn

1 ag )
A [ann q_ Z‘naYn Au/;1 _An
3 80 V)5 (1Y) {(AW) = A,

has strong order y = 1 and weak order 8 = 1; see
[2,3,5].

Note that these convergence orders may be better for
specific SODE within the given class, e.g., the Euler-
Maruyama scheme has strong order y = 1 for SODE
with additive noise, i.e., for which g does not depend
on x, since it then coincides with the Milstein scheme.

The Milstein scheme is derived by expanding the in-
tegrand of the stochastic integral with the Itd formula,
the stochastic chain rule. The additional term involves
the double stochastic integral fti”*" fti dw, dWws,
which provides more information about the non-
smooth Wiener process inside the discretization
subinterval and is equal to 1 {(AW,)*—A,}.
Numerical schemes of even higher order can be
obtained in a similar way.

In general, different schemes are used for strong
and weak convergence. The strong stochastic Taylor

schemes have strong order y = Lo, %, 2, ..

whereas weak stochastic Taylor schezmes have weak
order B = 1,2, 3, .... See [3] for more details. In
particular, one should not use heuristic adaptations of
numerical schemes for ordinary differential equations
such as Runge-Kutta schemes, since these may not
converge to the right solution or even converge at all.
The proofs of convergence rates in the literature
assume that the coefficient functions in the above
stochastic Taylor schemes are uniformly bounded, i.e.,
the partial derivatives of appropriately high order of
the SODE coefficient functions f and g exist and are
uniformly bounded. This assumption, however, is not
satisfied in many basic and important applications, for
example, with polynomial coefficients such as

dX, = —(1+X)(A = X)) dt + (1 - X?)dW,

or with square-root coefficients such as in the Cox-
Ingersoll-Ross volatility model

AV, =k (9 = V,) dt + p/Vi dW,,
which requires V; > 0. The second is more difficult

because there is a small probability that numerical
iterations may become negative, and various ad hoc
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methods have been suggested to prevent this. The paper
[1] provides a systematic method to handle both of
these problems by using pathwise convergence, i.e.,

sup |X,”(a)) - Yn(A)(a))| —> 0 as A —0,
Nt
weQ.

It is quite natural to consider pathwise convergence
since numerical calculations are actually carried out
path by path. Moreover, the solutions of some SODE
do not have bounded moments, so pathwise conver-
gence may be the only option.

Iterated Stochastic Integrals

Vector-valued SODE with vector-valued Wiener
processes can be handled similarly. The main new
difficulty is how to simulate the multiple stochastic
integrals since these cannot be written as simple
formulas of the basic increments as in the double
integral above when they involve different Wiener
processes. In general, such multiple stochastic integrals
cannot be avoided, so they must be approximated
somehow. One possibility is to use random Fourier
series for Brownian bridge processes based on the
given Wiener processes; see [3,5].

Another way is to simulate the integrals themselves
by a simpler numerical scheme. For example, double

integral
In+1 t
lonyn = / / AW} dw;!
tn tn

for two independent Wiener processes W,! and W?
can be approximated by applying the (vector-valued)
Euler-Maruyama scheme to the 2-dimensional It
SODE (with superscripts labeling components)

dx! = x*aw!,  dX}=dw? )
over the discretization subinterval [t,,7,+;] with a
suitable step size § = (t,4+1 — ?,)/ K. The solution
of the SODE (2) with the initial condition X ti = 0,
X,% = Wtf attime ¢t = f,4 is given by

X X, =AW

1 —
R (R
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Writing 7, = t, + k6 and 8Wn]:k = Wri_H — Wf{:, the
stochastic Euler scheme for the SDE (2) reads

Y, =Y +Y2W,. Y2, =Y +8W,

for0<k <K-1, 3)
with the initial value YO1 =0, YO2 = Wtf The strong
order of convergence of y = % of the Euler-Maruyama
scheme ensures that

E(|Yf - Iona]) < CVG,

so I(2,1),» can be approximated in the Milstein scheme
by Ylé with § ~ Aﬁ, ie., K ~ An_l, without affecting
the overall order of convergence.

Commutative Noise

Identities such as

41 t . . 41 t . .
[ [ awraws s [T awrawy
ty ty In In

— Aanl Aanz

allow one to avoid calculating the multiple integrals if
the corresponding coefficients in the numerical scheme
are identical, in this case if L'g»(¢,x) = L?g1(t,x)
(where L? is defined analogously to L') for an SODE
of the form

dX, = f(t, X)) dt +gi(t, X)) dW,' + g2(t, X;) d W
4)

Then the SODE (4) is said to have commutative noise.

Concluding Remarks

The need to approximate multiple stochastic integrals
places a practical restriction on the order of strong
schemes that can be implemented for a general SODE.
Wherever possible special structural properties like
commutative noise of the SODE under investigation
should be exploited to simplify strong schemes as
much as possible. For weak schemes the situation
is easier as the multiple integrals do not need to be
approximated so accurately. Moreover, extrapolation
of weak schemes is possible.

Stochastic Simulation

The important thing is to decide first what kind of
approximation one wants, strong or weak, as this will
determine the type of scheme that should be used, and
then to exploit the structural properties of the SODE
under consideration to simplify the scheme that has
been chosen to be implemented.
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Synonyms

Brownian Dynamics Simulation; Langevin Simulation;
Monte Carlo Simulations

Modelling a system or data one is often faced with the
following:

» Exact data is unavailable or expensive to obtain

* Data is uncertain and/or specified by a probability

distribution

or decisions have to be made with respect to the de-
grees of freedom that are taken explicitly into account.
This can be seen by looking at a system with two
components. One of the components could be water
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molecules and the other component large molecules.
The decision is to take the water molecules explicitly
into account or to treat them implicitly. Since the water
molecules move much faster than the large molecules,
we can eliminate the water by subsuming their action
on the larger molecules by a stochastic force, i.e., as
a random variable with a specific distribution. Thus
we have eliminated some details in favor of a prob-
abilistic description where perhaps some elements of
the model description are given by deterministic rules
and other contributes stochastically. Overall a model
derived along the outlined path can be viewed as if an
individual state has a probability that may depend on
model parameters.

In most of the interesting cases, the number of
available states the model has will be so large that
they simply cannot be enumerated. A sampling of the
states is necessary such that the most relevant states
will be sampled with the correct probability. Assume
that the model has some deterministic part. In the above
example, the motion of larger molecules is governed
by Newton’s equation of motion. These are augmented
by stochastic forces mimicking the water molecules.
Depending on how exactly this is implemented results
in Langevin equations

mi¥ = —=VU(x) —ymx + &(t)/2ykpTm, (1)

where x denotes the state (here the position), U the
potential, m the mass of the large molecule, kp the
Boltzmann constant, 7 the temperature, and ¢ the
stochastic force with the properties:

(@) =0
(EEEN) =8¢ —1").

)
3)

Neglecting the acceleration in the Langevin equa-
tion yields the Brownian dynamics equation of motion
x(1) =-VUX) /¢ +§@)V2D 4)

with = ymand D = kgT/¢.
Hence the sampling is obtained using the equations
of motion to transition from one state to the next. If
enough of the available states (here x) are sampled,

quantities of interest that depend on the states can be
calculated as averages over the generated states:
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A=) AX)P(x.), 5)

where P (x, ) is the probability of the state and « a set
of parameters (e.g., the temperature 7', mass m, etc.).

A point of view that can be taken is that what
the Egs. (1) and (4) accomplish is the generation of
a stochastic trajectory through the available states.
This can equally be well established by other means.
As long as we satisfy the condition that the right
probability distribution is generated, we could generate
the trajectory by a Monte Carlo method [1].

In a Monte Carlo formulation, a transition probabil-
ity from a state x to another state x’ is specified

W(x'|x). (6)

Together with the proposition probability for the
state x’, a decision is made to accept or reject the
state (Metropolis-Hastings Monte Carlo Method). An
advantage of this formulation is that it allows freedom
in the choice of proposition of states and the efficient
sampling of the states (importance sampling). In more
general terms, what one does is to set up a biased ran-
dom walk that explores the target distribution (Markov
Chain Monte Carlo).

A special case of the sampling that yields a Markov
chain is the Gibbs sampler. Assume x = (x!, x?) with
target P(x, o)

Algorithm 1 Gibbs Sampler Algorithm:
1: initialize xo = (x;, x2)
2: while i < max number of samples do

3: sample x; ~ P(x!|x2,, )
4:  sample x} ~ P(x?|x}, )
5: end while

then {x', x?} is a Markov chain. Thus we obtain a
sequence of states such that we can again apply (5) to
compute the quantities of interest.

Common to all of the above stochastic simulation
methods is the use of random numbers. They are either
used for the implementation of the random contribution
to the force or the decision whether a state is accepted
or rejected. Thus the quality of the result depends on
the quality of the random number generator.
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Short Definition

A stochastic system may contain one or more elements
of random, i.e., nondeterministic behavior. Compared
to a deterministic system, a stochastic system does not
always generate the same output for a given input. The
elements of systems that can be stochastic in nature
may include noisy initial conditions, random boundary
conditions, random forcing, etc.

Description

Stochastic systems (SS) are encountered in many appli-
cation domains in science, engineering, and business.
They include logistics, transportation, communication
networks, financial markets, supply chains, social sys-
tems, robust engineering design, statistical physics,

Stochastic Systems

systems biology, etc. Stochasticity or randomness is
perhaps associated with a bad outcome, but harnessing
stochasticity has been pursued in arts to create beauty,
e.g., in the paintings of Jackson Pollock or in the music
of lannis Xenakis. Similarly, it can be exploited in
science and engineering to design new devices (e.g.,
stochastic resonances in the Bang and Olufsen speak-
ers) or to design robust and cost-effective products
under the framework of uncertainty-based design and
real options [17].

Stochasticity is often associated with uncertainty,
either intrinsic or extrinsic, and specifically with the
lack of knowledge of the properties of the system;
hence quantifying uncertain outcomes and system
responses is of great interest in applied probability and
scientific computing. This uncertainty can be further
classified as aleatory, i.e., statistical, and epistemic
which can be reduced by further measurements or
computations of higher resolution. Mathematically,
stochasticity can be described by either deterministic
or stochastic differential equations. For example, the
molecular dynamics of a simple fluid is described by
the classical deterministic Newton’s law of motion or
by the deterministic Navier-Stokes equations whose
outputs, in both cases, however may be stochastic. On
the other hand, stochastic elliptic equations can be
used to predict the random diffusion of water in porous
media, and similarly a stochastic differential equation
may be used to model neuronal activity in the brain
[9,10].

Here we will consider systems that are governed
by stochastic ordinary and partial differential equations
(SODEs and SPDEs), and we will present some ef-
fective methods for obtaining stochastic solutions in
the next section. In the classical stochastic analysis,
these terms refer to differential equations subject to
white noise either additive or multiplicative, but in
more recent years, the same terminology has been
adopted for differential equations with color noise, i.e.,
processes that are correlated in space or time. The
color of noise, which can also be pink or violet, may
dictate the numerical method used to predict efficiently
the response of a stochastic system, and hence it is
important to consider this carefully at the modeling
stage. Specifically, the correlation length or time scale
is the most important parameter of a stochastic process
as it determines the effective dimension of the process;
the smaller the correlation scale, the larger the dimen-
sionality of the stochastic system.
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Example: To be more specific in the following,
we present a tumor cell growth model that involves
stochastic inputs that need to be represented according
to the correlation structure of available empirical data
[27]. The evolution equation is

X(t:w) =G(x) + g() fit: @) + fot: w),

x(0; @) =xo(w), (1
where x(¢; w) denotes the concentration of tumor cell
at time ¢,

x X
G =x(1-x0) - g =——.
B is the immune rate, and 6 is related to the rate of
growth of cytotoxic cells. The random process fi(¢; w)
represents the strength of the treatment (i.e., the dosage
of the medicine in chemotherapy or the intensity of
the ray in radiotherapy), while the process f>(f; w) is
related to other factors, such as drugs and radiotherapy,
that restrain the number of tumor cells. The parameters
B, 0 and the covariance structure of random processes
f1 and f; are usually estimated based on empirical
data.

If the processes fi(t,w) and f>(t, w) are indepen-
dent, they can be represented using the Karhunen-
Loeve (K-L) expansion by a zero mean, second-order
random process f(z, w) defined on a probability space
(2,F,P) andindexed overt € [a, b].Letus denote the
continuous covariance function of f(z; w) as C(s, t).
Then the process f(t; @) can be represented as

Na
o) =" Varer (O (),
k=1

where & (w) are uncorrelated random variables with
zero mean and unitary variance, while A, and e (¢) are,
respectively, eigenvalues and (normalized) eigenfunc-
tions of the integral operator with kernel C (s, t), i.e.,

b
/ C(s, t)er(s)ds = Arex ().

The dimension N, depends strongly on the correlation
scale of the kernel C(s,t). If we rearrange the eigen-
values Ay in a descending order, then any truncation
of the expansion f(¢;w) is optimal in the sense that it
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minimizes the mean square error [3, 18, 20]. The K-L
expansion has been employed to represent random
input processes in many stochastic simulations (see,
e.g., [7,20]).

Stochastic Modeling and Computational
Methods

We present two examples of two fundamentally differ-
ent descriptions of SS in order to show some of the
complexity but also rich stochastic response that can
be obtained: the first is based on a discrete particle
model and is governed by SODEs, and the second is
a continuum system and is governed by SPDEs.

A Stochastic Particle System: We first describe a
stochastic model for a mesoscopic system governed
by a modified version of Newton’s law of motion, the
so-called dissipative particle dynamics (DPD) equa-
tions [19]. It consists of particles which correspond
to coarse-grained entities, thus representing molecular
clusters rather than individual atoms. The particles
move off-lattice interacting with each other through
a set of prescribed (conservative and stochastic) and
velocity-dependent forces. Specifically, there are three
types of forces acting on each dissipative particle: (a)
a purely repulsive conservative force, (b) a dissipative
force that reduces velocity differences between the
particles, and (c) a stochastic force directed along the
line connecting the center of the particles. The last
two forces effectively implement a thermostat so that
thermal equilibrium is achieved. Correspondingly, the
amplitude of these forces is dictated by the fluctuation-
dissipation theorem that ensures that in thermodynamic
equilibrium the system will have a canonical distri-
bution. All three forces are modulated by a weight
function which specifies the range of interaction or
cutoff radius r. between the particles and renders the
interaction local.

The DPD equations for a system consisting of N
particles have equal mass (for simplicity in the pre-
sentation) m, position r;, and velocities u;, which are
stochastic in nature. The aforementioned three types of
forces exerted on a particle 7 by particle j are given by

d d
F, = FO(rij)ey. Fi; = —yo® (rij)(vij - e;j)eij,

Flr/ = oa)r(rij)éijeij,
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— Vi ‘
- - averaged |:

distance (r)

Stochastic Systems, Fig. 1 Left: Lennard-Jones potential and its averaged soft repulsive-only potential. Right: Polymer chains

flowing in a sea of solvent in DPD. For more details see [19]

where rij =T —Tr;, Vi = Vi, —V;, Ijj = |l'ij|
and the unit vector e;; = % The variables y and o
determine the strength of the dissipative and random
forces, respectively, &; are symmetric Gaussian ran-
dom variables with zero mean and unit variance, and
o? and " are weight functions.

The time evolution of DPD particles is described by
Newton’s law

 FeSt + RISt + FI /8t

mi

dl’,’ = v;t; dv;

where F{ = >, F}; is the total conservative force
acting on particle 7; Ff" and F; are defined similarly.
The velocity increment due to the random force has
a factor /8¢ since it represents Brownian motion,
which is described by a standard Wiener process with
. . _lg—nl
a covariance kernel given by Crp(fi,t;) = e~ 1,
where A is the correlation time for this stochastic
process. The conservative force F¢ is typically given
in terms of a soft potential in contrast to the Lennard-
Jones potential used in molecular dynamics studies
(see Fig. 1(left)). The dissipative and random forces are
characterized by strengths w? (r; ;) and w” (r;;) coupled
due to the fluctuation-dissipation theorem.
Several complex fluid systems in industrial and
biological applications (DNA chains, polymer gels,

lubrication) involve multiscale processes and can be
modeled using modifications of the above stochastic
DPD equations [19]. Dilute polymer solutions are a
typical example, since individual polymer chains form
a group of large molecules by atomic standards but
still governed by forces similar to intermolecular ones.
Therefore, they form large repeated units exhibiting
slow dynamics with possible nonlinear interactions
(see Fig. 1(right)).

A Stochastic Continuum System: Here we present
an example from classical aerodynamics on shock
dynamics by reformulating the one-dimensional piston
problem within the stochastic framework, i.e., we allow
for random piston motions which may be changing in
time [11]. In particular, we superimpose small random
velocity fluctuations to the piston velocity and aim to
obtain both analytical and numerical solutions of the
stochastic flow response. We consider a piston having
a constant velocity, U,, moving into a straight tube
filled with a homogeneous gas at rest. A shock wave
will be generated ahead of the piston. A sketch of the
piston-driven shock tube with random piston motion
superimposed is shown in Fig. 2(left).

As shown in Fig. 2 (left), U, and § are the deter-
ministic speed of the piston and deterministic speed of
the shock, respectively, and pgy, Py, Co, p1, P1, and C;
are the deterministic density, pressure, and local sound
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U=U,+v,(t)

=P, .

P =pq S+vg(t

C-=C; +Vg (1)
Up+vp (1)
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Stochastic Systems, Fig. 2 Left: Sketch of piston-driven shock
tube with random piston motion. Right: Normalized variance of
perturbed shock paths. Solid line: perturbation analysis results.

speed ahead and after of the shock, respectively. We
now define the stochastic motion of the piston by super-
imposing a small stochastic component to the steady
speed of the piston, i.e., u,(t) = Up[l + €V (t, w)],
where € is the amplitude of the random perturbation.

Here V' (¢, w) is modeled as a random process with zero
. I —nl
mean and covariance (V(t1, w), V(tz,w)) = e~ T

where A is the correlation time; it can be represented
by a truncated K-L expansion as explained earlier. Our
objective is to quantify the deviation of the perturbed
shock paths due to the random piston motion from
the unperturbed ones, which are given by X(t) =
S - t. If the amplitude € is small, 0 < ¢ < 1, the
analytical solutions for the perturbed shock paths can
be expressed as follows:

oo n—l1

(1) =(UpgS'A/a)’ [22 > =) () +

n=1m=0

2

> L, (r)]
n=0

where T = at/A, and

2t 1
IB_m + ﬂn+m
11— e—(ﬂ’"—ﬂ”)t] ’

Iym(7) =

I:e_ﬂmT + e_ﬂnT

T

Dashed line: early-time asymptotic results, (§2(z)) ~ 2. Dash-
dotted line: late-time asymptotic results, (£2(7)) ~ T

C1+U,—S
where S/ = jTSP,m < n o = lc—l",,B =
CHU,—S o 1k S+,
Crsu, 4= g andr = 17 Here k = C st

and y = ¢, /c, is the ratio of specific heats.

In Fig. 2 (right), the variance of the perturbed shock
path, (£2(1))/(U,qS’A/a)?, is plotted as a function
of  with U, = 1.25, i.e., corresponding to Mach
number of the shock M = 2. The asymptotic formulas
for small and large t are also included in the plot.
In Fig. 2 (right), we observe that the variance of the
shock location grows quadratically with time for
early times and switches to linear growth for longer
times.

The stochastic solutions for shock paths, for either
small or large piston motions, can also be obtained
numerically by solving the full nonlinear Euler equa-
tions with an unsteady stochastic boundary, namely,
the piston position to model the stochastic piston prob-
lem. Classic Monte Carlo simulations [4] or quasi-
Monte Carlo simulations [2] can be performed for
these stochastic simulations. However, due to the slow
convergence rate of Monte Carlo methods, it may take
thousands of equivalent deterministic simulations to
achieve acceptable accuracy. Recently, methods based
on generalized polynomial chaos (gPC) expansions
have become popular for such SPDEs due to their fast
convergence rate for SS with color noise. The term
polynomial chaos was first coined by Norbert Wiener
in 1938 in his pioneering work on representing Gaus-
sian stochastic processes [22] as generalized Fourier
series. In Wiener’s work, Hermite polynomials serve
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as an orthogonal basis. The gPC method for solving
SPDE:s is an extension of the polynomial chaos method
developed in [7], inspired by the theory of Wiener-
Hermite polynomial chaos. The use of Hermite poly-
nomials may not be optimum in applications involving
non-Gaussian processes, and hence gPC was proposed
in [25] to alleviate the difficulty. In gPC, different
kinds of orthogonal polynomials are chosen as a basis
depending on the probability distribution of the random
inputs. The Pth-order, gPC approximations of the
solution u(x, §) can be obtained by projecting u onto
the space W, i.e.,

M
Pru=uf(x,6) = Y n(0)dn(§), ()

m=1

where ]P’f\),u denotes the orthogonal projection operator
from L2(z) onto W', M + 1 = (P! and i, are
the coefficients, and p the probability measure.

Although gPC was shown to exhibit exponential
convergence in approximating stochastic solutions
at finite times, gPC may converge slowly or fail
to converge even in short-time integration due to a
discontinuity of the approximated solution in random
space. To this end, the Wiener-Haar method [14, 15]
based on wavelets, random domain decomposi-
tion [12], multielement-gPC (ME-gPC) [21], and
multielement probabilistic collocation method (ME-
PCM) [5] were developed to address problems related
to the aforementioned discontinuities in random
space. Additionally, a more realistic representation
of stochastic inputs associated with various sources of
uncertainty in the stochastic systems may lead to high-
dimensional representations, and hence exponential
computational complexity, running into the
called curse of dimensionality. Sparse grid stochastic
collocation method [24] and various versions ANOVA
(ANalysis Of VAriance) method [1, 6, 8, 13, 23, 26]
have been employed as effective dimension-reduction
techniques for quantifying the uncertainty in stochastic
systems with dimensions up to 100.

SO-

Conclusion

Aristotle’s logic has ruled our scientific thinking in the
past two millennia. Most scientific models and theories
have been constructed from exact models and logic
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reasoning. It is argued in [16] that SS models and
statistical reasoning are more relevant “i) to the world,
ii) to science and many parts of mathematics and iii)
particularly to understanding the computations in our
own minds, than exact models and logical reasoning.”
Indeed, many real-world problems can be viewed or
modeled as SS with great potential benefits across
disciplines from physical sciences and engineering
to social sciences. Stochastic modeling can bring in
more realism and flexibility and account for uncertain
inputs and parametric uncertainty albeit at the ex-
pense of mathematical and computational complexity.
However, the rapid mathematical and algorithmic ad-
vances already realized at the beginning of the twenty-
first century along with the simultaneous advances
in computer speeds and capacity will help alleviate
such difficulties and will make stochastic modeling the
standard norm rather than the exception in the years
ahead. The three examples we presented in this chapter
illustrate the diverse applications of stochastic mod-
eling in biomedicine, materials processing, and fluid
mechanics. The same methods or proper extensions
can also be applied to quantifying uncertainties in cli-
mate modeling; in decision making under uncertainty,
e.g., in robust engineering design and in financial mar-
kets; but also for modeling the plethora of emerging
social networks. Further work on the mathematical
and algorithmic formulations of such more complex
and high-dimensional systems is required as current
approaches cannot yet deal satisfactorily with white
noise, system discontinuities, high dimensions, and
long-time integration.
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Definition Terms/Glossary

Boundary layer It refers to the layer of fluid in the
immediate vicinity of a bounding surface where the
effects of viscosity are significant.

GMRES Abbreviation for the generalized minimal
residual algorithm. It refers to an iterative method
for the numerical solution of a nonsymmetric sys-
tem of linear equations.

Precondition It consists in multiplying both sides of
a system of linear equations by a suitable matrix,
called the preconditioner, so as to reduce the condi-
tion number of the system.

The Incompressible Navier-Stokes Model

The incompressible Navier-Stokes system of equations
is a widely accepted model for viscous Newtonian
incompressible flows. It is extensively used in me-
teorology, oceanography, canal flows, pipeline flows,
automotive industry, high-speed trains, wind turbines,
etc. Computing accurately its solutions is a difficult and
important challenge.

A Newtonian fluid is a model whose Cauchy stress
tensor depends linearly on the strain tensor, in contrast
to non-Newtonian fluids for which this relation is
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nonlinear and possibly implicit. For a Navier-Stokes
fluid model, the constitutive equation defining the
Cauchy stress tensor 7T is:

T =—nl+2uDu), (1)

where 1 > 0 is the constant viscosity coefficient, rep-
resenting friction between molecules, 7 is the pressure,
u is the velocity, D (u) = %(V u+V uT) is the strain
Ui

% is the gradient tensor. When
J

substituted into the balance of linear momentum

tensor, and (Vu);; =

d
,od—l: —dvT +pf,

)
where p > 0 is the fluid’s density, f is an external
body force (e.g., gravity), and ‘51—'; is the material time
derivative

du OJu ou
T E+u-Vu, whereu-Vu=[V u]u—Zuia—Xi,
(3)

(1) gives, after division by p,

0 1
—u—l—u-Vu:——Vn—}—ZﬁdiVD(u)—}—f.
ot o o

But the density p is constant, since the fluid is incom-

pressible. Therefore renaming the quantities p = %

and the kinematic viscosity v = %, the momentum

equation reads:

0
—u+u~Vu=—Vp+2vdiVD(u)+f.

o “)

As the fluid is incompressible, the conservation of mass

dp

o + div(pu) = 0,

reduces to the incompressibility condition

divu = 0. )
From now on, we assume that £2 is a bounded, con-
nected, open set in R3, with a suitably piecewise
smooth boundary 082 (essentially, without cusps or
multiple points). The relations (4) and (5) are the
incompressible Navier-Stokes equations in 2. They

Stokes or Navier-Stokes Flows

are complemented with boundary conditions, such as
the no-slip condition

u=20, onas2, 6)
and an initial condition
u(-,0) = up(-) in £2,
satisfying divuy = 0, and uy = 0, on 952. 7

In practical situations, other boundary conditions may
be prescribed. One of the most important occurs in
flows past a moving obstacle, in which case (6) is
replaced by

u=g, ondf2 Where/ g-n=0, ®)

82

where g is the velocity of the moving body and n
denotes the unit exterior normal vector to d52. To
simplify, we shall only discuss (6), but we shall present
numerical experiments where (8) is prescribed.

If the boundary conditions do not involve the bound-
ary traction vector T n, (4) can be substantially simpli-
fied by using the fluid’s incompressibility. Indeed, (5)
implies 2div D (u) = A u, and (4) becomes

0
a—l:+u-Vu—vAu+Vp:f.

©)
When written in dimensionless variables (denoted by
the same symbols), (9) reads

du 1
4t u-Vu—-—Au+Vp=f,
a[+u u Re u+Vp=f

(10)
where Re is the Reynolds number, Re= %, Lisa
characteristic length, and U a characteristic velocity.
When 1 < Re < 10°, the flow is said to be laminar.
Finally, when the Reynolds number is small and the
force f does not depend on time, the material time
derivative can be neglected. Then reverting to the
original variables, this yields the Stokes system:

—vAu+Vp=Ff, (11)

complemented with (5) and (6).
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Some Theoretical Results

Let us start with Stokes problems (11), (5), and (6). In
view of both theory and numerics, it is useful to write
it in variational form. Let

H'(2)={velL*(2); VvelL*(R),
Hy(2) ={ve H'(£2); v =00nd},

L3(2) = {v e L*(2); (v.1) = 0},

where (-, -) denotes the scalar product of L2(£2):

(f,g)=/9fg-

Let H™'(£2) denote the dual space of H/(£2) and
(,+) the duality pairing between them. The space H,
takes into account the no-slip boundary condition on
the velocity, and the space L2 is introduced to lift
the undetermined constant in the pressure; note that
it is only defined by its gradient and hence up to one
additive constant in a connected region. Assume that
f belongs to H~'(£2)>. For our purpose, a suitable
variational form is: Find a pair (u, p) € H,(£2)* x
L2(£2) solution of

V(v,9) €Hy(2)* x L3(£2),

v(Vu,Vv)—(p,divv)—(q,divu)={(f,v).

12)

Albeit linear, this problem is difficult both from theo-
retical and numerical standpoints. The pressure can be
eliminated from (12) by working with the space V' of
divergence-free velocities:

V={ve Hol(.Q)3; divv = 0},

but the difficulty lies in recovering the pressure. Ex-
istence and continuity of the pressure stem from the
following deep result: The divergence operator is an
isomorphism from V* onto L%($2), where V1 is the
orthogonal of V in H(£2)*. In other words, for every
g € L%(£2), there exists one and only one v € V= so-
lution of divv = ¢. Moreover v depends continuously
on g:

1
Vol < ,E”q””(m’ (13)
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where 8 > 0, only depends on §2. This inequality is
equivalent to the following “inf-sup condition’:

(divv, q)

inf sup
4EL3(Q) veH) (2)} IVollae gl e

=B (14)

Interestingly, (14) is not true when 942 has an outward
cusp, a situation that occurs, for instance, in a flow
exterior to two colliding spheres. There is no simple
proof of (14). Its difficulty lies in the no-slip boundary
condition prescribed on v: The proof is much simpler
when it is replaced by the weaker condition v - n = 0.
The above isomorphism easily leads to the following
result:

Theorem 1 For any f in H='(2)? and any v > 0,
Problem (12) has exactly one solution and this solution
depends continuously on the data:

1 1
”Vu”LZ(.Q)f;”f”H—‘(.Q)a ”p”LZ(Q)SE”f”H—‘(Q)~
(15)

Next we consider the steady Navier-Stokes system.
The natural extension of (12) is: Find a pair (u, p) €
H, (£2)? x L%(£2) solution of

V(v.q) € Hy(2)’ x L3(R2).
viVu,Vv)+ (u-Vu,v)

= (p.dive) — (¢.diva) = (f,v).  (16)
Its analysis is fairly simple because on one hand the
nonlinear convection term # - V u has the following
antisymmetry:

YueV,Yve HY(2),(u-Vu,v) =—u-Vo,u),
(17)

and on the other hand, it belongs to L3/2(.Q)3, which,
roughly speaking, is significantly smoother than the
data f in H~'(£2)3. This enables to prove existence of
solutions, but uniqueness is only guaranteed for small
force or large viscosity. More precisely, let

w-Vu,v)
sup .
W vEV,w,u,v#£0 v W||L2(9) |V "||L2(9) Vv ||L2(9)

N =

Then we have the next result.
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Theorem 2 For any f in H='(£2)? and any v > 0,
Problem (16) has at least one solution. A sufficient
condition for uniqueness is

N

ﬁ”f”H_l(_Q) < 1. (18)

Now we turn to the time-dependent Navier-Stokes
system. Its analysis is much more complex because
in R3 the dependence of the pressure on time holds
in a weaker space. To simplify, we do not treat the
most general situation. For a given time interval [0, 77,
Banach space X, and number r > 1, the relevant
spaces are of the form L” (0, T'; X), which is the space
of functions defined and measurable in |0, 7'[, such that

T
/ lollyde < oo,
0

and

d
W (0,T: X)={vel (0,T; X) ;d—l; eL’(0,T; X)),

Wy (0,T; X)={v eW'(0,T; X) ;v(0)=v(T) =0},

with dual space W~17(0, T; X), L + & = 1. There
are several weak formulations expressing (4)—(7). For
numerical purposes, we shall use the following one:
Find u € L*0,T;V) N L*®(0,T; L*(£2)%), with
9% in L32(0,T;V’), and p € W™1°(0,T: L3(R2))
satisfying a.e. in |0, T'[

V(v.q) € Hy(2)° x L3(2),
%(M(l),v)+V(Vu(l)7Vv)+(u(l)-Vu(l),v)

— (p(1),dive) — (q.divu(r)) = (f (1), v),
19)

with the initial condition (7). This problem always has
at least one solution.

Theorem 3 For any f in L*(0,T; H™'(2)3%), any
v > 0, and any initial data uy € V, Problem (19), (7)
has at least one solution.

Unfortunately, unconditional uniqueness (which is
true in R?) is to this date an open problem in R?. In
fact, it is one of the Millennium Prize Problems.

Stokes or Navier-Stokes Flows

Discretization

Solving numerically a steady Stokes system is costly
because the theoretical difficulty brought by the pres-
sure is inherited both by its discretization, whatever
the scheme, and by the computer implementation of
its scheme. This computational difficulty is aggra-
vated by the need of fine meshes for capturing com-
plex flows produced by the Navier-Stokes system. In
comparison, when the flow is laminar, at reasonable
Reynolds numbers, the additional cost of the nonlinear
convection term is minor. There are some satisfac-
tory schemes and algorithms but so far no “miracle”
method.

Three important methods are used for discretiz-
ing flow problems: Finite-element, finite-difference, or
finite-volume methods. For the sake of simplicity, we
shall mainly consider discretization by finite-element
methods. Usually, they consist in using polynomial
functions on cells: triangles or quadrilaterals in R? or
tetrahedra or hexahedra in R3. Most finite-difference
schemes can be derived from finite-element methods
on rectangles in R? or rectangular boxes in R3, coupled
with quadrature formulas, in which case the mesh
may not fit the boundary and a particular treatment
may be required near the boundary. Finite volumes
are closely related to finite differences but are more
complex because they can be defined on very general
cells and do not involve functions. All three methods
require meshing of the domain, and the success of
these methods depends not only on their accuracy but
also on how well the mesh is adapted to the problem
under consideration. For example, boundary layers
may appear at large Reynolds numbers and require
locally refined meshes. Constructing a “good” mesh
can be difficult and costly, but these important meshing
issues are outside the scope of this work. Last, but not
least, in many practical applications where the Stokes
system is coupled with other equations, it is important
that the scheme be locally mass conservative, i.e., the
integral mean value of the velocity’s divergence be zero
in each cell.

Discretization of the Stokes Problem

Let 7, be a triangulation of 2 made of tetrahedra (also
called elements) in R?, the discretization parameter h
being the maximum diameter of the elements. For ap-
proximation purposes, 7; is not completely arbitrary:
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it is assumed to be shape regular in the sense that
its dihedral angles are uniformly bounded away from
0 and m, and it has no hanging node in the sense
that the intersection of two cells is either empty, or a
vertex, or a complete edge, or a complete face. For
a given integer k > 0, let P; denote the space of
polynomials in three variables of total degree k and
Qx that of degree k in each variable. The accuracy
of a finite-element space depends on the degree of
the polynomials used in each cell; however, we shall
concentrate on low-degree elements, as these are most
frequently used.

Let us start with locally mass conservative methods
and consider first conforming finite-element methods,
i.e., where the finite-element space of discrete veloci-
ties, say Xy, is contained in H, (£2)°. Strictly speaking,
the space of discrete pressures should be contained
in L2(£2). However, the zero mean-value constraint
destroys the band structure of the matrix, and therefore,
this constraint is prescribed weakly by means of a
small, consistent perturbation. Thus the space of dis-
crete pressures, say Qj, is simply a discrete subspace
of L?(£2), and problem (12) is discretized by: Find
(un, pr) € X, x Qy, solution of

V(vn,qn) € Xpn X Qn,
v(Vuy, Vv,)—(pn,divvy) — (gn, divu,) — e(ph. gn)

= (f.vn), (20)

where ¢ > 0 is a small parameter. Let M), = Q, N
L2(£2). Regardless of their individual accuracy, X,
and M), cannot be chosen independently of each other
because they must satisfy a uniform discrete analogue
of (14), namely,

(div vy, gqp) > g,
Vv, ||L2((2) lgn ||L2((2)

inf sup 21

ghE€My vy EX)

for some real number §* > 0, independent of A.
Elements that satisfy (21) are called inf-sup stable. For
such elements, the accuracy of (20) depends directly on
the individual approximation properties of X, and Q.

Roughly speaking, (21) holds when a discrete ve-
locity space is sufficiently rich compared to a given
discrete pressure space. Observe also that the discrete
velocity’s degree in each cell must be at least one
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in order to guarantee continuity at the interfaces of
elements.

We begin with constant pressures with one degree
of freedom at the center of each tetrahedron. It can be
checked that, except on some very particular meshes,
a conforming PP; velocity space is not sufficiently rich
to satisfy (21). This can be remedied by adding one
degree of freedom (a vector in the normal direction) at
the center of each face, and it is achieved by enriching
the velocity space with one polynomial of IP; per face.
This element, introduced by Bernardi and Raugel, is
inf-sup stable and is of order one. It is frugal in number
of degrees of freedom and is locally mass conserva-
tive but complex in its implementation because the
velocity components are not independent. Of course,
three polynomials of P53 (one per component) can be
used on each face, and thus each component of the
discrete velocity is the sum of a polynomial of Py,
which guarantees accuracy, and a polynomial of Ps,
which guarantees inf-sup stability, but the element is
more expensive.

The idea of degrees of freedom on faces motivates
a nonconforming method where X is contained in
L?($2)? and problem (12) is discretized by the follow-
ing: Find (u;,, py) € X, x Qj, solution of

Y (Vh.gn) € Xun X O,

v Z (Vup, Vop)r — Z (pn.divop)r
1T, e,

— Y (qn.diva)r — e(pa.qn) = (f 1), (22)
7eT,

The inf-sup condition (21) is replaced by:

> oreT ([divon, gn)r

inf  sup > B* where
qhEM) v EX ”Vvh”h”qh”Lz(Q)
1/2

1= (X 1 Bae) (23)

TeT,

The simplest example, introduced by Crouzeix and
Raviart, is that of a constant pressure and each veloc-
ity’s component P; per tetrahedron and each velocity’s
component having one degree of freedom at the center
of each face. The functions of X; must be continuous
at the center of each interior face and vanish at the
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center of each boundary face. Then it is not hard to
prove that (23) is satisfied. Thus this element has order
one, it is fairly economical and mass conservative, and
its implementation is fairly straightforward.

The above methods easily extend to hexahedral
triangulations with Cartesian structure (i.e., eight hexa-
hedra meeting at any interior vertex) provided the poly-
nomial space [Py is replaced by the inverse image of Qy,
on the reference cube. Furthermore, such hexahedral
triangulations offer more possibilities. For instance, a
conforming, inf-sup stable, locally mass conservative
scheme of order two can be obtained by taking, in each
cell, a IP; pressure and each component of the velocity
in Qz.

Now we turn to conforming methods that use con-
tinuous discrete pressures; thus the pressure must be at
least IP; in each cell and continuous at the interfaces.
Therefore the resulting schemes are not locally mass
conservative. It can be checked that velocities with
P; components are not sufficiently rich. The simplest
alternative, called “mini-element” or “IP;—bubble,” en-
riches each velocity component in each cell with a
polynomial of P4 that vanishes on the cell’s boundary,
whence the name bubble. This element is inf-sup
stable and has order one. Its extension to order two,
introduced in R? by Hood and Taylor, associates with
the same pressure, velocities with components in P,. It
is inf-sup stable and has order two.

Discretization of the Navier-Stokes System

Here we present straightforward discretizations of (19).
The simplest one consists in using a linearized back-
ward Euler finite-difference scheme in time. Let N > 1
be an integer, 6t = T/ N the corresponding time step,
and t, = nét the discrete times. Starting from a finite-
element approximation or interpolation, say ug of ug
satisfying the discrete divergence constraint of (20), we
construct a sequence (u}, p;) € X, x Qy, such that for
1<n<N:

V(vn,qn) € Xn X Qn,
1 — n n— n
57— ) v (Vap, Vo) +e@ uf, o)

— (py-divey) — (gn, divay) — e(py.qn) = (f", va),
(24)

where f" is an approximation of f(f,,-) and
c(wp;up,vy) a suitable approximation of the
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convection term (w - Vu,v). As (17) does not
necessarily extend to the discrete spaces, the preferred
choice, from the standpoint of theory, is

1
cwpsup, vy) = 5[(% ~Vuy,vp) — (wy - Vo, uh)],
(25)

because it is both consistent and antisymmetric, which
makes the analysis easier. But from the standpoint of
numerics, the choice

cwpsup,vy) = (W -V, vy) (26)

is simpler and seems to maintain the same accuracy.
Observe that at each step 7n, (24) is a discrete Stokes
system with two or three additional linear terms, ac-
cording to the choice of form c. In both cases, the
matrix of the system is not symmetric, which is a strong
disadvantage. This can be remedied by completely
time lagging the form c, i.e., replacing it by (u}~" -
Vul=l vy,).

There are cases when none of the above lineariza-
tions are satisfactory, and the convection term is ap-
proximated by c(uj;uj},v;) with ¢ defined by (25)
or (26). The resulting scheme is nonlinear and must be
linearized, for instance, by an inner loop of Newton’s
iterations. Recall Newton’s method for solving the
equation f(x) = 0 in R: Starting from an initial guess
X, compute the sequence (x;) for k > 0 by

)
S)

Its generalization is straightforward and at step n,
starting from uj; o = uZ_l, the inner loop reads: Find
(@nk+1, Phik+1) € Xn x Qp solution of

Xk+1 = Xk

1
Y (Ui, gn)EXH X O, E(uh,k+l, v)+v(Vupi41,Voy)
+ @i+ Uni, Vi) + c@pk;Whit1,V5)
— (Phi+1,divoy) — (gn. divup k1) — e(Phk+1,9n)
n 1 n—I1
=c@pi;uni.vn) + (f" vn) + E(u,, L Vp).
27

Experience shows that only a few iterations are suffi-
cient to match the discretization error. Once this inner
loop converges, we set uj, := Up+1, pj ‘= Phk+1-
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An interesting alternative to the above schemes is
the characteristics method that uses a discretization of
the material time derivative (see (3)):

d 1
Tty x) = o (wh ) —u ™ (0 (0)).

where y"~!(x) gives the position at time ¢, of a parti-
cle located at x at time #,. Its first-order approximation
is

X)) = x = @y (x).
Thus (24) is replaced by

Y (vi.qn) € Xn X Qp,

1
E(uz —u} o " v) (V. V)

= (py» divoy) — (gn, divuy) —e(py, qn) = (", va),
(28)

whose matrix is symmetric and constant in time and
requires no linearization. On the other hand, computing
the right-hand side is more complex.

Algorithms

In this section we assume that the discrete spaces
are inf-sup stable, and to simplify, we restrict
the discussion to conforming discretizations. Any
discretization of the time-dependent Navier-Stokes
system requires the solution of at least one Stokes
problem per time step, whence the importance of an
efficient Stokes solver. But since the matrix of the
discrete Stokes system is large and indefinite, in R? the
system is rarely solved simultaneously for u; and py,.
Instead the computation of p; is decoupled from that
of uy,.

Decoupling the Pressure and Velocity

Let U be the vector of velocity unknowns, P that of
pressure unknowns, and F the vector of data repre-
sented by (f,v;). Let A be the (symmetric positive
definite) matrix of the discrete Laplace operator repre-
sented by v(Vuy, Vvy,), B the matrix of the discrete
divergence operator represented by (g, divay), and C
the matrix of the operator represented by e(pn, qn).
Owing to (21), the matrix B has maximal rank. With
this notation, (20) has the form:
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AU-B"™P=F , —-BU-CP =0, (29

whose matrix is symmetric but indeed indefinite. Since
A is nonsingular, a partial solution of (29) is

(BA™'B" +C)P =-BA'F,

U=A4"YF+B"P). (30

As B has maximal rank, the Schur complement
BA'BT + C is symmetric positive definite, and
an iterative gradient algorithm is a good candidate for
solving (30). Indeed, (30) is equivalent to minimizing
with respect to @ the quadratic functional

1 1
K(Q)=§(AUQ,0Q)+§(CQ,Q), with
Avg=F +B'Q. 31)

A variety of gradient algorithms for approximating
the minimum are obtained by choosing a sequence
of direction vectors W¥ and an initial vector Py and
computing a sequence of vectors Py defined for each
k > 1by:

Py =Pi 1 —pp—1 Wi,
K(Pi—i — pk—1Wia) = ;fellg K(Pj—1 — pWi-1).
(32)

where

Usually the direction vectors W are related to the
gradient of K, whence the name of gradient algorithms.
It can be shown that each step of these gradient al-
gorithms requires the solution of a linear system with
matrix A, which is equivalent to solving a Laplace
equation per step. This explains why solving the Stokes
system is expensive.

The above strategy can be applied to (28) but not
to (24) because its matrix A4 is no longer symmetric. In
this case, a GMRES algorithm can be used, but this
algorithm is expensive. For this reason, linearization
by fully time lagging ¢ may be preferable because
the matrix A becomes symmetric. Of course, when
Newton’s iterations are performed, as in (27), this
option is not available because A is not symmetric. In
this case, a splitting strategy may be useful.

Splitting Algorithms
There is a wide variety of algorithms for splitting the
nonlinearity from the divergence constraint. Here is an
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example where the divergence condition is enforced and therefore can be preconditioned by a Laplace
once every other step. At step n, operator, while the second step is an implicit linearized
1. Knowing (uz_l, p;l’_l) € X, x Qp, compute an in-  system without constraint.

termediate velocity (w}, p;) € X;, x Qy, solution of

Numerical Experiments
Y(vi, qn) € X X O,
1 We present here two numerical experiments of bench-
E(WZ — u’,’l_l, vy) — (py,dive,)—(ga.divw,) marks programmed with the software FreeFem-++.
More details including scripts and plots can be found
—e(piqn) = (f" o) —v (V™' Vo) online at hitp://www.ljll.math.upme.fr/~hecht/ftp/
(33) ECM-2013.

— c(uZ_l;u’;l_l, vy).

2. Compute u} € X solution of The Driven Cavity in a Square
We use the Taylor-Hood P, — P; scheme to solve the

1 | steady Navier-Stokes equations in the square cavity
Vv, € Xp, E(“Z —up L vp) +v(Vu, Vor) 2 =)0, 1[x]0, 1] with upper boundary I'y =]0, 1[x{1}:

+ cwyug,vp) = (f", vn) + (pj, dive,). (34) 1
b h —ﬁAu+u-Vu+Vp=0 , divu =0,

The first step is fairly easy because it reduces to a
“Laplace” operator with unknown boundary conditions ulr, = (1,00, ulag\r, = (0,0),

Stokes or Navier-Stokes Flows, Fig. 1 From left to right: pressure at Re 9,000, adapted mesh at Re 8,000, stream function at Re
9,000. Observe the cascade of corner eddies

=

Stokes or Navier-Stokes Flows, Fig. 2 Von Kéarmdn’s vortex street


http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
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with different values of Re ranging from 1 to
9,000. The discontinuity of the boundary values
at the two upper corners of the cavity produces a
singularity of the pressure. The nonlinearity is solved
by Newton’s method, the initial guess being obtained
by continuation on the Reynolds number, i.e., from
the solution computed with the previous Reynolds
number. The address of the script is cavityNewton.edp

(Fig. ).

Flow Past an Obstacle: Von Karman's Vortex

Street in a Rectangle

The Taylor-Hood P, — P; scheme in space and
characteristics method in time are used to solve the
time-dependent Navier-Stokes equations in a rectangle
2.2 x 0.41 m with a circular hole of diameter 0.1 m
located near the inlet. The density p = 1.0 % and the

kinematic viscosity v = 1073 mT2 All the relevant data
are taken from the benchmark case 2D-2 that can be
found online at http://www.mathematik.tu-dortmund.
de/lsiii/cms/papers/SchaeferTurek1996.pdf. The
address of the script is at http://www.]jll.math.upmc.
fr/~hecht/ftp/ECM-2013 is NSCaraCyl-100-mpi.edp
or NSCaraCyl-100-seq.edp and func-max.idp (Fig. 2).

Bibilographical Notes

The bibliography on Stokes and Navier-Stokes equa-
tions, theory and approximation, is very extensive and
we have only selected a few references.

A mechanical derivation of the Navier-Stokes equa-
tions can be found in the book by L.D. Landau and
E.M. Lifshitz:

Fluid Mechanics, Second Edition, Vol. 6 (Course of
Theoretical Physics), Pergamon Press, 1959.

The reader can also refer to the book by C. Truesdell
and K.R. Rajagopal:

An Introduction to the Mechanics of Fluids, Model-
ing and Simulation in Science, Engineering and Tech-
nology, Birkhauser, Basel, 2000.

A thorough theory and description of finite element
methods can be found in the book by P.G. Ciarlet:

Basic error estimates for elliptic problems - Finite
Element Methods, Part 1, in Handbook of Numerical
Analysis, II, P.G. Ciarlet and J.L. Lions, eds., North-
Holland, Amsterdam, 1991.
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The reader can also refer to the book by T. Oden and
J.N. Reddy:

An introduction to the mathematical theory of finite
elements, Wiley, New-York, 1976.

More computational aspects can be found in the
book by A. Ern and J.L. Guermond:

Theory and Practice of Finite Elements, AMS 159,
Springer-Verlag, Berlin, 2004.

The reader will find an introduction to the theory
and approximation of the Stokes and steady Navier-
Stokes equations, including a thorough discussion on
the inf-sup condition, in the book by V. Girault and
P.A. Raviart:

Finite Element Methods for Navier-Stokes
Equations. Theory and Algorithms, SCM 5§, Springer-
Verlag, Berlin, 1986.

An introduction to the theory and approximation of
the time-dependent Navier-Stokes problem is treated in
the Lecture Notes by V. Girault and P.A. Raviart:

Finite Element Approximation of the Navier-Stokes
Equations, Lect. Notes in Math. 749, Springer-Verlag,
Berlin, 1979.

Non-conforming finite elements can be found in the
reference by M. Crouzeix and P.A. Raviart:

Conforming and non-conforming finite element
methods for solving the stationary Stokes problem,
RAIRO Anal. Numér. 8 (1973), pp. 33-76.

We also refer to the book by R. Temam:

Navier-Stokes Equations, Theory and Numerical
Analysis, North-Holland, Amsterdam, 1979.

The famous Millennium Prize Problem is described
at the URL:

http://www.claymath.org/millennium/Navier-Stokes
Equations.

The reader will find a wide range of numerical
methods for fluids in the book by O. Pironneau:

Finite Element Methods for Fluids, Wiley, 1989.
See also http://www.ljll.math.upmc.fr/~pironneau.

We also refer to the course by R. Rannacher avail-
able online at the URL:

http://numerik.iwr.uni-heidelberg.de/Oberwolfach-
Seminar/CFD-Course.pdf.

The book by R. Glowinski proposes a vey extensive
collection of numerical methods, algorithms, and ex-
periments for Stokes and Navier-Stokes equations:

Finite Element Methods for Incompressible Viscous
Flow, in Handbook of numerical analysis, IX, P.G. Cia-
rlet and J.L .Lions, eds., North-Holland, Amsterdam,
2003.


http://cavityNewton.edp
http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/SchaeferTurek1996.pdf
http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/SchaeferTurek1996.pdf
http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
http://www.claymath.org/millennium/Navier-Stokes Equations
http://www.ljll.math.upmc.fr/~pironneau
http://numerik.iwr.uni-heidelberg.de/Oberwolfach-Seminar/CFD-Course.pdf
http://numerik.iwr.uni-heidelberg.de/Oberwolfach-Seminar/CFD-Course.pdf
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Synonyms

Middle atmosphere

Glossary

Mesosphere an atmospheric layer between approxi-
mately 50 and 100 km height

Middle atmosphere a region of the atmosphere in-
cluding the stratosphere and mesosphere

Stratosphere an atmospheric layer between approxi-
mate 12 and 50 km

Stratospheric polar vortex a strong, circumpolar
jet that forms in the extratropical stratosphere
during the winter season in each respective
hemisphere

Sudden stratospheric warming a rapid break down
of the stratospheric polar vortex, accompanied by a
sharp warming of the polar stratosphere

Tropopause boundary between the troposphere and
stratosphere, generally between 10 to 18 km.

Troposphere lowermost layer of the atmosphere,
extending from the surface to between 10 and 18
km.

Climate engineering the deliberate modification of
the Earth’s climate system, primarily aimed at re-
ducing the impact of global warming caused by
anthropogenic greenhouse gas emissions

Geoengineering see climate engineering

Quasi-biennial oscillation an oscillating pattern of
easterly and westerly jets which propagates down-
ward in the tropical stratosphere with a slightly
varying period around 28 months

Solar radiation management a form of climate en-
gineering where the net incoming solar radiation to
the surface is reduced to offset warming caused by
greenhouse gases

Stratosphere and Its Coupling to the Troposphere and Beyond

Definition

As illustrated in Fig. 1, the Earth’s atmosphere can
be separated into distinct regions, or “spheres,” based
on its vertical temperature structure. In the lowermost
part of the atmosphere, the troposphere, the temper-
ature declines steeply with height at an average rate
of approximately 7°C per kilometer. At a distinct
level, generally between 10-12km in the extratropics
and 16-18 km in the tropics (The separation between
these regimes is rather abrupt and can be used as a
dynamical indicator delineating the tropics and ex-
tratropics.) this steep descent of temperature abruptly
shallows, transitioning to a layer of the atmosphere
where temperature is initially constant with height, and
then begins to rise. This abrupt change in the vertical
temperature gradient, denoted the tropopause, marks
the lower boundary of the stratosphere, which extends
to approximately 5S0km in height, at which point the
temperature begins to fall with height again. The re-
gion above is denoted the mesosphere, extending to a
second temperature minimum between 85 and 100 km.
Together, the stratosphere and mesosphere constitute
the middle atmosphere.

The stratosphere was discovered at the dawn of the
twentieth century. The vertical temperature gradient, or
lapse rate, of the troposphere was established in the
eighteenth century from temperature and pressure mea-
surements taken on alpine treks, leading to speculation
that the air temperature would approach absolute zero
somewhere between 30 and 40 km: presumably the top
of the atmosphere. Daring hot air balloon ascents in the
late nineteenth century provided hints at a shallowing
of the lapse rate — early evidence of the tropopause —
but also led to the deaths of aspiring upper-atmosphere
meteorologists. Teisserenc de Bort [15] and Assmann
[2], working outside of Paris and Berlin, respectively,
pioneered the first systematic, unmanned balloon ob-
servations of the upper atmosphere, establishing the
distinct changes in the temperature structure that mark
the stratosphere.

Overview

The lapse rate of the atmosphere reflects the stability of
the atmosphere to vertical motion. In the troposphere,
the steep decline in temperature reflects near-neutral
stability to moist convection. This is the turbulent
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Stratosphere and Its Coupling to the Troposphere and
Beyond, Fig. 1 The vertical temperature structure of the at-
mosphere. This sample profile shows the January zonal mean
temperature at 40A N from the Committee on Space Research
(COSPAR) International Reference Atmosphere 1986 model
(CIRA-86). The changes in temperature gradients and hence
stratification of the atmosphere reflect a difference in the dynam-
ical and radiative processes active in each layer. The heights of
the separation points (tropopause, stratopause, and mesopause)
vary with latitude and season — and even on daily time scales due
to dynamical variability — but are generally sharply defined in
any given temperature profile

weather layer of the atmosphere where air is in close
contact with the surface, with a turnover time scale on
the order of days. In the stratosphere, the near-zero or
positive lapse rates strongly stratify the flow. Here the
air is comparatively isolated from the surface of the
Earth, with a typical turnover time scale on the order
of a year or more. This distinction in stratification and
resulting impact on the circulation are reflected in the
nomenclature: the “troposphere” and “stratosphere”
were coined by Teisserenc de Bort, the former the
“sphere of change” from the Greek tropos, to turn or
whirl while the latter the “sphere of layers” from the
Latin stratus, to spread out.

In this sense, the troposphere can be thought of
as a boundary layer in the atmosphere that is well
connected to the surface. This said, it is important to
note that the mass of the atmosphere is proportional
to the pressure: the tropospheric “boundary” layer
constitutes roughly 85 % of the mass of the atmo-
sphere and contains all of our weather. The strato-
sphere contains the vast majority of the remaining
atmospheric mass and the mesosphere and layers above
just 0.1 %.

Why Is There a Stratosphere?

The existence of the stratosphere depends on the ra-
diative forcing of the atmosphere by the Sun. As the
atmosphere is largely transparent to incoming solar
radiation, the bulk of the energy is absorbed at the
surface. The presence of greenhouse gases, which
absorb infrared light, allows the atmosphere to interact
with radiation emitted by the surface. If the atmosphere
were “fixed,” and so unable to convect (described as
a radiative equilibrium), this would lead to an unsta-
ble situation, where the air near the surface is much
warmer — and so more buoyant — than that above it.
At height, however, temperature eventually becomes
isothermal, given a fairly uniform distribution of the
infrared absorber throughout the atmosphere (The sim-
plest model for this is the so-called gray radiation
scheme, where one assumes that all solar radiation
is absorbed at the surface and a single infrared band
from the Earth interacts with a uniformly distributed
greenhouse gas.).

If we allow the atmosphere to turn over in the
vertical or convect in the nomenclature of atmospheric
science, the circulation will produce to a well-mixed
layer at the bottom with near-neutral stability: the
troposphere. The energy available to the air at the
surface is finite, however, only allowing it to penetrate
so high into the atmosphere. Above the convection will
sit the stratified isothermal layer that is closer to the
radiative equilibrium: the stratosphere. This simplified
view of a radiative-convective equilibrium obscures
the role of dynamics in setting the stratification in
both the troposphere and stratosphere but conveys the
essential distinction between the layers. In this respect,
“stratospheres” are found on other planets as well,
marking the region where the atmosphere becomes
more isolated from the surface.

The increase in temperature seen in the Earth’s
stratosphere (as seen in Fig. 1) is due to the fact that
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the atmosphere does interact with the incoming solar
radiation through ozone. Ozone is produced by the
interaction between molecular oxygen and ultraviolet
radiation in the stratosphere [4] and takes over as
the dominant absorber of radiation in this band. The
decrease in density with height leads to an optimal level
for net ultraviolet warming and hence the temperature
maximum near the stratopause, which provides the
demarcation for the mesosphere above.

Absorption of ultraviolet radiation by stratospheric
ozone protects the surface from high-energy radiation.
The destruction of ozone over Antarctica by halo-
genated compounds has had significant health impacts,
in addition to damaging all life in the biosphere.
As described below, it has also had significant im-
pacts on the tropospheric circulation in the Southern
Hemisphere.

Compositional Differences

The separation in the turnover time scale between the
troposphere and stratosphere leads to distinct chemical
or compositional properties of air in these two regions.
Indeed, given a sample of air randomly taken from
some point in the atmosphere, one can easily tell
whether it came from the troposphere or the strato-
sphere. The troposphere is rich in water vapor and
reactive organic molecules, such as carbon monoxide,
which are generated by the biosphere and anthro-
pogenic activity. Stratospheric air is extremely dry,
with an average water vapor concentration of approx-
imate 3-5 parts per billion, and comparatively rich in
ozone. Ozone is a highly reactive molecule (causing
lung damage when it is formed in smog at the surface)
and does not exist for long in the troposphere.

Scope and Limitations of this Entry
Stratospheric research, albeit only a small part of the
Earth system science, is a fairly mature field covering
a wide range of topics. The remaining goal of this brief
entry is to highlight the dynamical interaction between
the stratosphere and the troposphere, with particular
emphasis on the impact of the stratosphere on surface
climate. In the interest of brevity, references have been
kept to a minimum, focusing primarily on seminal
historical papers and reviews. More detailed references
can be found in the review articles listed in further
readings.

The stratosphere also interacts with the troposphere
through the exchange of mass and trace chemical
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species, such as ozone. This exchange is critical for
understanding the atmospheric chemistry in both the
troposphere and stratosphere and has significant impli-
cations for tropospheric air quality, but will not be dis-
cussed. For further information, please see two review
articles, [8] and [11]. The primary entry point for air
into the stratosphere is through the tropics, where the
boundary between the troposphere and stratosphere is
less well defined. This region is known as the tropical
tropopause layer and a review by [6] will provide the
reader an introduction to research on this topic.

Dynamical Coupling Between the
Stratosphere and Troposphere

The term “coupling” suggests interactions between
independent components and so begs the question as
to whether the convenient separation of the atmosphere
into layers is merited in the first place. The key dy-
namical distinction between the troposphere and strato-
sphere lies in the differences in their stratification and
the fact that moist processes (i.e., moist convection and
latent heat transport) are restricted to the troposphere.
The separation between the layers is partly historical,
however, evolving in response to the development of
weather forecasting and the availability of computa-
tional resources.

Midlatitude weather systems are associated with
large-scale Rossby waves, which owe their existence
to gradients in the effective rotation, or vertical com-
ponent of vorticity, of the atmosphere due to varia-
tions in the angle between the surface plain and the
axis of rotation with latitude. Pioneering work by [5]
and [10] showed that the dominant energy containing
waves in the troposphere, wavenumber roughly 4-8,
the so-called synoptic scales, cannot effectively propa-
gate into the stratosphere due the presence of easterly
winds in the summer hemisphere and strong westerly
winds in the winter hemisphere. For the purposes of
weather prediction, then, the stratosphere could largely
be viewed as an upper-boundary condition. Models
thus resolved the stratosphere as parsimoniously as
possible in order to focus numerical resources on the
troposphere. The strong winds in the winter strato-
sphere also impose a stricter Courant-Friedrichs-Lewy
condition on the time step of the model, although
more advanced numerical techniques have alleviated
this problem.



Stratosphere and Its Coupling to the Troposphere and Beyond

Despite the dynamical separation for weather
system-scale waves, larger-scale Rossby waves
(wavenumber 1-3, referred to as planetary scales)
can penetrate into the winter stratosphere, allowing for
momentum exchange between the layers. In addition,
smaller-scale (on the order of 10-1,000km) gravity
waves (Gravity waves are generated in stratified
fluids, where the restoring force is the gravitational
acceleration of fluid parcels or buoyancy. They
are completely distinct from relativistic gravity
waves.) also transport momentum between the
layers. As computation power increased, leading
to a more accurate representation of tropospheric
dynamics, it became increasingly clear that a better
representation of the stratosphere was necessary to
fully understand and simulate surface weather and
climate.

Coupling on Daily to Intraseasonal Time Scales

Weather prediction centers have found that the in-
creased representation of the stratosphere improves
tropospheric forecasts. On short time scales, however,
much of the gain comes from improvements to the tro-
pospheric initial condition. This stems from better as-
similation of satellite temperature measurements which
project onto both the troposphere and stratosphere.

The stratosphere itself has a more prominent impact
on intraseasonal time scales, due to the intrinsically
longer time scales of variability in this region of the
atmosphere. The gain in predictability, however, is con-
ditional, depending on the state of the stratosphere. Un-
der normal conditions, the winter stratosphere is very
cold in the polar regions, associated with a strong west-
erly jet, or stratospheric polar vortex. As first observed
in the 1950s [12], this strong vortex is sometimes
disturbed by the planetary wave activity propagating
below, leading to massive changes in temperature (up
to 70°C in a matter of days) and a reversal of the
westerly jet, a phenomenon known as a sudden strato-
spheric warming, or SSW. While the predictability of
SSWs are limited by the chaotic nature of tropospheric
dynamics, after an SSW the stratosphere remains in an
altered state for up to 2-3 months as the polar vortex
slowly recovers from the top down.

Baldwin and Dunkerton [3] demonstrated the im-
pact of these changes on the troposphere, showing that
an abrupt warming of the stratosphere is followed by an
equatorward shift in the tropospheric jet stream and as-
sociated storm track. An abnormally cold stratosphere
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is conversely associated with a poleward shift in the
jet stream, although the onset of cold vortex events is
not as abrupt. More significantly, the changes in the
troposphere extend for up to 2-3 months on the slow
time scale of the stratospheric recovery, while under
normal conditions the chaotic nature of tropospheric
flow restricts the time scale of jet variations to ap-
proximately 10 days. The associated changes in the
stratospheric jet stream and tropospheric jet shift are
conveniently described by the Northern Annular Mode
(The NAM is also known as the Arctic Oscillation,
although the annular mode nomenclature has become
more prominent.) (NAM) pattern of variability.

The mechanism behind this interaction is still an
active area of research. It has become clear, however,
that key lies in the fact that the lower stratosphere
influences the formation and dissipation of synoptic-
scale Rossby waves, despite the fact that these waves
do not penetrate far into the stratosphere.

A shift in the jet stream is associated with a large-
scale rearrangement of tropospheric weather patterns.
In the Northern Hemisphere, where the stratosphere
is more variable due to the stronger planetary wave
activity (in short, because there are more continents),
an equatorward shift in the jet stream following an
SSW leads to colder, stormier weather over much of
northern Europe and eastern North America. Forecast
skill of temperature, precipitation, and wind anomalies
at the surface increases in seasonal forecasts follow-
ing an SSW. SSWs can be further differentiated into
“vortex displacements” and “vortex splits,” depending
on the dominant wavenumber (1 or 2, respectively)
involved in the breakdown of the jet, and recent work
has suggested this has an effect on the tropospheric
impact of the warming.

SSWs occur approximately every other year in the
Northern Hemisphere, although there is strong inter-
mittency: few events were observed in the 1990s, while
they have been occurring in most years in the first
decades of the twenty-first century. In the Southern
Hemisphere, the winter westerlies are stronger and less
variable — only one SSW has ever been observed, in
2002 — but predictability may be gained around the
time of the “final warming,” when the stratosphere
transitions to it’s summer state with easterly winds.
Some years, this transition is accelerated by planetary
wave dynamics, as in an SSW, while in other years it is
gradual, associated with a slow radiative relaxation to
the summer state.
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Coupling on Interannual Time Scales

On longer time scales, the impact of the stratosphere
is often felt through a modulation of the intraseasonal
coupling between the stratospheric and tropospheric
jet streams. Stratospheric dynamics play an important
role in internal modes of variability to the atmosphere-
ocean system, such as El Nifio and the Southern Os-
cillation (ENSO), and in the response of the climate
system to ‘“natural” forcing by the solar cycle and
volcanic eruptions.

The quasi-biennial oscillation (QBO) is a nearly
periodic oscillation of downward propagating easterly
and westerly tropical jets in the tropical stratosphere,
with a period of approximately 28 months. It is perhaps
the most long-lived mode of variability intrinsic to the
atmosphere alone. The QBO influences the surface by
modulating the wave coupling between the troposphere
and stratosphere in the Northern Hemisphere winter,
altering the frequency and intensity of SSWs depend-
ing on the phase of the oscillation.

Isolating the impact of the QBO has been com-
plicated by the possible overlap with the ENSO, a
coupled mode of atmosphere-ocean variability with a
time scale of approximately 3—7 years. The relatively
short observational record makes it difficult to untangle
the signals from measurements alone, and models
have only recently been able to simulate these phe-
nomenon with reasonable accuracy. ENSO is driven
by interaction between the tropical Pacific Ocean and
the zonal circulation of the tropical atmosphere (the
Walker circulation). Its impact on the extratropical
circulation in the Northern Hemisphere, however, is in
part effected through its influence on the stratospheric
polar vortex. A warm phase of ENSO is associated with
stronger planetary wave propagation into the strato-
sphere, hence a weaker polar vortex and equatorward
shift in the tropospheric jet stream.

Further complicating the statistical separation be-
tween the impacts of ENSO and the QBO is the
influence of the 11-year solar cycle, associated with
changes in the number of sunspots. While the overall
intensity of solar radiation varies less than 0.1 % of
its mean value over the cycle, the variation is stronger
in the ultraviolet part of the spectrum. Ultraviolet
radiation is primarily absorbed by ozone in the strato-
sphere, and it has been suggested that the associated
changes in temperature structure alter the planetary
wave propagation, along the lines of the influence of
ENSO and QBO.

Stratosphere and Its Coupling to the Troposphere and Beyond

The role of the stratosphere in the climate response
to volcanic eruptions is comparatively better under-
stood. While volcanic aerosols are washed out of the
troposphere on fairly short time scales by the hydrolog-
ical cycle, sulfate particles in the stratosphere can last
for 1-2 years. These particles reflect the incoming solar
radiation, leading to a global cooling of the surface;
following Pinatubo, the global surface cooled to 0.1-
0.2 K. The overturning circulation of the stratosphere
lifts mass up into the tropical stratosphere, transporting
it poleward where it descends in the extratropics. Thus,
only tropical eruptions have a persistent, global impact.

Sulfate aerosols warm the stratosphere, therefore
modifying the planetary wave coupling. There is some
evidence that the net result is a strengthening of the
polar vortex which in turn drives a poleward shift in
the tropospheric jets. Hence, eastern North America
and northern Europe may experience warmer winters
following eruptions, despite the overall cooling impact
of the volcano.

The Stratosphere and Climate Change
Anthropogenic forcing has changed the stratosphere,
with resulting impacts on the surface. While green-
house gases warm the troposphere, they increase the
radiative efficiency of the stratosphere, leading to a net
cooling in this part of the atmosphere. The combination
of a warming troposphere and cooling stratosphere
leads to a rise in the tropopause and may be one of
the most identifiable signatures of global warming on
the atmospheric circulation.

While greenhouse gases will have a dominant long-
term impact on the climate system, anthropogenic
emissions of halogenated compounds, such as chlo-
rofluorocarbons (CFCs), have had the strongest im-
pact on the stratosphere in recent decades. Halogens
have caused some destruction of ozone throughout the
stratosphere, but the extremely cold temperatures of the
Antarctic stratosphere in winter permit the formation
of polar stratospheric clouds, which greatly accelerate
the production of Cl and Br atoms that catalyze ozone
destruction (e.g., [14]). This led to the ozone hole,
the effective destruction of all ozone throughout the
middle and lower stratosphere over Antarctica. The
effect of ozone loss on ultraviolet radiation was quickly
appreciated, and the use of halogenated compounds
regulated and phased out under the Montreal Proto-
col (which came into force in 1989) and subsequent
agreements. Chemistry climate models suggest that
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the ozone hole should recover by the end of this
century, assuming the ban on halogenated compounds
is observed.

It was not appreciated until the first decade of
the twenty-first century, however, that the ozone hole
also has impacted the circulation of the Southern
Hemisphere. The loss of ozone leads to a cooling of
the austral polar vortex in springtime and a subsequent
poleward shift in the tropospheric jet stream. Note
that this poleward shift in the tropospheric jet in
response to a stronger stratospheric vortex mirrors
the coupling associated with natural variability in
the Northern Hemisphere. As reviewed by [16],
this shift in the jet stream has had significant
impacts on precipitation across much of the Southern
Hemisphere.

Stratospheric trends in water vapor also have the po-
tential to affect the surface climate. Despite the minus-
cule concentration of water vapor in the stratosphere
(just 3-5 parts per billion), the radiative impact of a
greenhouse gases scales logarithmically, so relatively
large changes in small concentrations can have a strong
impact. Decadal variations in stratospheric water vapor
can have an influence on surface climate comparable to
decadal changes in greenhouse gas forcing, and there is
evidence of a positive feedback of stratospheric water
vapor on greenhouse gas forcing.

The stratosphere has also been featured prominently
in the discussion of climate engineering (or geoengi-
neering), the deliberate alteration of the Earth sys-
tem to offset the consequences of greenhouse-induced
warming. Inspired by the natural cooling impact of
volcanic aerosols, the idea is to inject hydrogen sulfide
or sulfur dioxide into the stratosphere, where it will
form sulfate aerosols. To date, this strategy of the
so-called solar radiation management appears to be
among the most feasible and cost-effective means of
cooling the Earth’s surface, but it comes with many
dangers. In particular, it does not alleviate ocean acid-
ification, and the effect is short-lived — a maximum of
two years — and so would require continual action ad
infinitum or until greenhouse gas concentrations were
returned to safer levels. (In saying this, it is important
to note that the natural time scale for carbon dioxide
removal is 100,000s of years, and there are no known
strategies for accelerating CO2 removal that appear
feasible, given current technology.) In addition, the
impact of sulfate aerosols on stratospheric ozone and
the potential regional effects due to changes in the
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planetary wave coupling with the troposphere are not
well understood.

Further Reading

There are a number of review papers on stratosphere-
tropospheric coupling in the literature. In particular,
[13] provides a comprehensive discussion of
stratosphere-troposphere coupling, while [7] highlights
developments in the last decade. Andrews et al.
[1] provide a classic text on the dynamics of the
stratosphere, and [9] provides a wider perspective

on the stratosphere, including the history of
field.
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Description

The computational structural dynamics is devoted to
the computation of the dynamical responses in time or
in frequency domains of complex structures, submitted
to prescribed excitations. The complex structure is
constituted of a deformable medium constituted of
metallic materials, heterogeneous composite materials,
and more generally, of metamaterials.

This chapter presents the linear dynamic analysis
for complex structures, which is the most frequent case
encountered in practice. For this situation, one of the
most efficient modeling strategy is based on a formu-
lation in the frequency domain (structural vibrations).
There are many advantages to use a frequency domain
formulation instead of a time domain formulation be-
cause the modeling can be adapted to the nature of the
physical responses which are observed. This is the rea-
son why the low-, the medium-, and the high-frequency
ranges are introduced. The different types of vibration
responses of a linear dissipative complex structure lead
us to define the frequency ranges of analysis. Let
u; (X, w) be the Frequency Response Function (FRF) of
a component j of the displacement u(x, w), at a fixed
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point x of the structure and at a fixed circular frequency

o (inrad/s). Figure 1 represents the modulus |u; (X, w)|

in log scale and the unwrapped phase ¢; (x, w) of the

FRF such thatu; (X, w) = |u; (X, w)| exp{—i¢; (X, )}.

The unwrapped phase is defined as a continuous func-

tion of @ obtained in adding multiples of £2x for

jumps of the phase angle. The three frequency ranges
can then be characterized as follows:

1. The low-frequency range (LF) is defined as the
modal domain for which the modulus of the FRF
exhibits isolated resonances due to a low modal
density of elastic structural modes. The amplitudes
of the resonances are driven by the damping and the
phase rotates of m at the crossing of each isolated
resonance (see Fig. 1). For the LF range, the strategy
used consists in computing the elastic structural
modes of the associated conservative dynamical
system and then to construct a reduced-order model
by the Ritz-Galerkin projection. The resulting ma-
trix equation is solved in the time domain or in
the frequency domain. It should be noted that sub-
structuring techniques can also be introduced for
complex structural systems. Those techniques con-
sist in decomposing the structure into substructures
and then in constructing a reduced-order model for
each substructure for which the physical degrees of
freedom on the coupling interfaces are kept.

2. The high-frequency range (HF) is defined as the
range for which there is a high modal density which
is constant on the considered frequency range. In
this HF range the modulus of the FRF varies slowly
as the function of the frequency and the phase is
approximatively linear (see Fig. 1). Presently, this
frequency range is relevant of various approaches
such as Statistical Energy Analysis (SEA), diffusion
of energy equation, and transport equation. How-
ever, due to the constant increase of computer power
and advances in modeling of complex mechanical
systems, this frequency domain becomes more and
more accessible to the computational methods.

3. For complex structures (complex geometry,
heterogeneous materials, complex junctions,
complex boundary conditions, several attached
equipments or mechanical subsystems, etc.), an
intermediate frequency range, called the medium-
frequency range (MF), appears. This MF range
does not exist for a simple structure (e.g., a simply
supported homogeneous straight beam). This MF
range is defined as the intermediate frequency range
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Structural Dynamics, Fig. 1 Modulus (left) and unwrapped phase (right) of the FRF as a function of the frequency. Definition of

the LF, MF, and HF ranges

for which the modal density exhibits large variations
over the frequency band. Due to the presence
of the damping which yields an overlapping of
elastic structural modes, the frequency response
functions do not exhibit isolated resonances, and
the phase slowly varies as a function of the
frequency (see Fig. 1). In this MF range, the
responses are sensitive to damping modeling (for
weakly dissipative structure), which is frequency
dependent, and sensitive to uncertainties. For this
MF range, the computational model is constructed
as follows: The reduced-order computational model
of the LF range can be used in (i) adapting the
finite element discretization to the MF range,
(i1) introducing appropriate damping models (due
to dissipation in the structure and to transfer of
mechanical energy from the structure to mechanical
subsystems which are not taken into account in
the computational model), and (iii) introducing
uncertainty quantification for both the system-
parameter uncertainties and the model uncertainties
induced by the modeling errors.

For sake of brevity, the case of nonlinear dynamical
responses of structures (involving nonlinear constitu-
tive equations, nonlinear geometrical effects, plays,
etc.) is not considered in this chapter (see Bibliograph-
ical comments).

Formulation in the Low-Frequency Range
for Complex Structures

We consider linear dynamics of a structure around a
position of static equilibrium taken as the reference
configuration, €2, which is a three-dimensional

bounded connected domain of R3, with a smooth
boundary 92 for which the external unit normal
is denoted as n. The generic point of Q is x =
(x1,x2,x3). Let u(x,2) = (u1(x,1),uz(x,1), uz(x,1))
be the displacement of a particle located at point
x in Q and at a time ¢. The structure is assumed
to be free (Iy = @), a given surface force field
G(x,t) = (Gi(x,1),Gy(x,1),G3(x,1)) is applied to
the total boundary I' = 9%, and a given body force
field g(x,1) = (g1(x,?), g2(x,1), g3(x, 1)) is applied
in Q. It is assumed that these external forces are in
equilibrium. Below, if w is any quantity depending on
x, then w; denotes the partial derivative of w with
respect to x ;. The classical convention for summations
over repeated Latin indices is also used.

The elastodynamic boundary value problem is writ-
ten, in terms of u and at time 7, as

pOjui(x,1) — 0y (X, 1) = gi(x,1) in Q, (1)

0ij(x,1)n;(x) = Gi(x,t) on T, 2)
01j.j (X,1) = @jjin(X) exn(@) + bijrn (X)ern(9,w),
exn(@) = (ukpn + uni)/2. (3)

In (1), p(x) is the mass density field, o;; is the Cauchy
stress tensor. The constitutive equation is defined by (3)
exhibiting an elastic part defined by the tensor a;jx; (X)
and a dissipative part defined by the tensor b;jx(x),
independent of ¢ because the model is developed for
the low-frequency range, and £(d,u) is the linearized
strain tensor.

Let C = (H'Y(R))? be the real Hilbert space
of the admissible displacement fields, x — v(x),
on Q. Considering ¢ as a parameter, the variational
formulation of the boundary value problem defined by
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(1)—(3) consists, for fixed 7, in finding u(., ) in C, such
that

m(afu, V) +d(0,u,v)+k(a,v) = f(t;v), Vvel,

4)
in which the bilinear form m is symmetric and positive
definite, the bilinear forms d and k are symmetric,

positive semi-definite, and are such that

m(u,v) = / pujv;dx,
Q

k(u,v) = /Q ajen en@ ey Mdx, ()

d(u,v) = / bijkn exn(u) ;5 (V)d X,
Q

16 = [ g0 ax+ [ 6,00 d50. ©)

The kernel of the bilinear forms k and d is the set of
the rigid body displacements, Cy; C C of dimension 6.
Any displacement field uy, in Cyg is such that, for all
X in , ue(x) = t + 6 x x in which t and 6 are two
arbitrary constant vectors in R>.

For the evolution problem with given Cauchy initial
conditions u(., 0) = ug and d;u(., 0) = vy, the analysis
of the existence and uniqueness of a solution requires
the introduction of the following hypotheses: p is a
positive bounded function on €2; for all x in €2, the
fourth-order tensor a;jx (X) (resp. b;jxn (X)) is symmet-
ric, a;jkn(X) = ajixn(X) = ajjnpi(X) = agnij (x), and
such that, for all second-order real symmetric tensor
nij, there is a positive constant ¢ independent of X,
such that a;jx,(X) nkn mij > ¢ nij nij; the functions
ajjkn and b;ji;, are bounded on €2; finally, g and G are
such that the linear form v +— f(¢;v) is continuous
on C. Assuming that for all v in C, t +— f(t;V)
is a square integrable function on R. Let C¢ be the
complexified vector space of C and let v be the complex
conjugate of v. Then, introducing the Fourier trans-
forms u(x,w) = [zeu(x,7)dr and f(w:v) =
fR e it f(t;v)dt, the variational formulation defined
by (4) can be rewritten as follows: For all fixed real
o # 0, find u(., w) with values in C¢ such that

—o’m, V) + iodw,v) + k(u,v)

= f(w;v), Vvecl'. ()
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The finite element discretization with n degrees of
freedom of (4) yields the following second-order dif-
ferential equation on R”":

[M10() + [D1U() + [K]U() =F (). (8)
and its Fourier transform, which corresponds to the
finite element discretization of (7), yields the complex
matrix equation which is written as

(—o’ [M] +io D] + [K]) U) = F(®), (9
in which [M] is the mass matrix which is a symmetric
positive definite (n x n) real matrix and where [D] and
[K] are the damping and stiffness matrices which are
symmetric positive semi-definite (n x n) real matrices.
Case of a fixed structure. If the structure is fixed on a
part Iy of boundary 92 (Dirichlet condition u = 0 on
Iy), then the given surface force field G(x, t) is applied
to the part I' = dQ2\['y. The space C of the admissible
displacement fields must be replaced by

Co={velC,v=0on Iy} (10)
The complex vector space C¢ must be replaced by the
complex vector space Cg which is the complexified

vector space of Cy. The real matrices [D] and [K] are
positive definite.

Associated Spectral Problem and
Structural Modes

Setting A = w?, the spectral problem, associated with
the variational formulation defined by (4) or (7), is
stated as the following generalized eigenvalue prob-
lem. Find real A > 0 and u # 0 in C such that

k(u,v) = Am(u,v), VveC. a1
Rigid body modes (solutions for A = 0). Since the
dimension of Cj, is 6, then A = 0 can be consid-
ered as a “zero eigenvalue” of multiplicity 6, denoted
as A_s,...,Ap. Let u_s,...,uy be the corresponding
eigenfunctions which are constructed such that the
following orthogonality conditions are satisfied: for
a and B in {=5,...,0}, m(uy,ug) = [ 8ep and
k(uy,ug) = 0. These eigenfunctions, called the rigid
body modes, form a basis of Cs;, C C and any rigid
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body displacement uy, in Cyig can then be expanded as
0
Uyjg = Zoz=—5 o Ugy-

Elastic structural modes (solutions for A # 0). We
introduce the subset Cess = C \ Cyig. It can be shown
that C = Crig @ Celas which means that any displacement
field u in C has the following unique decomposition
U = Uyg + Uelas with Usig in Crig and Uy in Celas.
Consequently, k(Uejas, Velas) defined on Cepas X Celqs 18
positive definite and we then have k (U, Uelas) > 0
for all Wepys # 0 € Cepas-

Eigenvalue problem restricted to Celys. The eigenvalue
problem restricted to Cejps 1S written as follows: Find
A # 0 and uepps # 0 in Cepys such that

VVelas € Celas .
(12)

k(u612157 Velas) =21 m(uelaSv Velas)y

Countable number of positive eigenvalues. It can be
proven that the eigenvalue problem, defined by (12),
admits an increasing sequence of positive eigenvalues
0 <A <X <... <Ay < ....In addition, any
multiple positive eigenvalue has a finite multiplicity
(which means that a multiple positive eigenvalue is
repeated a finite number of times).

Orthogonality of the eigenfunctions corresponding to
the positive eigenvalues. The sequence of eigenfunc-
tions {uy }4 in Cepys corresponding to the positive eigen-
values satisfies the following orthogonality conditions:

m(ua,uﬁ) = Uqg (Saﬁ, k(lla,llﬁ) = /Lawi&xﬁ, (13)
in which w, = /A, and where p, is a positive real
number depending on the normalization of eigenfunc-
tion ug.

Completeness of the eigenfunctions corresponding to
the positive eigenvalues. Let u, be the eigenfunction
associated with eigenvalue A, > 0. It can be shown that
eigenfunctions {uy, },>1 form a complete family in Cejas
and consequently, an arbitrary function u.,s belonging
to Celas can be expanded as ug,s = Z:ﬁ‘f gu U, in
which {g4}s is a sequence of real numbers. These
eigenfunctions are called the elastic structural modes.

Orthogonality between the elastic structural modes
and the rigid body modes. We have k(uy,u5g) = 0
and m(uy, Uig) = 0. Substituting ;e (x) =t + 6 x x
into (13) yields
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fua(x)p(x)dx=0, /xxua(x)p(x)dx=0,
Q Q
(14)

which shows that the inertial center of the structure de-
formed under the elastic structural mode u,, coincides
with the inertial center of the undeformed structure.

Expansion of the displacement field using the rigid
body modes and the elastic structural modes. Any
displacement field u in C can then be written as u =

Zg=—5 o Vg + Z:;xl) o Ug.

Terminology. In structural vibrations, w, > 0 is called
the eigenfrequency of elastic structural mode u, (or
the eigenmode or mode shape of vibration) whose
normalization is defined by the generalized mass [iy.
An elastic structural mode « is defined by the three
quantities {wy, Uy, fg}.

Finite element discretization. The matrix equation of
the generalized symmetric eigenvalue problem corre-
sponding to the finite element discretization of (11) is
written as

[K]U=A[M]U. (15)
For large computational model, this generalized eigen-
value problem is solved using iteration algorithms such
as the Krylov sequence, the Lanczos method, and the
subspace iteration method, which allows a prescribed
number of eigenvalues and associated eigenvectors to
be computed.
Case of a fixed structure. If the structure is fixed on I',
Cyig is reduced to the empty set and admissible space
Celas must be replaced by Cy. In this case the eigenval-
ues are strictly positive. In addition, the property given
for the free structure concerning the inertial center of
the structure does not hold.

Reduced-Order Computational Model in
the Frequency Domain

In the frequency range, the reduced-order computa-
tional model is carried out using the Ritz-Galerkin
projection. Let Cg be the admissible function space
such that Cg = Cqy for a free structure and Cs = C
for a structure fixed on I'y. Let Cs y be the subspace
of Cg, of dimension N > 1, spanned by the finite
family {u,...,uy} of elastic structural modes u,.
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For all fixed w, the projection u” (w) of u(w) on the
complexified vector space of Cs y can be written as

N
WV (x,0) = ) go(@) (%),

a=1

(16)

in which q(w) = (q1(w), ..., gy (®)) is the complex-
valued vector of the generalized coordinates which
verifies the matrix equation on CV,

(—0* [M] +io[D]+[K]q@) = F). (7
in which [M], [D], and [K] are (N x N) real sym-
metric positive definite matrices (for a free or a fixed
structure). Matrices [M] and [K] are diagonal and
such that

(M ]Otﬂ = m(uﬂ,ua) = Ha (Saﬁy

[Klap = k(ug,uy) = [to 02845 (18)

The damping matrix [D] is not sparse (fully populated)
and the component F,, of the complex-valued vector of
the generalized forces F = (F1, ..., Fn) are such that

[D]aﬁ = d(llﬂ,lla), Fo(w) = f(wiug). (19)
The reduced-order model is defined by (16)—(19).
Convergence of the solution constructed with the
reduced-order model. For all real w, (17) has a unique
solution u" (w) which is convergent in Cs when N
goes to infinity. Quasi-static correction terms can be
introduced to accelerate the convergence with respect
to N.

Remarks concerning the diagonalization of the damp-
ing operator. When damping operator is diagonalized
by the elastic structural modes, matrix [D] defined by
(19), is an (N x N) diagonal matrix which can be
written as [D]gg = d(Ug,Uy) = 2 g Wy Eu Sep in
which u, and @, are defined by (18). The critical
damping rate &, of elastic structural mode u, is a
positive real number. A weakly damped structure is a
structure such that 0 < &£, < 1foralle in {1,...,N}.
Several algebraic expressions exist for diagonalizing
the damping bilinear form with the elastic structural
modes.
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Bibliographical Comments

The mathematical aspects related to the variational
formulation, existence and uniqueness, and finite el-
ement discretization of boundary value problems for
elastodynamics can be found in Dautray and Lions [6],
Oden and Reddy [11], and Hughes [9]. More details
concerning the finite element method can be found
in Zienkiewicz and Taylor [14]. Concerning the time
integration algorithms in nonlinear computational dy-
namics, the readers are referred to Belytschko et al. [3],
and Har and Tamma [8]. General mechanical formula-
tions in computational structural dynamics, vibration,
eigenvalue algorithms, and substructuring techniques
can be found in Argyris and Mlejnek [1], Geradin
and Rixen [7], Bathe and Wilson [2], and Craig and
Bampton [5]. For computational structural dynamics
in the low- and the medium-frequency ranges and
extensions to structural acoustics, we refer the reader
to Ohayon and Soize [12]. Various formulations for the
high-frequency range can be found in Lyon and Dejong
[10] for Statistical Energy Analysis, and in Chap. 4 of
Bensoussan et al. [4] for diffusion of energy and trans-
port equations. Concerning uncertainty quantification
(UQ) in computational structural dynamics, we refer
the reader to Soize [13].
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Definition

A subdivision scheme is a method for generating a
continuous function from discrete data, by repeated
applications of refinement rules. A refinement rule
operates on a set of data points and generates a denser
set using local mappings. The function generated by
a convergent subdivision scheme is the limit of the
sequence of sets of points generated by the repeated
refinements.

Description
Subdivision schemes are efficient computational meth-

ods for the design, representation, and approximation
of curves and surfaces in 3D and for the generation
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of refinable functions, which are instrumental in the
construction of wavelets.

The “classical” subdivision schemes are stationary
and linear, applying the same linear refinement rule at
each refinement level. The theory of these schemes is
well developed and well understood; see [2, 7,9, 15],
and references therein.

Nonlinear schemes were designed for the approxi-
mation of piecewise smooth functions (see, e.g., [1,4]),
for taking into account the geometry of the initial
points in the design of curves/surfaces (see, e.g., [5,
8, 11]), and for manifold-valued data (see, e.g., [12, 14,
16]). These schemes were studied at a later stage, and
in many cases their analysis is based on their proximity
to linear schemes.

Linear Schemes
A linear refinement rule operates on a set of points in
R? with topological relations among them, expressed
by relating the points to the vertices of a regular grid in
R*. In the design of 3D surfaces, d = 3 and s = 2.
The refinement consists of a rule for refining the
grid and a rule for defining the new points corre-
sponding to the vertices of the refined grid. The most
common refinement is binary, and the most common
gridis Z7°.
For a set of points P = {P, € R¢
i € Z°}, related to 2=%7s . the binary refinement
rule R generates points related to 27%¥71Z* of
the form

(Rp)l = Z ai_z_/Pj, i € Zs,
JEZS

1)

with the point (RP); related to the vertex i27%~!. The
set of coefficients {a; € R : i € Z’} is called the mask
of the refinement rule, and only a finite number of the
coefficients are nonzero, reflecting the locality of the
refinement.

When the same refinement rule is applied in all
refinement levels, the scheme is called stationary,
while if different linear refinement rules are applied
in different refinement levels, the scheme is called
nonstationary (see, e.g., [9]).

A stationary scheme is defined to be convergent (in
the Loo-norm) if for any initial set of points P, there
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exists a continuous function F defined on (R*)? such
that
lim sup |F(i27%) — (RFP);| =0,

k=00 j ez

2

and if for at least one initial set of points, F' % 0. A
similar definition of convergence is used for all other
types of subdivision schemes, with R¥ replaced by the
appropriate product of refinement rules.

Although the refinement (1) is defined on all Z*, the
finite support of the mask guarantees that the limit of
the subdivision scheme at a point is affected only by a
finite number of initial points.

When the initial points are samples of a smooth
function, the limit function of a convergent linear sub-
division scheme approximates the sampled function.
Thus, a convergent linear subdivision scheme is a linear
approximation operator.

As examples, we give two prototypes of stationary
schemes for s = 1. Each is the simplest of its kind,
converging to C! univariate functions. The first is the
Chaikin scheme [3], called also “Corner cutting,” with
limit functions which “preserve the shape” of the initial
sets of points. The refinement rule is

3 1
(RP)2i = —P; + = Piyy,
4 4 3)
1 3
(RP)ai41 = ZPi + ZPH-], i €.

The second is the 4-point scheme [6, 10], which in-
terpolates the initial set of points (and all the sets of
points generated by the scheme). It is defined by the
refinement rule

9
(RP)2i = Pi, (RP)ig1 = —(Pi + Pit1)
16 )
1 .
_1_6(Pi—1 + Piy2), 1 € Z.

While the limit functions of the Chaikin scheme can
be written in terms of B-splines of degree 2, the limit
functions of the 4-point scheme for general initial sets
of points have a fractal nature and are defined only
procedurally by (4).

For the design of surfaces in 3D, s = 2 and the com-
mon grids are Z? and regular triangulations. The latter
are refined by dividing each triangle into four equal
ones. Yet regular grids (with each vertex belonging to
four squares in the case of Z? and to six triangles in
the case of a regular triangulation) are not sufficient for
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representing surfaces of general topology, and a finite
number of extraordinary points are required [13].

The analysis on regular grids of the convergence of
a stationary linear scheme, and of the smoothness of
the generated functions, is based on the coefficients
of the mask. It requires the computation of the joint
spectral radius of several finite dimensional matrices
with mask coefficients as elements in specific positions
(see, e.g., [2]) or an equivalent computation in terms
of the Laurent polynomial a(z) = Y ;czs @iz (see,
e.g., [7]).

When dealing with the design of surfaces, this
analysis applies only in all parts of the grids away
from the extraordinary points. The analysis at these
points is local [13], but rather involved. It also dictates
changes in the refinement rules that have to be made
near extraordinary points [13,17].
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Glossary/Definition Terms

Numerical computing Computing that is based on
finite precision arithmetic.
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Symbolic computing Computing that uses symbols
to manipulate and solve mathematical formulas and
equations in order to obtain mathematically exact
results.

Definition

Scientific computing can be generally divided into two
subfields: numerical computation, which is based on
finite precision arithmetic (usually single or double
precision), and symbolic computing which uses sym-
bols to manipulate and solve mathematical equations
and formulas in order to obtain mathematically exact
results.

Symbolic computing, also called symbolic manip-
ulation or computer algebra system (CAS), typically
includes systems that can focus on well-defined com-
puting areas such as polynomials, matrices, abstract
algebra, number theory, or statistics (symbolic), as
well as on calculus-like manipulation such as limits,
differential equations, or integrals. A full-featured CAS
should have all or most of the listed features. There
are systems that focus only on one specific area like
polynomials — those are often called CAS too.

Some authors claim that symbolic computing and
computer algebra are two views of computing with
mathematical objects [1]. According to them, symbolic
computation deals with expression trees and addresses
problems of determination of expression equivalence,
simplification, and computation of canonical forms,
while computer algebra is more centered around the
computation of mathematical quantities in well-defined
algebraic domains. The distinction between symbolic
computing and computer algebra is often not made;
the terms are used interchangeably. We will do so in
this entry as well.

History

Algorithms for Computer Algebra [2] provides a con-
cise description about the history of symbolic compu-
tation. The invention of LISP in the early 1960s had a
great impact on the development of symbolic computa-
tion. FORTRAN and ALGOL which existed at the time
were primarily designed for numerical computation. In
1961, James Slagle at MIT (Massachusetts Institute of
Technology) wrote a heuristics-based LISP program
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for Symbolic Automatic INTegration (SAINT) [3]. In
1963, Martinus J. G. Veltman developed Schoonschip
[4, 5] for particle physics calculations. In 1966, Joel
Moses (also from MIT) wrote a program called SIN
[6] for the same purpose as SAINT, but he used a more
efficient algorithmic approach. In 1968, REDUCE [7]
was developed by Tony Hearn at Stanford University
for physics calculations. Also in 1968, a specialized
CAS called CAMAL [8] for handling Poisson series
in celestial mechanics was developed by John Fitch
and David Barton from the University of Cambridge.
In 1970, a general purposed system called REDUCE 2
was introduced.

In 1971 Macsyma [9] was developed with capa-
bilities for algebraic manipulation, limit calculations,
symbolic integration, and the solution of equations.
In the late 1970s muMATH [10] was developed by
the University of Hawaii and it came with its own
programming language. It was the first CAS to run
on widely available IBM PC computers. With the
development of computing in 1980s, more modern
CASes began to emerge. Maple [11] was introduced
by the University of Waterloo with a small compiled
kernel and a large mathematical library, thus allowing
it to be used powerfully on smaller platforms. In 1988,
Mathematica [12] was developed by Stephen Wolfram
with better graphical capabilities and integration with
graphical user interfaces. In the 1980s more and more
CASes were developed like Macaulay [13], PARI [14],
GAP [15], and CAYLEY [16] (which later became
Magma [17]). With the popularization of open-source
software in the past decade, many open-source CASes
were developed like Sage [18], SymPy [19], etc. Also,
many of the existing CASes were later open sourced;
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for example, Macsyma became Maxima [20]; Scratch-
pad [21] became Axiom [22].

Overview

A common functionality of all computer algebra
systems typically includes at least the features
mentioned in the following subsections. We use SymPy
0.7.5 and Mathematica 9 as examples of doing the
same operation in two different systems, but any other
full-featured CAS can be used as well (e.g., from
the Table 1) and it should produce the same results
functionally.

To run the SymPy examples in a Python session,
execute the following first:

from sympy import =*
Y, n, symbols ('x, VY,
n, m’)

X, z, m = z,

f = Function(’'f’)

To run the Mathematica examples, just execute them in
a Mathematica Notebook.

Arbitrary Formula Representation
One can represent arbitrary expressions (not just poly-
nomials). SymPy:

In [1]: (1+1/%)*+*x

out[1]: (1 + 1/x)*#*x

In [2]: sgrt(sin(x))/z

out [2] : sgrt(sin(x))/z
Mathematica:

Inf(1l]:= (1+1/x)"x

out[1]= (1+1/x%)"x

Symbolic Computing, Table 1 Implementation details of various computer algebra systems

Program License
Mathematica [12] Commercial
Maple [11] Commercial
Symbolic MATLAB toolbox [23] Commercial
Axiom?® [22] BSD
SymPy [19] BSD
Maxima [20] GPL

Sage [18] GPL
Giac/Xcas [24] GPL

Internal implementation language CAS language

C/C++ Custom
C/C++ custom

C/C++ Custom
Lisp Custom
Python Python

Lisp Custom
C++/Cython/Lisp Python®
C++ Custom

2The same applies to its two forks FriCAS [25] and OpenAxiom [26]
"The default environment in Sage actually extends the Python language using a preparser that converts things like 273 into
Integer (2) x*Integer (3), but the preparser can be turned off and one can use Sage from a regular Python session as well
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In[2]:= Sqgrt([Sin[x]]1/z
Out [2]= Sgrt([Sin[x]]1/z

Limits

SymPy:
In [1]: limit(sin(x)/x, x, 0)
out[1]: 1
In [2]: limit((2-sqgrt(x))/(4-x),x,4)
Out [2] 1/4

Mathematica:
In[l] := Limit[Sin[x]/x,x->0]
Out[1l]=1
In[2]:= Limit[(2-Sgrt[x])/(4-x),x->4]
Oout [2]= 1/4

Differentiation

SymPy:
In [1]: diff(sin(2xx), X)
Out [1] : 2xcos (2*x)
In [1]: diff(sin(2xx), x, 10)
Out [1]: -1024%sin(2*x)
Mathematica:
In[1l]:= D[Sin[2 x],x]
Out[1]= 2 Cos[2 x]
In[2]:= D[Sin[2 x],{x,10}]
Out[2]= -1024 Sin[2 x]
Integration
SymPy:
In [1]: integrate(1/ (x*x2+1), X)
Out [1] : atan (x)
In [1]: integrate(1/ (x**2+3), X)
Out [1]: sgrt(3)=*atan(sqgrt(3)*x/3)/3
Mathematica:
In[1l] := Integrate[l/ (x"2+1) ,x]
Out [1] = ArcTan [x]
In[2] := Integrate[l/(x"2+3),x]

out [2] = ArcTan [x/Sqrt [3]1]/Sgrt [3]

Polynomial Factorization

SymPy:
In [1]: factor (Xx*2*y + Xx*2+2Z
+ X*Y**2 4+ 24%X*xY*Z
+ X*Z**2 + Y**2%Z
+ Y*Zk*2)
out[l]l: (X + y)x(x + 2)*x(y + z)
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Mathematica:
In[l] := Factor[x"2 y+x"2 z+X
yT2+42 X Y zZ+X
z"2+y"2 z+y z"2]
Out [1]1= (x+y) (x+z) (y+z)
Algebraic and Differential Equation Solvers
Algebraic equations, SymPy:
In [1]: solve(x**4+x**2+1 x)
out[1]: [-1/2 - sgrt(3)xI/2, -1/2
+ sqrt(3)*I/2,
1/2 - sqrt(3)=xI1/2, 1/2
+ sgrt(3)«I/2]
Mathematica:
In[1l] := Reduce[l+x"2+x"4==0, x]
Out[1]= x==-(-1)"(1/3)]|x
==(-1)"(1/3) ||
x==-(-1)"(2/3) | |x
==(-1)"(2/3)
and differential equations, SymPy:
In [1]: dsolve(f(x).diff(x, 2)
+f(x), £(x))
out[1]: f£(x) == Cl*sin(x)
+ C2xcos (x)
In [1]: dsolve(f(x).diff(x, 2)
+9xf (x), f(x))
Out[1]: f£(x) == Clxsin(3x*x)
+ C2xCcos (3*x)
Mathematica:
In[1]:= DSolve[f”[x]+f[x]==0,f[x],x]
out [1]= {{f[x]->C[1] Cos[x]
+C[2] sin[x]}}
In[2] := DSolvelf’’ [x]+9 £ [x]
==0, f [x],x]
out [2]= {{f[x]->C[1] Cos[3 x]

+C[2] sin[3 x]}}

Formula Simplification

Simplification is not a well-defined operation (i.e.,
there are many ways how to define the complexity of an
expression), but typically the CAS is able to simplify,
for example, the following expressions in an expected
way, SymPy:

In [1]: simplify(-1/ (2% (x*%x2 + 1))
- 1/ (4% (x + 1))+1/ (4% (x - 1))

- 1/ (x%x%4-1))
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Out[1l]: O
Mathematica:
In[1l]:= Simplify[-1/(2(x"2+1))
-1/ (4 (x+1))+1/(4(x-1))
-1/(x74-1)]
Out[1l]= 0
or, SymPy:
In [1]: simplify((x - 1)/ (x*%2 - 1))
Oout[1]l: 1/(x + 1)
Mathematica:
Inf[l]:= Simplify[(x-1)/(x"2-1)]

out[1]= 1/ (1+x)

Numerical Evaluation

Exact expressions like «/5, constants, sums, integrals,
and symbolic expressions can be evaluated to a desired
accuracy using a CAS. For example, in SymPy:

In [1]: N(sgrt(2),30)

Out [1]: 1.4142135623730950488016-
8872421

In [2]: N(Sum(l/n**n, (n,1l,o00)),30)

Out[2]: 1.2912859970626635404072-
8259060

Mathematica:

In[1l] := N[Sgrt[2],30]

Out [1]= 1.4142135623730950488016-
8872421

In[2]:= N[Sum[1/n"n,{n,1,
Infinity}],30]

Out [2]= 1.2912859970626635404072-

8259060

Symbolic Summation

There are circumstances where it is mathematically
impossible to get an explicit formula for a given sum.
When an explicit formula exists, getting the exact result
is usually desirable. SymPy:

In [1]: Sum(n, (n, 1, m)).doit ()
Out[1l]: m**2/2 + m/2

In [2]: Sum(1l/n++6, (n,1,00)) .doit ()
Out [2]: pi*x6/945

In [3]: Sum(1l/n*+5, (n,1,00)) .doit ()
Out [3]: zeta(5)

Symbolic Computing

Mathematica:

In[1]:= Sum[n, {n,1,m}]
out[1l]l= 1/2 m (1l+m)
In([2]:= Sum[1/n"6,{n,1,Infinity}]
out [2]= Pi76/945
In[3]:= Sum[1/n"5,{n,1,Infinity}]
Oout [3]= Zetal5]

Software

A computer algebra system (CAS) is typically com-
posed of a high-level (usually interpreted) language
that the user interacts with in order to perform cal-
culations. Many times the implementation of such a
CAS is a mix of the high-level language together with
some low-level language (like C or C++) for efficiency
reasons. Some of them can easily be used as a library
in user’s programs; others can only be used from the
custom CAS language.

A comprehensive list of computer algebra software
is at [27]. Table 1 lists features of several established
computer algebra systems. We have only included sys-
tems that can handle at least the problems mentioned
in the Overview section.

Besides general full-featured CASes, there exist
specialized packages, for Example, Singular [28] for
very fast polynomial manipulation or GiNaC [29] that
can handle basic symbolic manipulation but does not
have integration, advanced polynomial algorithms, or
limits. Pari [14] is designed for number theory compu-
tations and Cadabra [30] for field theory calculations
with tensors. Magma [17] specializes in algebra, num-
ber theory, algebraic geometry, and algebraic combina-
torics.

Finally, a CAS also usually contains a notebook
like interface, which can be used to enter commands
or programs, plot graphs, and show nicely format-
ted equations. For Python-based CASes, one can use
IPython Notebook [31] or Sage Notebook [18], both of
which are interactive web applications that can be used
from a web browser. C++ CASes can be wrapped in
Python, for example, GiNaC has several Python wrap-
pers: Swiginac [32], Pynac [33], etc. These can then be
used from Python-based notebooks. Mathematica and
Maple also contain a notebook interface, which accepts
the given CAS high-level language.
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Applications of Symbolic Computing

Symbolic computing has traditionally had numerous
applications. By 1970s, many CASes were used for ce-
lestial mechanics, general relativity, quantum electro-
dynamics, and other applications [34]. In this section
we present a few such applications in more detail, but
necessarily our list is incomplete and is only meant as
a starting point for the reader.

Many of the following applications and scientific
advances related to them would not be possible without
symbolic computing.

In[1l]:=
In[2]:
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Code Generation

One of the frequent use of a CAS is to derive some
symbolic expression and then generate C or Fortran
code that numerically evaluates it in a production high-
performance code. For example, to obtain the best
rational function approximation (of orders 8, 8) to
a modified Bessel function of the first kind of half-
integer argument /9/>(x) on an interval [4, 10], one can
use (in Mathematica):

Needs ["FunctionApproximations "]
FortranForm[HornerForm[MiniMaxApproximation [

BesselI[9/2, x]*Sqrt[Pixx/2]/Exp([x],
{x,{4,10},8,8},WorkingPrecision->30] [[2,1]]]]

Out [2] //FortranForms=

(0.000395502959013236968661582656143 +

X*

X*
X*

X*
X*

-0.001434648369704841686633794071 +
0.00248783474583503473135143644434 +

0.00274477921388295929464613063609 +
-0.000236779926184242197820134964535 +

0.0000882030507076791807159699814428 +
-4.62078105288798755556136693122e-6 +

(

(

(
x%(0.00216275018107657273725589740499 +

(

(

(

8.23671374777791529292655504214e-7xx)*x)))))))

1. + x%x(0.504839286873735708062045336271 +
0.176683950009401712892997268723 +
0.0438594911840609324095487447279 +
0.00829753062428409331123592322788 +
0.00111693697900468156881720995034 +
0.000174719963536517752971223459247 +
7.22885338737473776714257581233e-6 +

1.64737453771748367647332279826e-6%X)*x)))))))

The result can be readily used in a Fortran code (we
reformatted the white space in the output Out [2] to
better fit into the page).

Particle Physics

The application of symbolic computing in particle
physics typically involves generation and then calcu-
lation of Feynman diagrams (among other things that
involves doing fast traces of Dirac gamma matrices
and other tensor operations). The first CAS that was

designed for this task was Schoonschip [4, 5], and in
1984 FORM [35] was created as a successor. FORM
has built-in features for manipulating formulas in parti-
cle physics, but it can also be used as a general purpose
system (it keeps all expressions in expanded form, so
it cannot do factorization; it also does not have more
advanced features like series expansion, differential
equations, or integration).

Many of the scientific results in particle physics
would not be possible without a powerful CAS;
Schoonschip was used for calculating properties of the
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W boson in the 1960s and FORM is still maintained
and used to this day.

Another project is FeynCalc [36], originally written
for Macsyma (Maxima) and later Mathematica. It is a
package for algebraic calculations in elementary par-
ticle physics, among other things; it can do tensor and
Dirac algebra manipulation, Lorentz index contraction,
and generation of Feynman rules from a Lagrangian,
Fortran code generation. There are hundreds of publi-
cations that used FeynCalc to perform calculations.

Similar project is FeynArts [37], which is also a
Mathematica package that can generate and visualize
Feynman diagrams and amplitudes. Those can then be
calculated with a related project FormCalc [38], built
on top of FORM.

PyDy

PyDy, short for Python Dynamics, is a work flow
that utilizes an array of scientific tools written in the
Python programming language to study multi-body
dynamics [39]. SymPy mechanics package is used to
generate symbolic equations of motion in complex
multi-body systems, and several other scientific Python
packages are used for numerical evaluation (NumPy
[40]), visualization (Matplotlib [41]), etc. First, an ide-
alized version of the system is represented (geometry,
configuration, constraints, external forces). Then the
symbolic equations of motion (often very long) are
generated using the mechanics package and solved
(integrated after setting numerical values for the pa-
rameters) using differential equation solvers in SciPy
[42]. These solutions can then be used for simulations
and visualizations. Symbolic equation generation guar-
antees no mistakes in the calculations and makes it easy
to deal with complex systems with a large number of
components.

General Relativity

In general relativity the CASes have traditionally been
used to symbolically represent the metric tensor g™’
and then use symbolic derivation to derive various
tensors (Riemann and Ricci tensor, curvature, . . .) that
are present in the Einstein’s equations [34]:

1 871G
Ry — 8w R+ gunA = T4

5 T -

(1)

Those can then be solved for simple systems.
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Celestial Mechanics

The equations in celestial mechanics are solved using
perturbation theory, which requires very efficient ma-
nipulation of a Poisson series [8, 34,43-50]:

ZP(a,b,c,...,h)z)I; QuA+po +-+7y2) Q)

where P(a,b,c,...,h) is a polynomial and each term
contains either sin or cos. Using trigonometric rela-
tions, it can be shown that this form is closed to ad-
dition, subtraction, multiplication, differentiation, and
restricted integration. One of the earliest specialized
CASes for handling Poisson series is CAMAL [8].
Many others were since developed, for example, TRIP
[43].

Quantum Mechanics
Quantum mechanics is well known for many tedious
calculations, and the use of a CAS can aid in doing
them. There have been several books published with
many worked-out problems in quantum mechanics
done using Mathematica and other CASes [51,52].

There are specialized packages for doing computa-
tions in quantum mechanics, for example, SymPy has
extensive capabilities for symbolic quantum mechanics
in the sympy .physics.quantum subpackage. At
the base level, this subpackage has Python objects to
represent the different mathematical objects relevant in
quantum theory [53]: states (bras and kets), operators
(unitary, Hermitian, etc.), and basis sets as well as
operations on these objects such as tensor products,
inner products, outer products, commutators, anticom-
mutators, etc. The base objects are designed in the
most general way possible to enable any particular
quantum system to be implemented by subclassing the
base operators to provide system specific logic. There
is a general purpose gapply function that is capable
of applying operators to states symbolically as well
as simplifying a wide range of symbolic expressions
involving different types of products and commuta-
tor/anticommutators. The state and operator objects
also have a rich API for declaring their representation
in a particular basis. This includes the ability to specify
a basis for a multidimensional system using a complete
set of commuting Hermitian operators.

On top of this base set of objects, a number of
specific quantum systems have been implemented.
First, there is traditional algebra for quantum angular
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momentum [54]. This allows the different spin
operators (Sy, Sy, S;) and their eigenstates to be
represented in any basis and for any spin quantum
number. Facilities for Clebsch-Gordan coefficients,
Wigner coefficients, rotations, and angular momentum
coupling are also present in their symbolic and
numerical forms. Other examples of particular
quantum systems that are implemented include
second quantization, the simple harmonic oscillator
(position/momentum and raising/lowering forms), and
continuous position/momentum-based systems.

Second there is a full set of states and operators
for symbolic quantum computing [55]. Multidimen-
sional qubit states can be represented symbolically
and as vectors. A full set of one (X, Y, Z, H, etc.)
and two qubit (CNOT, SWAP, CPHASE, etc.) gates
(unitary operators) are provided. These can be repre-
sented as matrices (sparse or dense) or made to act on
qubits symbolically without representation. With these
gates, it is possible to implement a number of basic
quantum circuits including the quantum Fourier trans-
form, quantum error correction, quantum teleportation,
Grover’s algorithm, dense coding, etc.

There are other packages that specialize in quantum
computing, for example, [56].

Number Theory

Number theory provides an important base for modern
computing, especially in cryptography and coding the-
ory [57]. For example, LLL [58] algorithm is used in
integer programming; primality testing and factoring
algorithms are used in cryptography [59]. CASes are
heavily used in these calculations.

Riemann hypothesis [60, 61] which implies results
about the distribution of prime numbers has important
applications in computational mathematics since it can
be used to estimate how long certain algorithms take to
run [61]. Riemann hypothesis states that all nontrivial
zeros of the Riemann zeta function, defined for com-
plex variable s defined in the half-plane N (s) > 1 by
the absolutely convergent series ¢ (s) = Y oo n™%,
have real part equal to % In 1986, this was proven
for the first 1,500,000,001 nontrivial zeros using com-
putational methods [62]. Sebastian Wedeniwski using
ZettaGrid (a distributed computing project to find roots
of the zeta function) verified the result for the first 400
billion zeros in 2005 [63].
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Teaching Calculus and Other Classes

Computer algebra systems are extremely useful for
teaching calculus [64] as well as other classes where
tedious symbolic algebra is needed, such as many
physics classes (general relativity, quantum mechanics
and field theory, symbolic solutions to partial dif-
ferential equations, e.g., in electromagnetism, fluids,
plasmas, electrical circuits, etc.) [65].

Experimental Mathematics

One field that would not be possible at all without com-
puter algebra systems is called “experimental mathe-
matics” [66], where CASes and related tools are used
to “experimentally” verify or suggest mathematical
relations. For example, the famous Bailey—Borwein—
Plouffe (BBP) formula

o
1 4 2
”_;[W(8k+1_8k+4
1 1
8k +5 8k+6

3)

was first discovered experimentally (using arbitrary-
precision arithmetic and extensive searching using an
integer relation algorithm), only then proved rigorously
[67].

Another example is in [68] where the authors first
numerically discovered and then proved that for ratio-
nal x, y, the 2D Poisson potential function satisfies

cos(amx) cos(bmy) 1 i
= —logu
a? + b? .

v =3 Y

a,b odd

“)

where « is algebraic (a root of an integer polynomial).
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Symmetric Methods

Philippe Chartier
INRIA-ENS Cachan, Rennes, France

Synonyms

Time reversible

Definition

This entry is concerned with symmetric methods for
solving ordinary differential equations (ODEs) of the
form

y=f(y) eR" (1)

Throughout this article, we denote by ¢; 7 (yo) the flow
of equation (1) with vector field f, i.e., the exact
solution at time ¢ with initial condition y(0) = yy,
and we assume that the conditions for its well defi-
niteness and smoothness for (yy, |¢|) in an appropriate
subset 2 of R” x R are satisfied. Numerical methods
for (1) implement numerical flows @ r which, for
small enough stepsizes h, approximate ¢, . Of central
importance in the context of symmetric methods is the
concept of adjoint method.

y(0) = yo.

Definition 1 The adjoint method &, Y is the inverse of
@, ; with reversed time step —h:

B =P, @)
A numerical method @j is then said to be symmetric if

Dy r = @,if.

Overview

Symmetry is an essential property of numerical meth-
ods with regard to the order of accuracy and geometric
properties of the solution. We briefly discuss the im-
plications of these two aspects and refer to the corre-
sponding sections for a more involved presentation:

* A method @, ¢ is said to be of order p if

D (¥) =i s (y) + ORI,
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and, if the local error has the following first-term
expansion

Pnr (y) = oy (y) + h"TC(y) + ORP+?),

then straightforward application of the implicit func-
tion theorem leads to

Dy () = @n s (y) = (=R)PFC(y) + O"™?).

This implies that a symmetric method is necessarily
of even order p = 2q, since ®p, (y) = @,i_f(y)
means that (1 + (=1)?*")C(y) = 0. This property
plays a key role in the construction of composition
methods by triple jump techniques (see section on

“Symmetric Methods Obtained by Composition”), and

this is certainly no coincidence that Runge-Kutta meth-

ods of optimal order (Gauss methods) are symmetric

(see section on “Symmetric Methods of Runge-Kutta

Type”). It also explains why symmetric methods are

used in conjunction with (Richardson) extrapolation

techniques.

» The exact flow ¢, s is itself symmetric owing to
the group property @i r = @5 5 © ¢ . Consider
now an isomorphism p of the vector space R” (the
phase space of (1)) and assume that the vector field
f satisfies the relation po f = — f o p (see Fig. 1).
Then, ¢, r is said to be p-reversible, that is it to say
the following equality holds:

pogLr =@ ;op ?3)

Example 1 Hamiltonian systems

. OH
Y=o (.2
Z

. oH
7= —a—(y,Z)
y

Symmetric Methods

with a Hamiltonian function H(g, p) satisfying
H(y,—z) = H(y,z) are p-reversible for p(y,z) =
(. =2).

Definition 2 A method &, applied to a p-reversible
ordinary differential equation, is said to be p-reversible
if

po®dy s = <P;:}op.
Note that if @, ; is symmetric, it is p-reversible if and
only if the following condition holds:

po®yy=Pyyop. (4)

Besides, if (4) holds for an invertible p, then &, r is
p-reversible if and only if it is symmetric.

Example 2 The trapezoidal rule, whose flow is defined
by the implicit equation

1 1
Dy r(y) =y +hf (5)’ + ?Ph,f()’)) )
is symmetric and is p-reversible when applied to
p-reversible f.

Since most numerical methods satisfy relation (4),
symmetry is the required property for numerical meth-
ods to share with the exact flow not only time re-
versibility but also p-reversibility. This illustrates that a
symmetric method mimics geometric properties of
the exact flow. Modified differential equations sustain
further this assertion (see next section) and allow for
the derivation of deeper results for integrable reversible
systems such as the preservation of invariants and
the linear growth of errors by symmetric meth-
ods (see section on “Reversible Kolmogorov-Arnold—
Moser Theory™).

Modified Equations for Symmetric
Methods

Constant stepsize backward error analysis. Con-
sidering a numerical method @;, (not necessarily sym-
metric) and the sequence of approximations obtained
by application of the formula y,11 = @y r(ys).n =
0,1,2,..., from the initial value y,, the idea of back-
ward error analysis consists in searching for a modified
vector field f," such that

Gy (90) = Pn (o) + OWN ), (6)
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where the modified vector field, uniquely defined by a
Taylor expansion of (6), is of the form

LN = fO)+hAi)+12 L)+ +hY fy ().
@)

Theorem 1 The modified vector field of a symmetric
method @y, s has an expansion in even powers of h,
ie, frj+1 = 0for j = 0,1,... Moreover, if f and
Dy, ¢ are p-reversible, then th is p-reversible as well
forany N > 0.

Proof. Reversing the time step £ in (6) and taking the
inverse of both sides, we obtain

(@) (0) = (@) (0) + OBV ).

Now, the group property of exact flows implies that
(@-h,_f_’v,l)_l(J’o) = ¢n. 7, (o), so that

@ v (o) = Py £ (yo) + O F2),

and by uniqueness, (f;")* = f. This proves the
first statement. Assume now that f is p-reversible, so
that (4) holds. It follows from /% = £,V that

O(hN+2)

POY_ v =pOG_y v = pOoPpy

OmNt?)
= q)hf (o] p =

Pr.fN P

where the second and last equalities are valid up to
O(hN*?)-error terms. Yet the group property then
implies that p 0 @_,;, v = @, ;v © p + Oy (hN+2)
where the constant in the O,-term depends on n and
an interpolation argument shows that for fixed N and
small |z]

POY_ N =@ gnOp+ O+,

where the O-term depends smoothly on ¢ and on N.
Finally, differentiating with respect to ¢, we obtain

d

= —@ N op
o dt 1=0

+O(hN+2) — th Op+0(hN+l),

d
N _
—pofi = POP gy _

and consequently —p o f,¥ = f,¥ op. O
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Remark 1 The expansion (7) of the modified vector
field th can be computed explicitly at any order N
with the substitution product of B-series [2].

Example 3 Consider the Lotka-Volterra equations in

Poisson form
0 wuv V,H(u,v)
—uv 0 V,.H(u,v) )’

(©)-

H(u,v) = log(u) + log(v) —u—v,

ie,y = f(y) with f(y) = (1l —v),v(u—1)7.
Note that p o f = —f o p with p(u,v) = (v,u).
The modified vector fields f,”.. for the implicit Euler
method and f}fmr for the implicit midpoint rule read
(with N = 2)

2 1 i h2 " h2 I
fow =T+ T+ LN+ 5SS
h? h?
and e =/ =S S )+ S

The exact solutions of the modified ODEs are plotted
on Fig. 2 together with the corresponding numerical
solution. Though the modified vector fields are trun-
cated only at second order, the agreement is excellent.
The difference of the behavior of the two solutions is
also striking: only the symmetric method captures the
periodic nature of the solution. (The good behavior of
the midpoint rule cannot be attributed to its symplectic-
ity since the system is a noncanonical Poisson system.)
This will be further explored in the next section.

Variable stepsize backward error analysis. In prac-
tice, it is often fruitful to resort to variable stepsize
implementations of the numerical flow @, ;. In ac-
cordance with [17], we consider stepsizes that are
proportional to a function es(y, €) depending only on
the current state y and of a parameter € prescribed
by the user and aimed at controlling the error. The
approximate solution is then given by
Yn+1 = (pes(y,,,e).f(yn)’ n = 0, e

A remarkable feature of this algorithm is that it pre-
serves the symmetry of the exact solution as soon as
@y, r is symmetric and s satisfies the relation

$(Pes(ye).f (1), —€) = 5(y. €)
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and preserves the p-reversibility as soon as @ ; is
p-reversible and satisfies the relation

(0™ 0 Pesiya.1 (9), =€) = 5(y. €).

A result similar to Theorem 1 then holds with A
replaced by €.

Remark 2 A recipe to construct such a function s,
suggested by Stoffer in [17], consists in requiring that
the local error estimate is kept constantly equal to a
tolerance parameter. For the details of the implementa-
tion, we refer to the original paper or to Chap. VIIL.3
of [10].

Reversible Kolmogorov-Arnold-Moser
Theory

The theory of integrable Hamiltonian systems has its
counterpart for reversible integrable ones. A reversible

system

where

y= 2, 2=¢g%.2 po(fg

®)

—(f,g)op with p(y,2) = (y,—2),

is reversible integrable if it can be brought, through a
reversible transformation (a,0) = (I(y,z),®(y,2)),
to the canonical equations

a=0, 6 = w(a).

An interesting instance is the case of completely inte-
grable Hamiltonian systems:

. O0H . oH
y=—0.2, z=-——=02),
0z dy

with first integrals /;’s in involution (That is to say
such that (V,1;)-(V.1;) = (V.1;)-(V,1;) foralli, j.)
such that I; o p = I;. In the conditions where Arnold-
Liouville theorem (see Chap.X.1.3. of [10]) can be
applied, then, under the additional assumption that

A(y*.0) € 43,2, V). I;(y.2) = I;(y0,20)}, (9)

such a system is reversible integrable. In this situation,
p-reversible methods constitute a very interesting way
around symplectic method, as the following result
shows:

Theorem 2 Let @y sy be a reversible numerical
method of order p applied to an integrable reversible
system (8) with real-analytic f and g. Consider
a® = (L(»*2%),...,1.(¥%,2%)): If the condition

d -V
Vk € Z¢/{0}, |k -w(a®)| >y (Z Ikil)

i=1

is satisfied for some positive constants y and v, then
there exist positive C, ¢, and hq such that the following
assertion holds:
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197 1) Xo. ¥0) = (1) 2] < Cil”

Vi =nh<h?

Analogously to symplectic methods, p-reversible
methods thus preserve invariant tori I; = cst over
long intervals of times, and the error growth is linear
in z. Remarkably and in contrast with symplectic
methods, this result remains valid for reversible
variable stepsize implementations (see Chap.X.1.3
of [10]). However, it is important to note that for a
Hamiltonian reversible system, the Hamiltonian ceases
to be preserved when condition (9) is not fulfilled. This
situation is illustrated on Fig. 3 for the Hamiltonian
system with H(q, p) = %pz + cos(q) + % sin(2¢q), an
example borrowed from [4].

Symmetric Methods of Runge-Kutta Type

Runge-Kutta methods form a popular class of numer-
ical integrators for (1). Owing to their importance
in applications, we consider general systems (1) and
subsequently partitioned systems.

Methods for general systems. We start with the
following:

Definition 3 Consider a matrix A = (a; ;) € R® xR*
and a vector b = (b;) € R°. The Runge-Kutta method
denoted (A4, b) is defined by

Yi=y+h) ai;jf(¥)., i=1...s (1

Jj=1

F=y+h) b f(Y)).

Jj=1

(12)

Note that strictly speaking, the method is properly de-
fined only for small |%|. In this case, the corresponding
numerical flow @,  maps y to y. Vector Y; approxi-
mates the solution at intermediate point ¢y + ¢; i, where
¢i = )_; a;j,and itis customary since [1] to represent
a method by its rableau:
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(10)
VL@ o Y0.200) — 1 (0. 20)| < ChP forall J.
€l ari ais
(13)
Cs As,1 As,s
by ... by
Runge-Kutta methods automatically satisfy the

p-compatibility condition (4): changing & into —h
in (11) and (12), we have indeed by linearity of p
and by using po f = —fop

(1) = p) =Y i f(p(Y)), i=1,....s

Jj=1

p(3) = PN —h Y b, f (o).

Jj=1

By construction, this is p(®—_; r(y)) and by previous
definition @;, ¢ (p(y)). As a consequence, p-reversible
Runge-Kutta methods coincide with symmetric meth-
ods. Nevertheless, symmetry requires an additional
algebraic condition stated in the next theorem:

Theorem 3 A Runge-Kutta method (A, b) is symmet-

ric if

PA+ AP = eb” andb = Pb, (14)

wheree = (1,...,1)T € R® and P is the permutation
matrix defined by p; ;j = 8; s+1—j.

T
Proof. Denoting ¥ = (¥[7,....¥T) and F(Y) =

T
(f(Yl)T,...,f(YS)T) , a more compact form
for (11) and (12) is
Y=e®y+h(ARQI)F(Y),
F=y+h®" @ F{Y).

15)
(16)



1444

Hamiltonian

-10 -5 0 5 10 15
q

Symmetric Methods

Symmetric Methods, Fig. 3 Level sets of H (left) and evolution of H w.r.t. time for two different initial values

On the one hand, premultiplying (15) by P ® I and
noticing that

(P& )F(Y) = F((P ® I)Y),

it is straightforward to see that @, s can also be
defined by coefficients PAPT and Pbh. On the other
hand, exchanging & and —h, y, and y, it appears that
Qy ;s 1s defined by coefficients A* = eb” — A and
b* = b. The flow @ ; is thus symmetric as soon as
eb” — A = PAP and b = Pb, which is nothing but
condition (14). O

Remark 3 For methods without redundant stages, con-
dition (14) is also necessary.

Example 4 The implicit midpoint rule, defined by A =
% and b = 1, is a symmetric method of order 2. More
generally, the s-stage Gauss collocation method based
on the roots of the sth shifted Legendre polynomial is
a symmetric method of order 2s. For instance, the 2-
stage and 3-stage Gauss methods of orders 4 and 6 have
the following coefficients:

RI— N|—

_l’_

SN

L

+ e

Pl
=
2l%

=
(ST N

1.071
—— gp=0and py=2.034
1.0705 | — qo=0and p,=2.033| |
1.07 +
1.0695 -
1.069 -
1.0685 . . ! !
0 2000 4000 6000 8000 10000
Time
1_ A5 5 2_ A5 5 A5
2 10 36 9 15 36 30
1 54 15 2 5 5
2 36 24 9 36 24 (17)
1 J15 5 J15 2 | /15 5
2t %t st s 3
5 4 5
18 9 18

Methods for partitioned systems.
form

For systems of the

y= s, (18)

z=g(y),

it is natural to apply two different Runge-Kutta meth-
ods to variables y and z: Written in compact form, a
partitioned Runge-Kutta method reads:

Y=e®y+h(AQI)F(Z),
Z=e®y+h(A® G(Y),
J=y+hd" @ DHF(2),
i=y+h(b" @ DHGY),

and the method is symmetric if both (4, b) and (/f, 1;)
are. An important feature of partitioned Runge-Kutta
method is that they can be symmetric and explicit for
systems of the form (18).

Example 5 The Verlet method is defined by the fol-
lowing two Runge-Kutta tableaux:
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1 1
0 0 0 5 5 0
1 —é —; and 12 —; 0 (19)
1 1 1
2 2 2 2

The method becomes explicit owing to the special
structure of the partitioned system:

Yi = yo, Zy =z + 2 (1),
Yo = yo+hg(Zy), Z, = Zy,
n=n, a = a+i(f00+/(1)

The Verlet method is the most elementary method of
the class of partitioned Runge-Kutta methods known
as Lobatto ITIA-IIIB. Unfortunately, methods of higher
orders within this class are no longer explicit in gen-
eral, even for the equations of the form (18). It is
nevertheless possible to construct symmetric explicit
Runge-Kutta methods, which turn out to be equivalent
to compositions of Verlet’s method and whose intro-
duction is for this reason postponed to the next section.

Note that a particular instance of partitioned sys-
tems are second-order differential equations of the
form

y=z z=2¢g), (20)
which covers many situations of practical interest (for
instance, mechanical systems governed by Newton’s
law in absence of friction).

Symmetric Methods Obtained by
Composition

Another class of symmetric methods is constituted of
symmetric compositions of low-order methods. The
idea consists in applying a basic method @, ; with a
sequence of prescribed stepsizes: Given s real numbers

Y1, ..., Vs, its composition with stepsizes y1 4, ..., ysh
gives rise to a new method:
Wig = Pyhg 0.0 Py 2y

Noticing that the local error of W, s, defined by
W, 7 (¥) — on, 7 (»), is of the form

p+1

WP+ yPTHRPTIC () + O,
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assoonas y; + ...+ y, = 1, ¥, s is of order at least
p+ 1if
eyt =0

This observation is the key to triple jump compositions,
as proposed by a series of authors [3,5,18,21]: Starting
from a symmetric method @;, s of (even) order 2¢, the
new method obtained for

1
Vi=y3= PR YVerEsT)
21/Q2q+1)
Y2 = e

and

is symmetric

*

Vi =@ 0Py, ;0P o

= Py f © Pooif © Pyiny = Wiy

and of order at least 2¢ + 1. Since the order of a
symmetric method is even, W, s is in fact of order
2q + 2. The procedure can then be repeated recursively
to construct arbitrarily high-order symmetric methods
of orders 2q +2,2qg +4,2q +6, . . .., with respectively
3,9,27,..., compositions of the original basic method
@, r. However, the construction is far from being the
most efficient, for the combined coefficients become
large, some of which being negatives. A partial remedy
is to envisage compositions with s = 5. We hereby give
the coefficients obtained by Suzuki [18]:

1

V1=V2=)/4=)/5=m and
41/Cq+1)
V3= T T aee
which give rise to very efficient methods for ¢ = 1

and g = 2. The most efficient high-order composition
methods are nevertheless obtained by solving the full
system of order conditions, i.e., by raising the order di-
rectly from 2 to 8, for instance, without going through
the intermediate steps described above. This requires
much more effort though, first to derive the order
conditions and then to solve the resulting polynomial
system. It is out of the scope of this article to describe
the two steps involved, and we rather refer to the paper
[15] on the use of ocoB-series for order conditions
and to Chap. V.3.2. of [10] for various examples and
numerical comparisons. An excellent method of order
6 with 9 stages has been obtained by Kahan and Li [12]
and we reproduce here its coefficients:
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=100

Error at time t
=
(9]

———— Kahan and Li
———+—— Triple jump

10°

Number of Verlet steps

Y1 = yo = 0.3921614440073141,
2 = ys = 0.3325991367893594,
3 = y7 = —0.7062461725576393,
vs = y6 = 0.0822135962935508,
ys = 0.7985439909348299.

For the sake of illustration, we have computed the
solution of Kepler’s equations with this method and
the method of order 6 obtained by the triple jump
technique. In both cases, the basic method is Verlet’s
scheme. The gain offered by the method of Kahan and
Li is impressive (it amounts to two digits of accuracy
on this example). Other methods can be found, for
instance, in [10, 14].

Remark 4 1t is also possible to consider symmetric
compositions of nonsymmetric methods. In this situa-
tion, raising the order necessitates to compose the basic
method and its adjoint.

Symmetric Methods for Highly Oscillatory
Problems

In this section, we present methods aimed at solving
problems of the form

q = _VVfast(q) - VVslow(q) (22)

where Vi, and Vi, are two potentials acting on
different time scales, typically such that V2V, is
positive semi-definite and [|V?Vu || >> ||V Viiow|-
Explicit standard methods suffer from severe stability
restrictions due to the presence of high oscillations
at the slow time scale and necessitate small steps
and many evaluations of the forces. Since slow forces
—V V0w are in many applications much more expen-
sive to evaluate than fast ones, efficient methods in this
context are thus devised to require significantly fewer
evaluations per step of the slow force.

Example 6 1In applications to molecular dynamics, for
instance, fast forces deriving from V. (short-range
interactions) are much cheaper to evaluate than slow
forces deriving from Vj,, (long-range interactions).
Other examples of applications are presented in [11].

Methods for general problems with nonlinear fast
potentials. Introducing the variable p = ¢ in (22),
the equation reads

(Z) - (g) +(—qugm(q))

—_—
Sr(y)
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(o)
_Vqulow(Q) )

N————
fs ()

The usual Verlet method [20] would consist in compos-
ing the flows @y, (7 + ) and @y, 7, as follows:

Ph (frtfs) © Phti ©PL (frtfs)

or, if necessary, numerical approximations thereof and
would typically be restricted to very small stepsizes.
The impulse method [6,8,19] combines the three pieces
of the vector field differently:

Pi g © Phfx+1r) © Pl gy

Note that ¢, f, is explicit

on s (61) _ ( q )
h, fs p p— th Viiow(q)

while @; ( ¢+ f7) may require to be approximated by a
numerical method @, (7, + £-) Which uses stepsizes that
are fractions of A. If @y, (s, + f) iS symmetric (and/or
symplectic), the overall method is symmetric as well

P\ _ py_1
(7)o (7)1
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(and/or symplectic) and allows for larger stepsizes.
However, it still suffers from resonances and a better
option is given by the mollified impulse methods,
which considers the mollified potential I%;ow(q) =
Viiow(a(q)) in loco of V., (q), where a(q) and a’(q)
are averaged values given by

h h
a@) = /0 x6)ds, d (@)= fo X(s)ds
where

¥ = —=VVas(x), x(0) = ¢,%(0) = p,

X = —VV5uu ()X, X(0) = I, X(0) =0. (23)
The resulting method uses the mollified force
—a’ (q)T(Vq Vsiow)(a(g)) and is still symmetric (and/or
symplectic) provided (23) is solved with a symmetric
(and/or symplectic) method.

Methods for problems with quadratic fast poten-
tials. In many applications of practical importance,
the potential V,,, is quadratic of the form V4 (q) =
%qT.qu. In this case, the mollified impulse method
falls into the class of trigonometric symmetric methods
of the form

Yo(h2)VViton($ (12)40) + V1 (12)V Vit (1 2)41 )

Wy (h2)V Vit ($ (2040 )

where R(h§2) is the block matrix given by

_ cos(h$2)
R(h$2) = (9—1 sin(h2)

and the functions ¢, ¥, Yo and i are even functions
such that

—82sin(h$§2)
cos(h§2) )

V) = S“‘Z@ V1), Yo(2) = cos@vn (), and
() = $(0) = 1.

Various choices of functions ¥ and ¢ are possible
and documented in the literature. Two particularly

interesting ones are ¥/ (z) = 5“‘2—2@, d(z) = 1 (see [9])
in’(z sin(z
or ¥ (z) = &3(”), o) = # (see [7]).

Conclusion

This entry should be regarded as an introduction to the
subject of symmetric methods. Several topics have not
been exposed here, such as symmetric projection for
ODESs on manifolds, DAEs of index 1 or 2, symmet-
ric multistep methods, symmetric splitting methods,
and symmetric Lie-group methods, and we refer the
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interested reader to [10, 13, 16] for a comprehensive
presentation of these topics.
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Synonyms

Fourier transform; Group theory; Representation the-
ory; Symmetries

Synopsis

The fast Fourier transform (FFT), group theory, and
symmetry of linear operators are mathematical topics
which all connect through group representation theory.
This entry provides a brief introduction, with emphasis
on computational applications.

Symmetric FFTs

The finite Fourier transform maps functions on a pe-
riodic lattice to a dual Fourier domain. Formally, let
Zn = Zn, X Ly, X +++ X Ly, be a finite abelian
(commutative) group, where Z,; is the cyclic group
Z,,j ={0,1,...,n; —1} with group operation +(mod
n;) and n = (n,...,ne) is a multi-index with
In| = nny---ng. Let CZ, denote the linear space
of complex-valued functions on Z,. The primal do-
main Zy is an {-dimensional lattice periodic in all
directions, and the Fourier domain is 2,, = Znq (this
is the Pontryagin dual group [12]). For infinite abelian
groups, the primal and Fourier domains in general dif-
fer, such as Fourier series on the circle where R/Z =
Z. The discrete Fourier transform (DFT) is an (up to
scaling) unitary map F: CZn — CZn. Letting F(f) =
f, we have
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?(k) = Z fG)e A(k},{l kﬁf)’

J€Zn

fork = (ki.....k¢) € Zn, (1
£G) = i Z }?(k)e—2m( ,1,1/1+ +l‘“[)’

i KEZn

forj = (ji,....j¢) € Zn. 2)

A symmetry for a function f € CZ, is an R-linear
map S: CZ, — CZ, such that Sf = f. As examples,
consider real symmetry Sk f(j) = f(j), even sym-
metry S, f(j) = f(=J) and odd symmetry S, f(j) =
—f(=j. It f has a symmetry S, then f has an adjoint
symmetry S = ]-'S]-' , example S, =85.8 =85,

and Sg R f k) = f (—Kk). The set of all symmetries
of f forms a group, i.e., the set of symmetries is
closed under composition and inversion. Equivalently,
the symmetries can be specified by defining an abstract
group G and a map R:G — Ling(CZ,), which for
each g € G defines an R-linear map R(g) on CZ,,
such that R(gg’) = R(g)R(g’) forall g,¢g’ € G. R is
an example of a real representation of G.

The DFT on Z, is computed by the fast Fourier
transform (FFT), costing O(|n|log(|n|)) floating point
operations. It is possible to exploit may symmetries in
the computation of the FFT, and for large classes of
symmetry groups, savings a factor |G| can be obtained
compared to the nonsymmetric FFT.

Equivariant Linear Operators and the GFT

Representations

Let G be a finite group with |G| elements. A dg-
dimensional unitary representation of G is a map
R:G — U(dg) such that R(gh) = R(g)R(h) for
all g,h € G, where U(dg) is the set of dg X dg
unitary matrices. More generally, a representation is
a linear action of a group on a vector space. Two
representations R and R are equivalent if there exists
a matrix X such that E(g) XR(g)X~! for all
g € G. A representation R is reducible if it is equiv-
alent to a block diagonal representation; otherwise it
is irreducible. For any finite group G, there exists a
complete list of nonequivalent irreducible representa-
tions R = {p1, p2,...,pPn}, henceforth called irreps,
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such that ) peR p = |G|. For example, the cyclic
group Z, = {0,1,...,r — 1} with group operation
+(modn) has exactly n 1-dimensional irreps given as
px(j) = exp2mikj/n). A matrix A is equivariant
with respect to a representation R of a group G if
AR(g) = R(g)A for all g € G. Any representation
R can be block diagonalized, with irreducible repre-
sentations on the diagonal. This provides a change of
basis matrix F such that FAF~! is block diagonal
for any R-equivariant A. This result underlies most of
computational Fourier analysis and will be exemplified
by convolutional operators.

Convolutions in the Group Algebra

The group algebra CG is the complex |G |-dimensional
vector space where the elements of G are the basis vec-
tors; equivalently CG consists of all complex-valued
functions on G. The product in G extends linearly to
the convolution product x: CG x CG — CG, given
as (a x b)(g) = Y ega(h)b(h™'g) forall g € G.
The right regular representation of G on CG is, for
every h € G, a linear map R(h):CG — CG given
as right translation R(h)a(g) = a(gh). A linear map
A:CG — CG is convolutional (i.e., there exists an
a € CG such that Ab = a * b for all b € CG) if and
only if A4 is equivariant with respect to the right regular
representation.

The Generalized Fourier Transform (GFT)
The generalized Fourier transform [6, 10] and the
inverse are given as

> a(g)p(g) € C¥*%, forallp e R
g€G

a(p) = 3)

a(g) = |G| > dptrace (p(g™")a(p)) . forall g € G.
PER

“)

From the convolution formula m(p) = Zl\(p)i)\(p),
we conclude: The GFT block-diagonalizes convolu-
tional operators on CG. The blocks are of size d,, the
dimensions of the irreps.

Equivariant Linear Operators

More generally, consider a linear operator A:V — V
where V is a finite-dimensional vector space and A is
equivariant with respect to a linear right action of G
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on V. If the action is free and transitive, then A is
convolutional on CG. If the action is not transitive,
then V splits in s separate orbits under the action of
G, and A is a block-convolutional operator. In this
case, the GFT block diagonalizes A with blocks of size
approximately sd,. The theory generalizes to infinite
compact Lie groups via the Peter—Weyl theorem and
to certain important non-compact groups (unimodular
groups), such as the group of Euclidean transforma-
tions acting on R”; see [13].

Applications

Symmetric FFTs appear in many situations, such as
real sine and cosine transforms. The 1-dim real cosine
transform has four symmetries generated by Sk and S,
and it can be computed four times faster than the full
complex FFT. This transform is central in Chebyshev
approximations. More generally, multivariate Cheby-
shev polynomials possess symmetries of kaleidoscopic
reflection groups acting upon Zy, [9, 11, 14].

Diagonalization of equivariant linear operators is
essential in signal and image processing, statistics, and
differential equations. For a cyclic group Z,, an equiv-
ariant A is a Toeplitz circulant, and the GFT is given by
the discrete Fourier transform, which can be computed
fast by the FFT algorithm. More generally, a finite
abelian group Z, has |n| one-dimensional irreps, given
by the exponential functions. Zy-equivariant matrices
are block Toeplitz circulant matrices. These are diago-
nalized by multidimensional FFTs. Linear differential
operators with constant coefficients typically lead to
discrete linear operators which commute with trans-
lations acting on the domain. In the case of periodic
boundary conditions, this yields block circulant matri-
ces. For more complicated boundaries, block circulants
may provide useful approximations to the differential
operators.

More generally, many computational problems pos-
sess symmetries given by a (discrete or continuous)
group acting on the domain. For example, the Lapla-
cian operator commutes with any isometry of the do-
main. This can be discretized as an equivariant discrete
operator. If the group action on the discretized domain
is free and transitive, the discrete operator is a convolu-
tion in the group algebra. More generally, it is a block-
convolutional operator. For computational efficiency,
it is important to identify the symmetries (or approx-

Symmetries and FFT

imate symmetries) of the problem and employ the
irreducible characters of the symmetry group and the
GFT to (approximately) block diagonalize the opera-
tors. Such techniques are called domain reduction tech-
niques [7]. Block diagonalization of linear operators
has applications in solving linear systems, eigenvalue
problems, and computation of matrix exponentials.
The GFT has also applications in image processing,
image registration, and computational statistics [1—
5,8].
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Definition

This entry, concerned with the practical task of in-
tegrating numerically Hamiltonian systems, follows
up the entry » Hamiltonian Systems and keeps the
notation and terminology used there.

Each one-step numerical integrator is specified by
a smooth map ¥/ that advances the numerical

In41.In
solution from a time level #,, to the next #,4

(pn+1’qn+l) — q/t:’{_'_l.t”(pn’qn); (1)
the superscript H refers to the Hamiltonian function
H(p, q;1) of the system being integrated. For instance
for the explicit Euler rule

Pt = (p".q") + (tar1 — ) (f(P".q": 1),
g(p".q": 1))

here and later f and g denote the d-dimensional
real vectors with entries —dH /dq;, 0H/dp; (d is the
number of degrees of freedom) so that (f, g) is the
canonical vector field associated with H (in simpler
words: the right-hand side of Hamilton’s equations).
For the integrator to make sense, lI/,fI '+ 1.4, Das to approx-
imate the solution operator <1§tf’ 41, that advances the
true solution from its value at #,, to its value at ¢, 4+;:

(p(tn+1)’ q(tn+1)) = (p;il_,_l,t,, (p(tn)’ Q(tn))~

For a method of (consistency) order v, llff 1., differs
from ¢t7+1.t” in terms of magnitude O((t,,_H - t,,)”“).

The solution map @tf 1 is a canonical (symplec-

tic) transformation in phase space, an important fact
that substantially constrains the dynamics of the true
solution (p(t),¢(t)). If we wish the approximation
wH o retain the “Hamiltonian” features of &7, we
should insist on ¥ also being a symplectic transfor-
mation. However, most standard numerical integrators
— including explicit Runge—Kutta methods, regardless
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of their order v — replace ®” by a nonsymplectic
mapping ¥# . This is illustrated in Fig. 1 that corre-
sponds to the Euler rule as applied to the harmonic
oscillator p = —g, ¢ = p. The (constant) step size
is ty41 — t, = 2m/12. We have taken as a family
of initial conditions the points of a circle centered at
p = 1, g = 0 and seen the evolution after 1, 2, ..., 12
steps. Clearly the circle, which should move clockwise
without changing area, gains area as the integration
proceeds: The numerical ¥# is not symplectic. As
a result, the origin, a center in the true dynamics, is
turned by the discretization procedure into an unstable
spiral point, i.e., into something that cannot arise in
Hamiltonian dynamics. For the implicit Euler rule, the
corresponding integration loses area and gives rise to a
family of smaller and smaller circles that spiral toward
the origin. Again, such a stable focus is incompatible
with Hamiltonian dynamics.

This failure of well-known methods in mimicking
Hamiltonian dynamics motivated the consideration of
integrators that generate a symplectic mapping ¥/
when applied to a Hamiltonian problem. Such methods
are called symplectic or canonical. Since symplec-
tic transformations also preserve volume, symplectic
integrators applied to Hamiltonian problems are au-
tomatically volume preserving. On the other hand,
while many important symplectic integrators are time-

OOO 7
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Symplectic Methods, Fig. 1 The harmonic oscillator inte-
grated by the explicit Euler method


http://dx.doi.org/10.1007/978-3-540-70529-1_117

1452

reversible (symmetric), reversibility is neither suffi-
cient nor necessary for a method to be symplectic ([8],
Remark 6.5).

Even though early examples of symplectic integra-
tion may be traced back to the 1950s, the systematic
exploration of the subject started with the work of Feng
Kang (1920-1993) in the 1980s. An early short mono-
graph is [8] and later books are the comprehensive
[5] and the more applied [6]. Symplectic integration
was the first step in the larger endeavor of developing
structure-preserving integrators, i.e., of what is now
often called, following [7], geometric integration.

Limitations of space restrict this entry to one-step
methods and canonical Hamiltonian problems. For
noncanonical Hamiltonian systems and multistep inte-
grators the reader is referred to [5], Chaps. VII and XV.

Integrators Based on Generating
Functions

The earliest systematic approaches by Feng Kang and
others to the construction of symplectic integrators (see
[51, Sect. VI.5.4 and [8], Sect. 11.2) exploited the fol-
lowing well-known result of the canonical formalism:
The canonical transformation <D,7 1., POSSESSES A gen-
erating function S, that solves an initial value problem
for the associated Hamilton—Jacobi equation. It is then
possible, by Taylor expanding that equation, to obtain
an approximation ng to S,. The transformation lI/th i
generated by S, will automatically be canonical and
therefore will define a symplectic integrator. If S,
differs from S, by terms (9(([,,+1 — Zn)"'H), the inte-
grator will be of order v. Generally speaking, the high-
order methods obtained by following this procedure are
more difficult to implement than those derived by the
techniques discussed in the next two sections.

Runge-Kutta and Related Integrators

In 1988, Lasagni, Sanz-Serna, and Suris (see
[8], Chap.6) discovered independently that some
well-known families of numerical methods contain
symplectic integrators.

Symplectic Methods

Runge-Kutta Methods

Symplecticness Conditions
When the Runge—Kutta (RK) method with s stages
specified by the tableau

air ais

2
(2] Ass
bl v bs

is applied to the integration of the Hamiltonian system
with Hamiltonian function H, the relation (1) takes the
form

S
P = p" At b Y bi f(PiL Qiity + ciha),

i=1

"' =q" + g1 Y_bi g(Pi. Qiity + cihuy),

i=1

where ¢; = Z/ a;; are the abscissae, i, 1 = tyt1—1n
is the step size and P;, Q;,i = 1,..., s are the internal
stage vectors defined through the system

N
P = p" + hyy Zaij S(P;,Qjity 4+ cjhuy),

Jj=1

3)

Qi =q" + hpy Zaij g(Pj, Qjitn + cjhny).
j=1

“)

Lasagni, Sanz-Serna, and Suris proved that if the
coefficients of the method in (2) satisfy

biai_/ +b_/a_/,» —b,'b_/' =0, i,j=1,...,8, (5
then the method is symplectic. Conversely ([8],
Sect. 6.5), the relations (5) are essentially necessary
for the method to be symplectic. Furthermore for
symplectic RK methods the transformation (1) is in
fact exact symplectic ([8], Remark 11.1).

Order Conditions
Due to symmetry considerations, the relations (5) im-
pose s(s + 1)/2 independent equations on the s> + s
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elements of the RK tableau (2), so that there is no
shortage of symplectic RK methods. The available free
parameters may be used to increase the accuracy of the
method. It is well known that the requirement that an
RK formula has a target order leads to a set of nonlinear
relations (order conditions) between the elements of
the corresponding tableau (2). For order > v there
is an order condition associated with each rooted tree
with < v vertices and, if the a;; and b; are free
parameters, the order conditions are mutually inde-
pendent. For symplectic methods however the tableau
coefficients are constrained by (5), and Sanz-Serna and
Abia proved in 1991 that then there are redundancies
between the order conditions ([8], Sect.7.2). In fact
to ensure order > v when (5) holds it is necessary
and sufficient to impose an order condition for each
so-called nonsuperfluous (nonrooted) tree with < v
vertices.

Examples of Symplectic Runge-Kutta Methods
Setting j = i in (5) shows that explicit RK methods
(with a;; = Ofori < j) cannot be symplectic.
Sanz-Serna noted in 1988 ([8], Sect.8.1) that the
Gauss method with s stages, s = 1,2,..., (i.e., the
unique method with s stages that attains the maximal
order 2s) is symplectic. When s = 1 the method is
the familiar implicit midpoint rule. Since for all Gauss
methods the matrix (a;;) is full, the computation of
the stage vectors P; and Q; require, at each step,
the solution of the system (3) and (4) that comprises
s x 2d scalar equations. In non-stiff situations this
system is readily solved by functional iteration, see
[8] Sects. 5.4 and 5.5 and [5] Sect. VIII.6, and then the
Gauss methods combine the advantages of symplectic-
ness, easy implementation, and high order with that of
being applicable to all canonical Hamiltonian systems.
If the system being solved is stiff (e.g., it arises
through discretization of the spatial variables of a
Hamiltonian partial differential equation), Newton it-
eration has to be used to solve the stage equations (3)
and (4), and for high-order Gauss methods the cost
of the linear algebra may be prohibitive. It is then
of interest to consider the possibility of diagonally
implicit symplectic RK methods, i.e., methods where
a;jj = 0fori < j and therefore (3) and (4) demand
the successive solution of s systems of dimension
2d, rather than that of a single (s x 2d)—dimensional
system. It turns out ([8], Sect.8.2) that such meth-
ods are necessarily composition methods (see below)
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obtained by concatenating implicit midpoint sub-steps
of lengths bihy 41, ..., bshy4+1. The determination of
the free parameters b; is a task best accomplished by
means of the techniques used to analyze composition
methods.

The B-series Approach

In 1994, Calvo and Sanz-Serna ([5], Sect. V1.7.2) pro-
vided an indirect technique for the derivation of the
symplecticness conditions (5). The first step is to iden-
tify conditions for the symplecticness of the associated
B-series (i.e., the series that expands the transformation
(1)) in powers of the step size. Then the conditions
(on the B-series) obtained in this way are shown to be
equivalent to (5). This kind of approach has proved to
be very powerful in the theory of geometric integration,
where extensive use is made of formal power series.

Partitioned Runge-Kutta Methods

Partitioned Runge—Kutta (PRK) methods differ from
standard RK integrators in that they use two tableaux of
coefficients of the form (2): one to advance p and the
other to advance ¢g. Most developments of the theory
of symplectic RK methods are easily adapted to cover
the partitioned situation, see e.g., [8], Sects. 6.3, 7.3,
and 8.4.

The main reason ([8], Sect.8.4) to consider the
class of PRK methods is that it contains integrators
that are both explicit and symplectic when applied
to separable Hamiltonian systems with H(p,q;t) =
T(p)+V(q;t), aformat that often appears in the appli-
cations. It turns out ([8], Remark 8.1, [5], Sect. V1.4.1,
Theorem 4.7) that such explicit, symplectic PRK meth-
ods may always be viewed as splitting methods (see
below). Moreover it is advantageous to perform their
analysis by interpreting them as splitting algorithms.

Runge-Kutta—-Nystrom Methods

In the special but important case where the (separable)
Hamiltonian is of the form H = (1/2)p"M~'p +
V(g;t) (M a positive-definite symmetric matrix) the
canonical equations

d d
—p =-VV(g:1), —q=M" 6
7P (g;1) T p (6
lead to 5
—M~'VV(g:1),

ar?=
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a second-order system whose right-hand side is in-
dependent of (d/dt)q. Runge-Kutta—Nystrom (RKN)
methods may then be applied to the second-order form
and are likely to improve on RK integrations of the
original first-order system (6).

There are explicit, symplectic RKN integrators
([8], Sect.8.5). However their application (see [8],
Remark 8.5) is always equivalent to the application
of an explicit, symplectic PRK method to the first-
order equations (6) and therefore — in view of a
consideration made above — to the application of a
splitting algorithm.

Integrators Based on Splitting and
Composition

The related ideas of splitting and composition are
extremely fruitful in deriving practical symplectic in-
tegrators in many fields of application. The corre-
sponding methods are typically ad hoc for the problem
at hand and do not enjoy the universal off-the-shelf
applicability of, say, Gaussian RK methods; however,
when applicable, they may be highly efficient. In order
to simplify the exposition, we assume hereafter that the
Hamiltonian H is time-independent H = H(p,q);

we write ¢/{{+1 and %{14-1 rather than CDIZ_M” and
wH  Furthermore, we shall denote the time step

th+1.n
by h omitting the possible dependence on the step

number 1.
Splitting

Simplest Splitting

The easiest possibility of splitting occurs when the
Hamiltonian H may be written as H; + H, and the
Hamiltonian systems associated with H; and H, may
be explicitly integrated. If the corresponding flows
are denoted by ¢/ and ¢/, the recipe (Lie-Trotter
splitting, [8], Sect. 12.4.2, [5], Sect.IL.5)

Ui =g, o gy )
defines the map (1) of a first-order integrator that
is symplectic (the mappings being composed in the
right-hand side are Hamiltonian flows and therefore
symplectic). Splittings of H in more than two pieces
are feasible but will not be examined here.

Symplectic Methods

A particular case of (7) of great practical
significance is provided by the separable Hamiltonian
H(p,q) = T(p) + V(g) with H, = T, H, = V;
the flows associated with H; and H, are respectively
given by

(p.q)~ (p.g+1VT(p). (p.q) > (p—tVV(q).q).

Thus, in this particular case the scheme (7) reads
pn+1 — pn _hvv(qn-i-l)’ qn+1 — qn + I’ZVT(pn),
(3)

and it is sometimes called the symplectic Euler rule
(it is obviously possible to interchange the roles of
p and g). Alternatively, (8) may be considered as a
one-stage, explicit, symplectic PRK integrator as in [8],
Sect. 8.4.3.

As a second example of splitting, one may consider
(nonseparable) formats H = H(p,q)+V*(q), where
the Hamiltonian system associated with H; can be
integrated in closed form. For instance, H; may cor-
respond to a set of uncoupled harmonic oscillators and
V*(q) represent the potential energy of the interactions
between oscillators. Or H; may correspond to the
Keplerian motion of a point mass attracted to a fixed
gravitational center and V* be a potential describing
some sort of perturbation.

Strang Splitting
With the notation in (7), the symmetric Strang formula
([81, Sect. 12.4.3, [5], Sect.IL.5)

Uil = o b o i ©
defines a time-reversible, second-order symplectic in-
tegrator %{1 that improves on the first order (7).

In the separable Hamiltonian case H = T(p) +
V(g), (9) leads to

n n h n
P = pt = SV,
qn+1 — qn +hVT(p”+1/2),

n n h n
P +1 _ p +1/2 Evv(q +1).

This is the Stormer—Leapfrog—Verlet method that plays
a key role in molecular dynamics [6]. It is also possible
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to regard this integrator as an explicit, symplectic PRK
with two stages ([8], Sect. 8.4.3).

More Sophisticated Formulae
A further generalization of (7) is

Dish © Bush © g © 0 Ppi O b (10)
where the coefficientso; and 8, > . o, =1,) , i =1,
are chosen so as to boost the order v of the method.
A systematic treatment based on trees of the required
order conditions was given by Murua and Sanz-Serna
in 1999 ([5], Sect.III1.3). There has been much recent
activity in the development of accurate splitting coef-
ficients «;, B; and the reader is referred to the entry

Splitting Methods in this encyclopedia.

In the particular case where the splitting is given by
H = T(p) + V(q), the family (10) provides the most
general explicit, symplectic PRK integrator.

Splitting Combined with Approximations
In (7), (9), or (10) use is made of the exact solution
flows 7' and ¢”2. Even if one or both of these flows
are not available, it is still possible to employ the
idea of splitting to construct symplectic integrators. A
simple example will be presented next, but many others
will come easily to mind.

Assume that we wish to use a Strang-like method
but ¢,H‘ is not available. We may then advance the
numerical solution via

$up oV o B, (1n
where ¥/ }f] ' denotes a consistent method for the integra-
tion of the Hamiltonian problem associated with H;.
If g’ﬁf ! is time-reversible, the composition (11) is also
time-reversible and hence of order v = 2 (at least).
And if @f ! is symplectic, (11) will define a symplectic
method.

Composition

A step of a composition method ([5], Sect.I1.4) con-
sists of a concatenation of a number of sub-steps
performed with one or several simpler methods. Often
the aim is to create a high-order method out of low-
order integrators; the composite method automatically
inherits the conservation properties shared by the meth-
ods being composed. The idea is of particular appeal

1455

within the field of geometric integration, where it is
frequently not difficult to write down first- or second-
order integrators with good conservation properties.

A useful example, due to Suzuki, Yoshida, and
others (see [8], Sect. 13.1), is as follows. Let w;fl be
a time-reversible integrator that we shall call the basic
method and define the composition method @f by

oH _ . H H H.
1/fh - wah © Ir//(1—204)h © Van»

if the basic method is symplectic, then @ ;’l’ will obvi-
ously be a symplectic method. It may be proved that,
if @ = (1/3)2 4 2'/% + 27'/3), then Y will have
order v = 4. By using this idea one may perform
symplectic, fourth-order accurate integrations while
really implementing a simpler second-order integra-
tor. The approach is particularly attractive when the
direct application of a fourth-order method (such as
the two-stage Gauss method) has been ruled out on
implementation grounds, but a suitable basic method
(for instance the implicit midpoint rule or a scheme
derived by using Strang splitting) is available.

If the (time-reversible) basic method is of order 2
anda = (2—21/(2““))_1 then ¥ will have order v =
2+ 2; the recursive application of this idea shows that
it is possible to reach arbitrarily high orders starting
from a method of order 2.

For further possibilities, see the entry » Composition
Methods and [8], Sect. 13.1, [5], Sects. I1.4 and III.3.

The Modified Hamiltonian

The properties of symplectic integrators outlined in the
next section depend on the crucial fact that, when a
symplectic integrator is used, a numerical solution of
the Hamiltonian system with Hamiltonian H may be
viewed as an (almost) exact solution of a Hamiltonian
system whose Hamiltonian function H (the so-called
modified Hamiltonian) is a perturbation of H.

An example. Consider the application of the sym-
plectic Euler rule (8) to a one-degree-of-freedom sys-
tem with separable Hamiltonian H = T'(p) + V(q).
In order to describe the behavior of the points (p", g")
computed by the algorithm, we could just say that they
approximately behave like the solutions (p(t,), ¢(t,))
of the Hamiltonian system S being integrated. This
would not be a very precise description because the
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true flow qﬁf and its numerical approximation %{1
differ in O(h?) terms. Can we find another differential
system S, (called a modified system) so that (8) is
consistent of the second order with S,? The points
(p",q") would then be closer to the solutions of
S, than to the solutions of the system S we want
to integrate. Straightforward Taylor expansions ([8],
Sect. 10.1) lead to the following expression for S,
(recall that f = —dH /dq, g = dH/dp)

d
—q =2¢g(p)

d h ,
—p = f@ + zg(p)f (4), '

dt

h
—Eg’(p)f(q), (12)

where we recognize the Hamiltonian system with (-
dependent!) Hamiltonian

~ h
Hy =T(p) + V(@) + 5T'(p)V'(q) = H + O(h).
(13)

Figure 2 corresponds to the pendulum equations
g(p) = p, f(g) = —sing with initial condition
p(0) = 0, g(0) = 2. The stars plot the numerical
solution with 7 = 0.5. The dotted line H = constant
provides the true pendulum solution. The dash—dot line
H " = constant gives the solution of the modified
system (12). The agreement of the computed points
with the modified trajectory is very good.

The origin is a center of the modified system (recall
that a small Hamiltonian perturbation of a Hamiltonian
center is still a center); this matches the fact that, in
the plot, the computed solution does not spiral in or
out. On the other hand, the analogous modified system
for the (nonsymplectic) integration in 1 is found not be
a Hamiltonian system, but rather a system with neg-
ative dissipation: This agrees with the spiral behavior
observed there.

By adding extra O(h?) terms to the right-hand sides
of (12), it is possible to construct a (more accurate)
modified system S; so that (8) is consistent of the third
order with S3; thus, S3 would provide an even better
description of the numerical solution. The procedure
may be iterated to get modified systems Sy, Ss, ... and
all of them turn out to be Hamiltonian.

Symplectic Methods

Symplectic Methods, Fig. 2 Computed points, true trajectory
(dotted line) and modified trajectory (dash—dot line)

General case. Given an arbitrary Hamiltonian sys-
tem with a smooth Hamiltonian H, a consistent sym-
plectic integrator w,{{ and an arbitrary integer p > 0,
it is possible ([8], Sect. 10.1) to construct a modified
Hamiltonian system S, with Hamiltonian function H z,

such that /! differs from the flow gbfﬁ in O(h**)
terms. In fact, H ’; may be chosen as a polynomial of
degree < p in k; the term independent of / coincides
with H (cf. (13)) and for a method of order v the terms
inh, ..., "1 vanish.

The polynomials in & ﬁh, p = 2,3,... are the
partial sums of a series in powers of 4. Unfortunately
this series does not in general converge for fixed 7,

h

. . . H
so that, in particular, the modified flows ¢, ? cannot
converge to 1//{’ as p 1 oo. Therefore, in general, it

is impossible to find a Hamiltonian H" such that qﬁf !
coincides exactly with the integrator w,{{ . Neishtadt
([81, Sect. 10.1) proved that by retaining for each & >
0 a suitable number N = N(h) of terms of the
series it is possible to obtain a Hamiltonian H" such
that gbf " differs from whH in an exponentially small
quantity.

Here is the conclusion for the practitioner: For
a symplectic integrator applied to an autonomous
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Hamiltonian system, modified autonomous Hamil-
tonian problems exist so that the computed points lie
“very approximately” on the exact trajectories of the
modified problems. This makes possible a backward
error interpretation of the numerical results: The
computed solutions are solving “very approximately”
a nearby Hamiltonian problem. In a modeling situation
where the exact form of the Hamiltonian H may be in
doubt, or some coefficients in H may be the result of
experimental measurements, the fact that integrating
the model numerically introduces perturbations to H
comparable to the uncertainty in H inherent in the
model is the most one can hope for.

On the other hand, when a nonsymplectic formula
is used the modified systems are not Hamiltonian: The
process of numerical integration perturbs the model in
such a way as to take it out of the Hamiltonian class.

Variable steps. An important point to be noted is
as follows: The backward error interpretation only
holds if the numerical solution after n steps is com-
puted by iterating n times one and the same symplec-
tic map. If, alternatively, one composes n symplectic
maps (one from 7y to #;, a different one from ¢,
to 1, etc.) the backward error interpretation is lost,
because the modified system changes at each step ([8],
Sect. 10.1.3).

As a consequence, most favorable properties of
symplectic integrators (and of other geometric inte-
grators) are lost when they are naively implemented
with variable step sizes. For a complete discussion of
this difficulty and of ways to circumvent it, see [5],
Sects. VIII 1-4.

Finding explicitly the modified Hamiltonians. The
existence of amodified Hamiltonian system is a general
result that derives directly from the symplecticness of
the transformation gﬁf ([8], Sect.10.1) and does not
require any hypothesis on the particular nature of such
a transformation. However, much valuable information
may be derived from the explicit construction of the
modified Hamiltonians. For RK and related methods,
a way to compute systematically the H Z’s was first
described by Hairer in 1994 and then by Calvo, Mu-
rua, and Sanz-Serna ([5], Sect. IX.9). For splitting and
composition integrators, the H Z’s may be obtained by
use of the Baker—Campbell-Hausdorff formula ([8],
Sect. 12.3, [5], Sect.Ill.4) that provides a means to
express as a single flow the composition of two flows.
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This kind of research relies very much on concepts and
techniques from the theory of Lie algebras.

Properties of Symplectic Integrators

We conclude by presenting an incomplete list of favor-
able properties of symplectic integrators. Note that the
advantage of symplecticness become more prominent
as the integration interval becomes longer.

Conservation of energy. For autonomous Hamilto-
nians, the value of H is of course a conserved quantity
and the invariance of H usually expresses conser-
vation of physical energy. Ge and Marsden proved
in 1988 ([8], Sect.10.3.2) that the requirements of
symplecticness and exact conservation of H cannot
be met simultaneously by a bona fide numerical inte-
grator. Nevertheless, symplectic integrators have very
good energy behavior ([5], Sect.IX.8): Under very
general hypotheses, for a symplectic integrator of or-
der v: H(p".q") = H(p",q°) + O(h"), where the
constant implied in the O notation is independent
of n over exponentially long time intervals nh <
exp (ho/(2h)).

Linear error growth in integrable systems. For a
Hamiltonian problem that is integrable in the sense
of the Liouville-Arnold theorem, it may be proved
([5], Sect. X.3) that, in (long) time intervals of length
proportional to 2™, the errors in the action variables
are of magnitude O(h") and remain bounded, while
the errors in angle variables are O(h") and exhibit a
growth that is only linear in 7. By implication the error
growth in the components of p and ¢ will be O(h") and
grow, at most, linearly. Conventional integrators, in-
cluding explicit Runge—Kutta methods, typically show
quadratic error growth in this kind of situation and
therefore cannot be competitive in a sufficiently long
integration.

KAM theory. When the system is closed to inte-
grable, the KAM theory ([5], Chap. X) ensures, among
other things, the existence of a number of invariant tori
that contribute to the stability of the dynamics (see [8],
Sect. 10.4 for an example). On each invariant torus the
motion is quasiperiodic. Symplectic integrators ([5],
Chap. X, Theorem 6.2) possess invariant tori O(h")
close to those of the system being integrated and
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furthermore the dynamics on each invariant torus is
conjugate to its exact counterpart.

Linear error growth in other settings. Integrable
systems are not the only instance where symplectic
integrators lead to linear error growth. Other cases
include, under suitable hypotheses, periodic orbits,
solitons, relative equilibria, etc., see, among others,
[1-4].
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Introduction

Systems biology may be defined as the study of how
physiology emerges from molecular interactions [11].
Physiology tells us about function, whether at the
organismal, tissue, organ or cellular level; molecular
interactions tell us about mechanism. How do we relate
mechanism to function? This has always been one of
the central problems of biology and medicine but it
attains a particular significance in systems biology be-
cause the molecular realm is the base of the biological
hierarchy. Once the molecules have been identified,
there is nowhere left to go but up.

This is an enormous undertaking, encompassing,
among other things, the development of multicellular
organisms from their unicellular precursors, the hier-
archical scales from molecules to cells, tissues, and
organs, and the nature of malfunction, disease, and re-
pair. Underlying all of this is evolution, without which
biology can hardly be interpreted. Organisms are not
designed to perform their functions, they have evolved
to do so—variation, transfer, drift, and selection have
tinkered with them over 3.5 x 10° years—and this has
had profound implications for how their functions have
been implemented at the molecular level [12].

The mechanistic viewpoint in biology has nearly
always required a strongly quantitative perspective and
therefore also a reliance on quantitative models. If this
trend seems unfamiliar to those who have been reared
on molecular biology, it is only because our histori-
cal horizons have shrunk. The quantitative approach
would have seemed obvious to physiologists, geneti-
cists, and biochemists of an earlier generation. More-
over, quantitative methods wax and wane within an
individual discipline as new experimental techniques
emerge and the focus shifts between the descriptive
and the functional. The great Santiago Ramoén y Cajal,
to whom we owe the conception of the central ner-
vous system as a network of neurons, classified “theo-
rists” with “contemplatives, bibliophiles and polyglots,
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megalomaniacs, instrument addicts, misfits” [3]. Yet,
when Cajal died in 1934, Alan Hodgkin was already
starting down the road that would lead to the Hodgkin-
Huxley equations.

In a similar way, the qualitative molecular biology
of the previous era is shifting, painfully and with much
grinding of gears, to a quantitative systems biology.
What kind of mathematics will be needed to support
this? Here, we focus on the level of abstraction for
modelling cellular physiology at the molecular level.
This glosses over many other relevant and hard prob-
lems but allows us to bring out some of the distinctive
challenges of molecularity. We may caricature the
current situation in two extreme views. One approach,
mindful of the enormous complexity at the molecular
level, strives to encompass that complexity, to dive into
it, and to be exhaustive; the other, equally mindful
of the complexity but with a different psychology,
strives to abstract from it, to rise above it, and to be
minimalist. Here, we examine the requirements and the
implications of both strategies.

Models as Dynamical Systems

Many different kinds of models are available for de-
scribing molecular systems. It is convenient to think of
each as a dynamical system, consisting of a description
of the state of the system along with a description
of how that state changes in time. The system state
typically amalgamates the states of various molecular
components, which may be described at various levels
of abstraction. For instance, Boolean descriptions are
often used by experimentalists when discussing gene
expression: this gene is ON, while that other is OFF.
Discrete dynamic models can represent time evolution
as updates determined by Boolean functions. At the
other end of the abstraction scale, gene expression may
be seen as a complex stochastic process that takes place
at an individual promoter site on DNA: states may be
described by the numbers of mRNA molecules and
the time evolution may be described by a stochastic
master equation. In a different physiological context,
Ca’t ions are a “second messenger” in many key
signalling networks and show complex spatial and
temporal behaviour within an individual cell. The state
may need to be described as a concentration that varies
in space and time and the time evolution by a partial
differential equation. In the most widely-used form
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of dynamical system, the state is represented by the
(scalar) concentrations of the various molecular com-
ponents in specific cellular compartments and the time
evolution by a system of coupled ordinary differential
equations (ODEs).

What is the right kind of model to use? That depends
entirely on the biological context, the kind of biological
question that is being asked and on the experimental
capabilities that can be brought to bear on the problem.
Models in biology are not objective descriptions of
reality; they are descriptions of our assumptions about
reality [2].

For our purposes, it will be simplest to discuss
ODE models. Much of what we say applies to other
classes of models. Assume, therefore, that the system is
described by the concentrations within specific cellular
compartments of n components, Xi, -+, Xy, and the
time evolution is given, in vector form, by dx/dt =
f(x;a). Here, a € R™ is a vector of parameters.
These may be quantities like proportionality constants
in rate laws. They have to take numerical values before
the dynamics on the state space can be fully defined
and thereby arises the “parameter problem” [6]. In any
serious model, most of the parameter values are not
known, nor can they be readily determined experimen-
tally. (Even if some of them can, there is always a
question of whether an in-vitro measurement reflects
the in-vivo context.)

The dynamical behaviour of a system may depend
crucially on the specific parameter values. As these
values change through a bifurcation, the qualitative
“shape” of the dynamics may alter drastically; for
instance, steady states may alter their stability or ap-
pear or disappear [22]. In between bifurcations, the
shape of the dynamics only alters in a quantitative way
while the qualitative portrait remains the same. The
geography of parameter space therefore breaks up into
regions; within each region the qualitative portrait of
the dynamics remains unaltered, although its quantita-
tive details may change, while bifurcations take place
between regions resulting in qualitative changes in the
dynamics (Fig. 1).

Parameterology
We see from this that parameter values matter. They are

typically determined by fitting the model to experimen-
tal data, such as time series for the concentrations of
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Fig. 1 The geography of parameter space. (a) A dynamical
system with one state variable, x; and two parameters, a;, d;.
(b) Graphs of fi(x;) (dashed curve) and of the terms in it (solid
curves), showing the steady states, where dx;/dt = fi(x;) =
0. (c) Parameter space breaks up into two regions: (/) a; < ay,
in which the state space has a single stable steady state at x; = 0
to which any positive initial condition tends (arrow); and (2)

some of the components. The fitting may be undertaken
by minimizing a suitable measure of discrepancy be-
tween the calculated and the observed data, for which
several nonlinear optimization algorithms are available
[10]. Empirical studies on models with many (>10)
parameters have revealed what could be described as
a “80/20” rule [9, 19]. Roughly speaking, 20 % of the
parameters are well constrained by the data or “stiff”:
They cannot be individually altered by much without
significant discrepancy between calculated and ob-
served data. On the other hand, 80 % of the parameters
are poorly constrained or “sloppy,” they can be individ-
ually altered by an order of magnitude or more, without
a major impact on the discrepancy. The minimization
landscape, therefore, does not have a single deep hole
but a flat valley with rather few dimensions orthogonal
to the valley. The fitting should have localized the
valley within one of the parameter regions. At present,
no theory accounts for the emergence of these valleys.

Two approaches can be taken to this finding. On the
one hand, one might seek to constrain the parameters

a; > ap, in which there are two steady states, a positive stable
state at x; = 1 — a,/a,, to which any positive initial conditions
tends (arrows), and an unstable state at x; = 0. Here, the
state space is taken to be the nonnegative real line. A magenta
dot indicates a stable state and a cyan dot indicates an unstable
state. The dynamics in the state space undergoes a transcritical
bifurcation at a; = a, [22]

further by acquiring more data. This raises an inter-
esting problem of how best to design experiments to
efficiently constrain the data. Is it better to get more
of the same data or to get different kinds of data?
On the other hand, one might seek to live with the
sloppiness, to acknowledge that the fitted parameter
values may not reflect the actual ones but nevertheless
seek to draw testable conclusions from them. For
instance, the stiff parameters may suggest experimen-
tal interventions whose effects are easily observable.
(Whether they are also biological interesting is another
matter.) There may also be properties of the system
that are themselves insensitive, or “robust,” to the
parameter differences. One can, in any case, simply
draw conclusions based on the fits and seek to test these
experimentally.

A successful test may provide some encouragement
that the model has captured aspects of the mechanism
that are relevant to the question under study. However,
models are working hypotheses, not explanations. The
conclusion that is drawn may be correct but that may
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be an accident of the sloppy parameter values or the
particular assumptions made. It may be correct for
the wrong reasons. Molecular complexity is such that
there may well be other models, based on differ-
ent assumptions, that lead to the same conclusions.
Modellers often think of models as finished entities.
Experimentalists know better. A model is useful only
as a basis for making a better model. It is through
repeated tests and revised assumptions that a firmly
grounded, mechanistic understanding of molecular be-
haviour slowly crystallizes.

Sometimes, one learns more when a test is not
successful because that immediately reveals a problem
with the assumptions and stimulates a search to correct
them. However, it may be all too easy, because of the
sloppiness in the fitting, to refit the model using the
data that invalidated the conclusions and then claim
that the newly fitted model “accounts for the new data.”
From this, one learns nothing. It is better to follow
Popperian principles and to specify in advance how a
model is to be rejected. If a model cannot be rejected, it
cannot tell you anything. In other areas of experimental
science, it is customary to set aside some of the data to
fit the model and to use another part of the data, or
newly acquired data, to assess the quality of the model.
In this way, a rejection criterion can be quantified and
one can make objective comparisons between different
models.

The kind of approaches sketched above only work
well when modelling and experiment are intimately
integrated [18,21]. As yet, few research groups are able
to accomplish this, as both aspects require substantial,
but orthogonal, expertise as well as appropriate inte-
grated infrastructure for manipulating and connecting
data and models.

Model Simplification

As pointed out above, complexity is a relative matter.
Even the most complex model has simplifying assump-
tions: components have been left out; posttranslational
modification states collapsed; complex interactions ag-
gregated; spatial dimensions ignored; physiological
context not made explicit. And these are just some
of the things we know about, the “known unknowns.”
There are also the “unknown unknowns.” We hope that
what has been left out is not relevant to the question
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being asked. As always, that is a hypothesis, which
may or may not turn out to be correct.

The distinction between exhaustive and minimal
models is therefore more a matter of scale than of sub-
stance. However, having decided upon a point on the
scale, and created a model of some complexity, there
are some systematic approaches to simplifying it. Here,
we discuss just two.

One of the most widely used methods is separation
of time scales. A part of the system is assumed to be
working significantly faster than the rest. If the faster
part is capable of reaching a (quasi) steady state, then
the slower part is assumed to see only that steady
state and not the transient states that led to it. In some
cases, this allows variables within the faster part to be
eliminated from the dynamics.

Separation of time scales appears in Michaelis and
Menten’s pioneering study of enzyme-catalysed reac-
tions. Their famous formula for the rate of an en-
zyme arises by assuming that the intermediate enzyme-
substrate complex is in quasi-steady state [8]. Although
the enzyme-substrate complex plays an essential role,
it has been eliminated from the formula. The King-
Altman procedure formalizes this process of elimina-
tion for complex enzyme mechanisms with multiple
intermediates. This is an instance of a general method
of linear elimination underlying several well-known
formulae in enzyme kinetics, in protein allostery and
in gene transcription, as well as more modern simpli-
fications arising in chemical reaction networks and in
multienzyme posttranslational modification networks
[7].

An implicit assumption is often made that, after
elimination, the behaviour of the simplified dynamical
system approximates that of the original system. The
mathematical basis for confirming this is through a
singular perturbation argument and Tikhonov’s Theo-
rem [8], which can reveal the conditions on parameter
values and initial conditions under which the approx-
imation is valid. It must be said that, aside from
the classical Michaelis—Menten example, few singular
perturbation analyses have been undertaken. Biological
intuition can be a poor guide to the right conditions. In
the Michaelis—Menten case, for example, the intuitive
basis for the quasi-steady state assumption is that
under in vitro conditions, substrate, S, is in excess
over enzyme, E: S,,, > E,,;. However, singular
perturbation reveals a broader region, S;,, + Ky >
E;,:, where K, is the Michaelis—Menten constant, in
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which the quasi-steady state approximation remains
valid [20]. Time-scale separation has been widely used
but cannot be expected to provide dramatic reductions
in complexity; typically, the number of components are
reduced twofold, not tenfold.

The other method of simplification is also based
on an old trick: linearization in the neighbourhood of
a steady state. The Hartman—Grobman Theorem for
a dynamical system states that, in the local vicinity of a
hyperbolic steady state—that is, one in which none of
the eigenvalues of the Jacobian have zero real part—
the nonlinear dynamics is qualitatively similar to the
dynamics of the linearized system, dy/dt = (Jf )5,
where y = x — X, is the offset relative to the steady
state, X5, and (Jf)ss is the Jacobian matrix for the
nonlinear system, dx/dt = f(x), evaluated at the
steady state. Linearization simplifies the dynamics but
does not reduce the number of components.

Straightforward linearization has not been particu-
larly useful for analysing molecular networks, because
it loses touch with the underlying network structure.
However, control engineering provides a systematic
way to interrogate the linearized system and, poten-
tially, to infer a simplified network. Such methods
were widely used in physiology in the cybernetic era
[5], and are being slowly rediscovered by molecular
systems biologists. They are likely to be most use-
ful when the steady state is homeostatically main-
tained. That is, when the underlying molecular net-
work acts like a thermostat to maintain some internal
variable within a narrow range, despite external fluc-
tuations. Cells try to maintain nutrient levels, energy
levels, pH, ionic balances, etc., fairly constant, as
do organisms in respect of Claude Bernard’s “milieu
intérieure”; chemotaxing E. coli return to a constant
tumbling rate after perturbation by attractants or repel-
lents [23]; S. cerevisiae cells maintain a constant os-
motic pressure in response to external osmotic shocks
[16].

The internal structure of a linear control system can
be inferred from its frequency response. If a stable
linear system is subjected to a sinusoidal input, its
steady-state output is a sinuosoid of the same frequency
but possibly with a different amplitude and phase.
The amplitude gain and the phase shifts, plotted as
functions of frequency—the so-called Bode plots, after
Hendrik Bode, who developed frequency analysis at
Bell Labs—reveal a great deal about the structure of
the system [1]. More generally, the art of systems

Systems Biology, Minimalist vs Exhaustive Strategies

engineering lies in designing a linear system whose
frequency response matches specified Bode plots.

The technology is now available to experimentally
measure approximate cellular frequency responses in
the vicinity of a steady state, at least under simple con-
ditions. Provided the amplitude of the forcing is not too
high, so that a linear approximation is reasonable, and
the steady state is homeostatically maintained, reverse
engineering of the Bode plots can yield a simplified
linear control system that may be an useful abstraction
of the complex nonlinear molecular network responsi-
ble for the homeostatic regulation [15]. Unlike time-
scale separation, the reduction in complexity can be
dramatic. As always, this comes at the price of a more
abstract representation of the underlying biology but,
crucially, one in which some of the control structure is
retained. However, at present, we have little idea how
to extend such frequency analysis to large perturba-
tions, where the nonlinearities become significant, or
to systems that are not homeostatic.

Frequency analysis, unlike separation of time
scales, relies on data, reinforcing the point made
previously that integrating modelling with experiments
and data can lead to powerful synergies.

Looking Behind the Data

Experimentalists have learned the hard way to de-
velop their conceptual understanding from experimen-
tal data. As the great Otto Warburg advised, “Solutions
usually have to be found by carrying out innumerable
experiments without much critical hesitation” [13].
However, sometimes the data you need is not the data
you get, in which case conceptual interpretation can
become risky. For instance, signalling in mammalian
cells has traditionally relied on grinding up 10° cells
and running Western blots with antibodies against
specific molecular states. Such data has told us a great
deal, qualitatively. However, a molecular network oper-
ates in a single cell. Quantitative data aggregated over
a cell population is only meaningful if the distribution
of responses in the population is well represented by
its average. Unfortunately, that is not always the case,
most notoriously when responses are oscillatory. The
averaged response may look like a damped oscillation,
while individual cells actually have regular oscillations
but at different frequencies and phases [14, 17]. Even
when the response is not oscillatory single-cell analysis
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may reveal a bimodal response, with two apparently
distinct sub-populations of cells [4]. In both cases, the
very concept of an “average” response is a statistical
fiction that may be unrelated to the behaviour of any
cell in the population.

One moral of this story is that one should al-
ways check whether averaged data is representative
of the individual, whether individual molecules, cells,
or organisms. It is surprising how rarely this is done.
The other moral is that data interpretation should
always be mechanistically grounded. No matter how
intricate the process through which it is acquired, the
data always arises from molecular interactions taking
place in individual cells. Understanding the molecular
mechanism helps us to reason correctly, to know what
data are needed and how to interpret the data we get.
Mathematics is an essential tool in this, just as it was
for Michaelis and Menten. Perhaps one of the reasons
that biochemists of the Warburg generation were so
successful, without “critical hesitation,” was because
Michaelis and others had already provided a sound
mechanistic understanding of how individual enzymes
worked. These days, systems biologists confront ex-
traordinarily complex multienzyme networks and want
to know how they give rise to cellular physiology. We
need all the mathematical help we can get.
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