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Abstract. In our previous work [arXiv:2202.10042], the complexity of Sinkhorn iteration is5
reduced from O(N2) to the optimal O(N) by leveraging the special structure of the kernel matrix.6
In this paper, we explore the special structure of kernel matrices by defining and utilizing the proper-7
ties of the Lower-ColLinear Triangular Matrix (L-CoLT matrix) and Upper-ColLinear Triangular8
Matrix (U-CoLT matrix). We prove that (1) L/U-CoLT matrix-vector multiplications can be carried9
out in O(N) operations; (2) both families of matrices are closed under the Hadamard product and10
matrix scaling. These properties help to alleviate two key difficulties for reducing the complexity11
of the Inexact Proximal point method (IPOT), and allow us to significantly reduce the number of12
iterations to O(N). This yields the Fast Sinkhorn II (FS-2) algorithm for accurate computation of13
optimal transport with low algorithm complexity and fast convergence. Numerical experiments are14
presented to show the effectiveness and efficiency of our approach.15
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1. Introduction. The Wasserstein metric, broadly used in optimal transport19

theory with applications in many fields including machine learning, quantifies the20

dissimilarity between two probabilistic distributions. Many methods have been pro-21

posed to compute the Wasserstein metrics directly, such as the linear programming22

methods [30, 22, 36], combinatorial methods [33], solving the Monge-Ampère equa-23

tions [15, 14, 3], via Benamou-Brenier formulation [2, 21] and the proximal splitting24

methods [8, 28]. In recent years, several approximation techniques in optimal trans-25

port for high-dimensional distributions have also been proposed [26, 27].26

The Sinkhorn algorithm [10, 34] is a popular O(N2) algorithm to approximate27

the Wasserstein metric [31] by minimizing the entropy regularized optimal transport28

(OT) problem. In [24], the FS-1 algorithm is proposed to solve entropy regularized29

OT in O(N) time by leveraging the special structure of the Sinkhorn kernel matrix30

of the Wasserstein-1 metric. The solution of entropy regularized OT approximates31

the accurate OT solution only if the regularization parameter is sufficiently small.32

However, small regularization parameters lead to numerical instability and excessive33
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iterations [13]. This causes the slow convergence of the Sinkhorn algorithm.34

The Inexact Proximal point method [35] for the Optimal Transport problem35

(IPOT) has been proposed to address this challenge. It regularizes the original OT36

by introducing the proximal point term and solves a series of successive subproblems.37

Only fairly mild regularization parameters are required to ensure the method’s fast38

convergence to the accurate OT solution in an O(N2) algorithm. The goal of this39

paper is to construct a new method to accurately compute OT solutions with good40

convergence behavior and O(N) algorithm complexity by combing the IPOT method41

and the FS-1 algorithm. Note the two key steps in the IPOT method make it hard to42

reduce the complexity to O(N): the matrix Hadamard product (Algorithm 2.1, line 4)43

and the matrix scaling (Algorithm 2.1, line 8). For general matrices, the complexity44

of the above operations is both O(N2). Moreover, these operations may destroy the45

special structure of the kernel matrix [24], making it impossible for us to implement46

matrix-vector multiplication with O(N) cost.47

We will explore the special structure of kernel matrices by defining and exploit-48

ing the properties of the Lower-ColLinear Triangular Matrix (L-CoLT matrix) and49

Upper-ColLinear Triangular Matrix (U-CoLT matrix). For these matrices, we can50

realize the matrix-vector multiplication with O(N) cost by using the idea of dynamic51

programming similar to [24]. Next, we show that each L/U-CoLT matrix can be rep-52

resented by two vectors of dimension N . Furthermore, we prove the closure of families53

of L/U-CoLT matrices to matrix Hadamard product and matrix scaling. This means54

that the special structure of the kernel matrix is preserved by matrix Hadamard55

product and matrix scaling, so we can still implement matrix-vector multiplication56

(Algorithm 2.1, lines 6-7) with O(N) cost. On the other hand, by updating two57

representation vectors of the L/U-CoLT matrix, we can also implement matrix Ha-58

damard product (Algorithm 2.1, line 4) and matrix scaling (Algorithm 2.1, line 8)59

with O(N) cost. Consequently, the Fast Sinkhorn II (FS-2) algorithm is developed,60

which integrates the advantages of both IPOT and FS-1. Moreover, we also find that61

the FS-2 algorithm has the advantage in reducing the space complexity since all the62

matrices can be represented by vectors. Due to these benefits, one can expect that our63

FS-2 could be applied in various fields, e.g., machine learning [26, 27, 16, 25], image64

processing [32, 29], inverse problems [6, 12, 37, 18], density function theory[19, 5, 9].65

The rest of the paper is organized as follows. In section 2 , the basics of the66

Wasserstein-1 metric and the IPOT method are briefly reviewed. After presenting67

the definition, properties, and fast matrix-vector multiplications of the L/U-CoLT68

matrix in section 3, we apply them to accelerate the IPOT method, thus developing69

the FS-2 algorithm in section 4. In section 5, the FS-2 algorithm is extended to high70

dimensions. The numerical experiments are performed to verify our conclusions in71

section 6. We conclude the paper in section 7.72

2. The Wasserstein-1 metric and the IPOT method. Given two unit dis-73

crete distributions u and v,74

u = (u1, u2, · · ·uN )⊤ ∈ RN , v = (v1, v2, · · · , vN )⊤ ∈ RN ,75

where ui ≥ 0, vj ≥ 0, and
∑

i ui =
∑

j vj = 1. The Wasserstein-1 distance between76

them is defined as [31]77

(2.1) W1 (u,v) = min
Γ1=u,ΓT 1=v

⟨C, Γ⟩ ,78
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where C = [cij ] ∈ RN×N is the cost matrix. The element cij = ∥xi − yj∥1 represents79

the cost of transporting the unit mass from position xi to position yj and the variable80

Γ = [γij ] ∈ RN×N to be optimized is the transport plan. Here, the Frobenius inner81

product ⟨A,B⟩ =
∑

i,j aijbij , where A = [aij ], B = [bij ] are real-valued matrices.82

The Sinkhorn algorithm [10, 34] solves an entropy regularized OT problem to83

obtain an approximate result of (2.1). However, the small regular parameter required84

by good approximation leads to a slow convergence rate and numerical instability. To85

avoid this problem, the proximal point iteration (2.2) is developed to solve (2.1) ac-86

curately [35]. It begins with a transport map Γ(0) and iteratively solves the following87

minimization problem88

(2.2) Γ(t+1) = argmin
Γ1=u,ΓT 1=v

⟨C, Γ⟩+ δ(t)Dh

(
Γ, Γ(t)

)
,89

where Dh is Bregman divergence, taken in the form of the KL divergence in [35],90

Dh (A, B) =
∑
i,j

(
aij ln

aij
bij
− aij + bij

)
91

and δ(t) is the regular parameter. The Lagrangian of the above equation writes92

L(Γ,α,β) = ⟨C, Γ⟩+ δ(t)Dh

(
Γ, Γ(t)

)
+αT (Γ1− u) + βT

(
ΓT1− v

)
.93

Taking derivative of the Lagrangian with respect of γij directly leads to94

γij = e−αi/δ
(t)

Q
(t)
ij e

−βj/δ
(t)

, where Q
(t)
ij = γ

(t)
ij e

−cij/δ
(t)

> 0.95

Denoting ⊙ as the Hadamard product, Q(t) = K ⊙ Γ(t) and K = [e−cij/δ
(t)

] ∈ RN×N96

is the kernel matrix. Letting ϕi = e−αi/δ
(t)

, ψj = e−βj/δ
(t)

, and vectors ϕ = (ϕi) and97

ψ = (ψj), one obtains98

(2.3) diag(ϕ)Q(t)diag(ψ)1 = u, diag(ψ)Q(t)⊤diag(ϕ)1 = v.99

By iteratively updating vectors ϕ and ψ100

(2.4) ψ(t,ℓ+1) = v ⊘ (Q(t)⊤ϕ(t,ℓ)), ϕ(t,ℓ+1) = u⊘ (Q(t)ψ(t,ℓ+1)),101

one can obtain an accurate solution for the original OT problem (2.1). Here ⊘ repre-102

sents pointwise division, t is the proximal iteration step (outer iteration) and ℓ it the103

Sinkhorn-type iteration step (inner iteration). The pseudo-code of IPOT is shown in104

Algorithm 2.1.105

3. The Collinear Triangular Matrix.106

3.1. Definition and Fast Matrix-Vector Multiplication.107

Definition 3.1 (Lower/Upper-Collinear Triangular Matrix). A lower triangu-108

lar matrix is called a Lower-Collinear Triangular Matrix(L-CoLT matrix) if109

its corresponding entries on any two rows (columns) have the same–column (row)110

independent– ratio except those dividing by 0. Specifically, the N-dimensional L-CoLT111

matrix set is defined as follows:112

(3.1)

CNL =
{
M ∈ RN×N | mi+1,j/mi,j = ri, j ≤ i; mi,j = 0, i < j, r ∈ (R\{0})N−1

}
.113
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Algorithm 2.1 IPOT

Input: u, v ∈ RN ; K = e−C/δ ∈ RN×N ; L, itr max ∈ N+

Output: W1(u,v)

1: ϕ, ψ ← 1
N 1N

2: Γ = 1N1T
N

3: for t = 1 : itr max do

4: Q← K ⊙ Γ

5: for ℓ = 1 : L do

6: ψ ← v ⊘
(
QTϕ

)
7: ϕ← u⊘ (Qψ)

8: Γ← diag (ϕ)Qdiag (ψ)
return W1(u,v)

Similarly, we define Upper-Collinear Triangular Matrix(U-CoLT matrix), which114

is a strictly upper triangular matrix:115

(3.2)

CNU =
{
M ∈ RN×N | mi−1,j/mi,j = r′i−1, i < j; mi,j = 0, i ≥ j, r′ ∈ (R\{0})N−2

}
.116

We call the vectors r and r′ in (3.1)-(3.2) the ratio vectors of the collinear triangular117

matrix.118

The matrices introduced in Definition 3.1 are termed as collinear triangular119

matrices (CoLT), due to the following collinearity between columns:120

mi,j/mi,j+1 = mk,j/mk,j+1 ⇐⇒ mi,j/mk,j = mi,j+1/mk,j+1.121

Theorem 3.2 (Vector Representation of Collinear Triangular Matrix). Any L-122

CoLT matrix ML can be represented by its diagonal elements γ and the ratio vector123

r in Equation (3.1). Any U-CoLT matrix MU can be represented by its superdiagonal124

elements γ′ and the ratio vector r′ in (3.2).125

Proof. For any L-CoLT matrix ML ∈ CNL , if its corresponding γ and r are given,126

then mi,j = γj
N−1∏
k=i

rk. The proof of U-CoLT is similar.127

In the following, we use L-CoLT(γ, r), γ ∈ RN , r ∈ RN−1 andU-CoLT(γ′, r′),128

γ′ ∈ RN−1, r′ ∈ RN−2 to represent a L-CoLT matrix and a U-CoLT matrix, respec-129

tively. A specific correspondence of L-CoLT and U-CoLT is shown as follow:130

For the L-CoLT matrix ML131

ML = L-CoLT(γ, r) =



γ1

γ1r1 γ2

γ1r1r2 γ2r2 γ3
...

...
...

. . .

γ1
N−1∏
i=1

ri γ2
N−1∏
i=2

ri γ3
N−1∏
i=3

ri · · · γN


132
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Similarly, for the U-CoLT matrix MU133

MU = U-CoLT(γ′, r′) =



0 γ′1 γ′2r
′
1 · · · γ′N−1

N−2∏
i=1

r′i

0 γ′2 · · · γ′N−1

N−2∏
i=2

r′i

. . .
. . .

...

0 γ′N−1

0


134

The special nature of the L-CoLT and U-CoLT matrices allows us to compute135

matrix-vector multiplications in O(N) operations.136

For any ML = L-CoLT(γ, r) and vector y ∈ RN , the matrix-vector multiplica-137

tion MLy is written as138

(3.3) MLy =



γ1y1 + 0 + 0 · · · + 0
γ1r1y1 + γ2y2 + 0 · · · + 0
γ1r1r2y1 + γ2r2y2 + γ3y3 · · · + 0

...
...

...
...

...
. . .

...
...

γ1
N−1∏
i=1

riy1 + γ2
N−1∏
i=2

riy2 + γ3
N−1∏
i=3

riy3 · · · + γNyN


.139

Denote pk as the summation of the k-th row in (3.3), then one has140

p1 = γ1y1, pk = rk−1pk−1 + γkyk, k = 2, · · · , N.141

Based on this recursion formula, a fast implementation is proposed in Algorithm 3.1.142

Algorithm 3.1 Fast L-CoLT Matrix-Vector multiplication

Input: input vector y of size N , input matrix ML = L-CoLT(γ, r)
Output: p =MLy

1: procedure LCMV(y, γ, r)
2: p1 = γ1y1
3: for i = 1 : N − 1 do
4: pi+1 = ripi + γi+1yi+1

return p

143

Similarly, the fast matrix-vector multiplication for U-CoLT matrices is shown in144

Algorithm 3.2.145

Next, we denote the set CN as the direct sum of CNL and CNU , defined by146

Definition 3.3.

(3.4) CN = CNL + CNU =
{
A+B | A ∈ CNL , B ∈ CNU

}
.147

Due to the linearity of matrix-vector multiplication, we can further develop the fast148

matrix-vector multiplication algorithm for matrices in CN , which is given in Algo-149

rithm 3.3.150

The space and time complexities of these algorithms are O(N), which is much151

better than the original matrix-vector multiplication.152
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Algorithm 3.2 Fast U-CoLT Matrix-Vector multiplication

Input: input vector y of size N , input matrix M = U-CoLT(γ′, r′)
Output: q =MUy

1: procedure UCMV(y, γ′, r′)
2: qN = 0, qN−1 = γ′N−1yN
3: for i = 2 : N − 1 do
4: qN−i = r′N−iqN−i+1 + γ′N−iyN−i+1

return q

Algorithm 3.3 CoLT Matrix-Vector multiplication

Input: input vector x of size N , diagonal elements γ, γ′ and the ratio vector r, r′

Output: p+ q =My

1: procedure CMV(y, cL, cU , γ, γ′)
2: p = LCMV(y, γ, r)
3: q = UCMV(y, γ′, r′)

return p+ q

3.2. Some Basic Properties. In this subsection, we justify some basic prop-153

erties of those matrices involved, which will be used in our algorithm.154

Theorem 3.4.
(
CNL , ⊙

)
and

(
CNU , ⊙

)
are Abelian groups, where ⊙ is the Hada-155

mard product.156

Proof. We only prove the theorem for
(
CNL , ⊙

)
. It suffices to show that

(
CNL , ⊙

)
157

has the following properties:158

Closure: For any two matrices A = L-CoLT(γ̂, r̂) and B = L-CoLT(γ̃, r̃), we159

set D = A⊙B. Since di,j = ai,jbi,j , one has160

(3.5) di,j/di+1,j = (ai,jbi,j) / (ai+1,jbi+1,j) = r̂ir̃i, j = 1, 2, · · · , i,161

and the strictly upper triangle part ofD is obviously 0, which meansD = L-CoLT(γ̂⊙162

γ̃, r̂ ⊙ r̃) ∈ CNL .163

Identity and Inverses: Let164

(3.6) E =


1
1 1
1 1 1
...

...
...

. . .

1 1 1 · · · 1

 ∈ CNL ,165

then for any A = L-CoLT(γ, r), A⊙E = E⊙A = A, which means E is the identity166

element. Let167

B =


1/a11
1/a21 1/a22
1/a31 1/a32 1/a33

...
...

...
. . .

1/an1 1/an2 1/an3 · · · 1/ann

 .168

Since169

bi,j/bi+1,j = ai+1,j/ai,j = 1/ri, j = 1, 2, · · · , i,170
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then B ∈ CNL . And obviously, A⊙ B = B ⊙ A = E, which means B is the inverse of171

A.172

Commutativity and Associativity: The commutativity and associativity can be173

derived from the commutative and associative law of real number multiplication.174

Based on the above theorem, we can deduce directly175

Corollary 3.5.
(
CN , ⊙

)
is an abelian group with identity element 1N1T

N .176

Theorem 3.6. For any vector x ∈ (R\{0})N , fx (M) = (diag (x))M and177

gx (M) =M (diag (x)) are permutations in CNL and CNU .178

Proof. We only prove the theorem for CNL .179

Closure: For any vector x ∈ (R\{0})N , and ML = L-CoLT(γ, r), let E be the180

one defined in Equation (3.6). Since181

E1 = (diag (x))E =


x1
x2 x2
x3 x3 x3
...

...
...

. . .

xn xn xn · · · xn

 ∈ CNL ,182

183

E2 = E (diag (x)) =


x1
x1 x2
x1 x2 x3
...

...
...

. . .

x1 x2 x3 · · · xn

 ∈ CNL ,184

we have185

(3.7)
fx (M) = (diag (x))M = (diag (x))E ⊙M = E1 ⊙M ∈ CNL ;

gx (M) =M (diag (x)) =M ⊙ E (diag (x)) =M ⊙ E2 ∈ CNL .
186

The last set membership can be derived by the closure of
(
CNL , ⊙

)
proved in Theo-187

rem 3.4. Hence, fx and gx are maps from CNL to itself.188

Injectiveness: For any two matrices A = L-CoLT(γ̂, r̂) and B = L-CoLT(γ̃, r̃),189

let D1 be the inverse of E1 and D2 be the inverse of E2. If fx (A) = fx (B), then190

A = D1 ⊙ E1 ⊙A = D1 ⊙ fx (A) = D1 ⊙ fx (B) = D1 ⊙ E1 ⊙B = B.191

If gx (A) = gx (B), then192

A = A⊙ E2 ⊙D2 = gx (A)⊙D2 = gx (B)⊙D2 = B ⊙ E2 ⊙D2 = B,193

which means fx (·) and gx (·) are injective functions.194

Surjectiveness: For any M ∈ CNL , let Q1 = D1 ⊙M and Q2 =M ⊙D2, then195

fx (Q1) = E1 ⊙D1 ⊙M = E ⊙M =M ;

gx (Q2) =M ⊙D2 ⊙ E2 =M ⊙ E =M,
196

which means fx (·) and gx (·) are surjective functions.197

Corollary 3.7. fx (·) and gx (·) are permutations in CN .198
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4. The Fast Sinkhorn II. In this section, we will discuss the implementation199

details to accelerate IPOT. In Algorithm 2.1, three parts lead to O(N2) algorithm200

complexity, i.e., the matrix Hadamard product (line 4), the matrix-vector multiplica-201

tion (lines 6-7), and the matrix scaling (line 8). They all rely on the representation202

and manipulation of L/U CoLT matrices.203

For two discrete distributions on a 1D uniform mesh grid with a grid spacing of204

h, by introducing the notation λ = e−h/δ, the kernel matrix K is written as205

(4.1) K =


1 λ λ2 · · · λN−1

λ 1 λ · · · λN−2

λ2 λ 1 · · · λN−3

...
...

...
. . .

...
λN−1 λN−2 λN−3 · · · 1

 ∈ CN .206

Below we discuss step by step of IPOT (Algorithm 2.1) to reduce the complexity:207

• line 2: Γ = 1N1T
N ∈ CN , we only need four vectors (γ,γ′, r, r′) to represent208

Γ according to Theorem 3.2.209

• line 4: the matrix Hadamard product Q = K ⊙ Γ ∈ CN according to The-210

orem 3.4 and Corollary 3.5. By updating the four representation vectors211

(γ,γ′, r, r′), we can obtain Q with O(N) cost.212

• lines 6-7: the matrix-vector multiplication QTϕ and Qψ can be implemented213

with O(N) cost according to Algorithm 3.3.214

• line 8: the matrix scaling Γ = diag(ϕ)Qdiag(ψ) ∈ CN according to The-215

orem 3.6 and Corollary 3.7. By updating the four representation vectors216

(γ,γ′, r, r′), we can obtain Γ with O(N) cost.217

Based on the above discussions, we proposed the FS-2 algorithm with O(N)218

complexity. The pseudo-code is presented in Algorithm 4.1.

Algorithm 4.1 1D FS-2 Algorithm

Input: u, v ∈ RN ; L, itr max ∈ N+; h, δ ∈ R
Output: W1(u,v)

1: λ← e−h/δ; ϕ,ψ ← 1
N 1N ; r, s← 0N

2: αL, βL, αU , βU ← λ1N−1; γ ← 1N ; γ′ ← λ1N−1

3: for t = 1 : itr max do
4: for ℓ = 1 : L do
5: r ← CMV(ϕ,βL,βU ,γ,γ′)
6: ψ ← v ⊘ r
7: s← CMV(ψ,αL,αU ,γ,γ′)
8: ϕ← u⊘ s
9: for i = 1 : N − 1 do

10: αL
i ← λαL

i (ϕi+1/ϕi), β
L
i ← λβL

i (ψi+1/ψi)
11: γ′i ← λγ′iϕiψi+1

12: for i = 1 : N − 2 do
13: αU

i ← λαU
i (ϕi/ϕi+1), β

U
i ← λβU

i (ψi/ψi+1)

14: γ ← ϕ⊙ψ ⊙ γ
return W1(u,v)

219

There is a minor flaw in the above algorithm. The computational cost ofW1(u,v)220

is still O(N2) in the last step. This was also ignored in our previous paper [24]. Now,221
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we would like to discuss this issue. The computation of W1 (u,v) = ⟨C, Γ⟩ can be222

regarded as the summation of all elements of the following matrix.223

(4.2)

C ⊙ Γ =



0 hγ′
1 2hγ′

2r
′
1 · · · (N−1)hγ′

N−1

N−2∏
i=1

r′i

hγ1r1 0 hγ′
2 · · · (N−2)hγ′

N−1

N−2∏
i=2

r′i

2hγ1r1r2 hγ2r2 0 · · · (N−3)hγ′
N−1

N−2∏
i=3

r′i

...
...

...
. . .

...

(N−1)hγ1
N−1∏
i=1

ri (N−2)hγ2
N−1∏
i=2

ri (N−3)hγ3
N−1∏
i=3

ri · · · 0


.224

We separate the summation of the matrix to the lower and strictly upper triangular225

parts. Thus, the k-th line summation of two parts can be written as226

pk =

k∑
i=1

ωki, qk =

N∑
i=k+1

ωki.227

We can consider the following recursive computation228

(4.3)

p1 = 0, p2 = hγ1r1, p′2 = hγ1r1 + hγ2,

pi = ri−1

(
pi−1 + p′i−1

)
, p′i = ri−1p

′
i−1 + hγi, i = 3, 4, · · · , N.

qN = 0, qN−1 = hγ′N−1, q′N−1 = hγ′N−1 + h,

qj = r′j
(
qj+1 + q′j+1

)
, q′j = r′jq

′
j+1 + h, j = 1, 2, · · · , N − 2.

229

Thus, the Wasserstein-1 metric can be finally obtained with O(N) cost230

W1(u,v) = ⟨C, Γ⟩ =
N∑
i=1

(pi + qi) .231

5. Extension to high dimension. In this section, we illustrate how the FS-232

2 algorithm generalizes to higher dimensions using the two-dimensional case as an233

example.234

5.1. Block Collinear Triangular Matrix. Hereinafter, for A ∈ RMN×MN ,235

we break it into M2 uniform blocks with size N ×N :236

A =



A1,1 A1,2 A1,3 · · · A1,M

A2,1 A2,2 A2,3 · · · A2,M

...
...

...
. . .

...

AM,1 AM,2 AM,3 · · · AM,M


.237

And for vectors x ∈ RkN , we break it into k uniform blocks as (x1,x2, · · · ,xk)
T
, in238

which239

xi =
(
x1+(i−1)N , x2+(i−1)N , · · · , xiN

)T
, i = 1, 2, · · · , k.240
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To carry out the fast implementation of the matrix-vector multiplication of the block241

matrix above, we generalize the definition of CN in (3.4) to the block case as242

Definition 5.1.

CN,M = {A ∈RMN×MN |Ak,k ∈ CN ; rL, rU ∈ (R\{0})(M−1)N
;

Ai+1,j =
(
diag

(
rLi
))
Ai,j , j ≤ i; Ai−1,j =

(
diag

(
rUi−1

))
Ai,j , i ≤ j}

.243

Since CN,M is a generalization of CN , we can also use the strategy of Algorithm 3.3244

in blocks to reduce the computational cost of matrix-vector multiplications. For a245

vector x ∈ RNM , the matrix-vector multiplication Ax is written as246

(5.1) Ax =


A1,1x1 + A1,2x2 + A1,3x3 · · · + A1,MxM

A2,1x1 + A2,2x2 + A2,3x3 · · · + A2,MxM

A3,1x1 + A3,2x2 + A3,3x3 · · · + A3,MxM

...
...

...
...

...
. . .

...
...

AM,1x1 + AM,2x2 + AM,3x3 · · · + AM,MxM

 .247

We separate the summation of row k to the lower triangular part pk and the strictly248

upper triangular part qk. Then computing Ax is formulated as249

Ax = p+ q, pk =

k∑
i=1

Ak,ixi, qk =

M∑
i=k+1

Ak,ixi, k = 1, · · · ,M.250

If A is in CN,M with rL and rU , instead of directly calculating pk and qk, a successive251

computation is used252

(5.2)
p1 = A1,1x1, pk = rLk−1 ⊙ pk−1 +Ak,kxk, k = 2, · · · ,M,

qM = 0N , qk−1 = rUk−1 ⊙ (qk +Ak,kxk), k =M,M − 1, · · · , 2.
253

Since the computation of Ak,kxk can be carried out with O(N) complexity by using254

Algorithm 3.3, the whole computation is of O(NM) complexity.255

Similar to Theorem 3.4 and Theorem 3.6, CN,M is closed under the Hadamard256

product and matrix scaling.257

Theorem 5.2.
(
CN,M ,⊙

)
is an Abelian group; Matrix scaling operations are per-258

mutations in CN,M .259

Proof. For any A ∈ CN,M , since the diagonal blocks of A are in CN , by Corol-260

lary 3.7, all blocks in A are in CN . Then the two properties can be proved in a similar261

way as in subsection 3.2.262

5.2. The 2D FS-2 Algorithm. Consider two discretized probabilistic distri-263

butions264

u = (u11, u21, · · · , uN1, u12, · · · , ui1j1 , · · · , uNM ) ,265

v = (v11, v21, · · · , vN1, v12, · · · , vi2j2 , · · · , vNM ) ,266267
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on a uniform 2D mesh of size N ×M with a vertical spacing of h1 and a horizontal268

spacing of h2. The corresponding kernel matrix is written as269

K =



K0 λ2K0 λ22K0 · · · λM−1
2 K0

λ2K0 K0 λ2K0 · · · λM−2
2 K0

...
...

...
. . .

...

λM−1
2 K0 λM−2

2 K0 λM−3
2 K0 · · · K0


,270

where the sub-matrix271

K0 =


1 λ1 · · · λN−1

1

λ1 1 · · · λN−2
1

...
...

. . .
...

λN−1
1 λN−2

1 · · · 1

 ,272

and273

λ1 = e−h1/δ, λ2 = e−h2/δ.274

Obviously, the original 2D kernel K contains blocks which are multiples of the275

1D kernel, hence belongs to CN,M . By an analysis similar to that in section 4 and276

using Theorem 5.2, the matrices Q and Γ are in CN,M throughout the course of the277

iteration, which means that all the matrix-vector multiplications can be carried out278

by using recursion (5.2). Thus, the total cost of matrix-vector multiplication of our279

FS-2 algorithm for 2D Wasserstein-1 metric is reduced to O(NM).280

In the 2D FS-2 algorithm, we use ‘̂’ to distinguish whether it is a coefficient of the281

block or the inner sub-matrix, and update them simultaneously after an inner loop.282

The pseudo-code is presented in Algorithm 5.1. Updating the coefficients of inner283

sub-matrices and computation of W1 (u,v) are omitted in the pseudo-code since they284

are similar to the 1D case, which we have described in detail.285

6. Numerical Experiments. In this section, we carry out three numerical ex-286

periments to evaluate the FS-2 algorithm, including one 1D example and two 2D287

examples. The true Wasserstein metric WLP is obtained by solving the original OT288

(2.1) using interior-point methods [11, 20]. In our experiments, for both IPOT and289

FS-2, the number of inner loops is set as L = 20 and the regularization param-290

eter δ(t) is set to 1. The number of iterations here is the total number of loops:291

#iteration = itr max × L. In order to deal with the difficulties caused by zeros, we292

utilize the rescaling method in [23]:293

(6.1) D(f, g) =W1

(
f

∥f∥ + η

1 +Nη
,

g
∥g∥ + η

1 +Nη

)
,294

In the following, we refer to formula (6.1) for numerical stability with η = 10−5.295

All the experiments are conducted on a platform with 128G RAM, and one Intel(R)296

Xeon(R) Gold 5117 CPU @2.00GHz with 14 cores.297
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Algorithm 5.1 2D FS-2 Algorithm

Input: u, v ∈ RNM ; L, itr max ∈ N+; h1, h2, δ ∈ R
Output: W1(u,v)

1: λ1 ← e−h1/δ; λ2 ← e−h2/δ; ϕ(0),ψ(0) ← 1
NM 1NM ; p(0), r(0), q(0), s(0) ← 0NM

2: γ ← 1NM , γ
′, αL, βL, λ11(N−1)M , α

U , βU ← λ11(N−2)M

3: α̂L, β̂
L
, α̂U , β̂

U
← λ1N(M−1)

4: while t = 1 : itr max do
5: for ℓ = 1 : L do
6: r1 ← CMV(ϕ1, β1), sM ← 0N

7: for i = 1 : M − 1 do

8: ri+1 ← β̂
L

i ⊙ ri +CMV(ϕi+1,β
L
i+1,β

U
i+1,γi+1,γ

′
i+1)

9: sN−i← β̂
U

N−i⊙(sN−i+1+CMV(ϕN−i+1,β
L
N−i+1,β

U
N−i+1,γN−i+1,γ

′
N−i+1))

10: ψ ← v ⊘ (r + s)
11: p1 ← CMV(ψ1, α1), qM ← 0N

12: for i = 1 : M − 1 do
13: pi+1 ← α̂L

i ⊙ pi +CMV(ψi+1,α
L
i+1,α

U
i+1,γi+1,γ

′
i+1)

14: qN−i←α̂
U
N−i⊙(qN−i+1+CMV(ψN−i+1,α

L
N−i+1,α

U
N−i+1,γN−i+1,γ

′
N−i+1))

15: ϕ← u⊘ (p+ q)

16: for i = 1 : M − 1 do

17: α̂L
i ← λ2

(
ϕi+1/ϕi

)
⊙ α̂L

i , β̂
L

i ← λ2
(
ψi+1/ψi

)
⊙ β̂

L

i

18: α̂U
i ← λ2

(
ϕi/ϕi+1

)
⊙ α̂U

i , β̂
U

i ← λ2
(
ψi/ψi+1

)
⊙ β̂

U

i

19: Update γ, γ′, αL, βL, αU , βU

return W1(u,v)

6.1. 1D Gaussian distributions. We consider the Wasserstein-1 metric be-298

tween two mixtures of 1D Gaussian distributions: 0.4N (60, 64) + 0.6N (40, 36) and299

0.5N (35, 81) + 0.5N (70, 81), which is the experiment setting in [35]. Input vectors300

u and v are generated by integration on the uniform discretization of interval [0, 100]301

with node size N .302

We first compare the convergence of FS-1 and FS-2 for N = 1000. We tested 100303

experiments, and each experiment was performed for 10, 000 iterations. In Figure 1,304

the differences of the Wasserstein-1 metric between the true solution WLP and the305

numerical solutions generated by FS-1 and FS-2 are depicted. As expected, as ε306

decreases, the error of FS-1 decreases gradually after the iterations converge. We can307

observe this for ε = 1/20 and ε = 1/80. However, for ε = 1/320, we can not observe308

convergence. In fact, the error does not drop over 10, 000 iterations. This is because309

ε is too small, making updates extremely slow. In fact, after 20, 000 iterations, the310

result of ε = 1/320 will continue to drop, and the final error is smaller than that of311

ε = 1/20 and ε = 1/80. However, in any case, the results of FS-1 are far inferior to312

those of FS-2, both in terms of accuracy and convergence rate.313

The averaged computational time of the IPOT method and the FS-2 algorithm is314

given in Table 1 and Figure 2 (left). Apparently, the FS-2 algorithm has achieved an315

overwhelming advantage over the IPOT method in terms of computational speed, and316

ensures that the transport plans of the two are almost the same. This replicates the317

advantages of the FS-1 algorithm over the Sinkhorn algorithm. According to the data318
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Fig. 1. The 1D Gaussian distribution problem. The errors between the numerical results
generated by FS-1 or FS-2 and the true Wasserstein-1 metric w.r.t. number of iterations.

Fig. 2. The 1D Gaussian distribution problem. Left: The comparison of computational time
between the FS-2 algorithm and the IPOT method with different numbers of grid points N . Right:
The computational time required to reach the absolute error of the Wasserstein-1 metric.

fitting results, the empirical complexity of the FS-2 algorithm is O(N1.07), which is319

much smaller than the O(N2.40) complexity of the IPOT method. At last, we show the320

computational time required to reach the absolute error of the Wasserstein-1 metric321

for N = 1, 000 in Figure 2 (right). Clearly, the FS-2 algorithm has an advantage of322

two orders of magnitude in computational time compared to the IPOT method.323

6.2. 2D Random distributions. Next, we compute the Wasserstein-1 metric324

between two N × N dimensional random vectors whose elements obey the uniform325

distribution on (0, 1). Without loss of generality, we set h1 = h2 = 0.1. We also326

tested 100 experiments, and each experiment was performed for 10, 000 iterations.327

We hope to test the performance of the FS-2 algorithm in 2D through this example.328

The differences in the Wasserstein-1 metric between the true solution WLP and the329

numerical solutions generated by FS-1 and FS-2 are shown in Figure 3. From this, we330

can observe that FS-1 converges quickly for ε = 1/20, but the error is large. When331

ε = 1/80, the iteration converges at about 5, 000 steps. The error keep decreasing332

even after 10, 000 steps for ε = 1/320. However, their errors and convergence speed333

are not as good as FS-2.334

The averaged computational time of the IPOT method and the FS-2 algorithm335

is given in Table 2 and Figure 4 (left). According to the data fitting results, the336

empirical complexity of the FS-2 algorithm is O(N2.05), which is much smaller than337

This manuscript is for review purposes only.



14 Q. LIAO, Z. WANG, J. CHEN, B. BAI, S. JIN AND H. WU

Table 1
The 1D Gaussian distribution problem. The comparison between the IPOT method and the FS-

2 algorithm with the different number of grid points N . Columns 2-4 are the averaged computational
time of the two algorithms and the speed-up ratio of the FS-2 algorithm. Column 5 is the Frobenius
norm of the difference between the transport plan computed by the two algorithms.

N
Computational time (s)

Speed-up ratio ∥PFS − P∥FFS-2 IPOT

500 1.25× 10−2 1.22× 100 9.76× 101 2.09× 10−15

2000 4.95× 10−2 3.73× 101 7.52× 102 6.65× 10−16

8000 2.32× 10−1 8.41× 102 3.63× 103 8.57× 10−16

Fig. 3. The 2D random distribution problem. The errors between the numerical results gener-
ated by FS-1 or FS-2 and the true Wasserstein-1 metric w.r.t. number of iterations.

the O(N4.98) complexity of the IPOT method. The computational time required to338

reach the absolute error of the Wasserstein-1 metric for N × N = 32 × 32 is also339

presented in Figure 4 (right). Similar to the previous subsection, we can also observe340

the huge computational efficiency of the FS-2 algorithm over the IPOT method.341

6.3. Image matching problem. The final experiment tests the performance342

of our FS-2 algorithm for high-resolution image matching. This is a successful appli-343

cation of the Optimal Transport [4, 17, 7]. We select two images from the DIV2K344

dataset [1]. Through a process similar to Subsection 5.4 in the manuscript [24], we345

compute the Wasserstein-1 metric between the two images. The differences in the346

Wasserstein-1 metric between the true solutionWLP and the numerical solutions gen-347

erated by FS-1 and FS-2 are depicted in Figure 6. We also present the averaged348

computational time of the IPOT method and the FS-2 algorithm in Table 3. More-349

over, the computational time required to reach the absolute error of the Wasserstein-1350

metric for N × N = 32 × 32 is shown in Figure 7. From these results, we can get351

the same conclusion as before, that is, the FS-2 algorithm seems to be the numerical352

algorithm with the fastest convergence and the lowest complexity for computing the353

Wasserstein-1 metric.354

7. Conclusion. As the follow-up of the FS-1 paper, we generalize the result of355

matrix-vector multiplication at O(N) costs for the special matrix to the more general356

L/U-CoLT matrix. We illustrate that only two vectors are required to represent any357

L/U-CoLT matrix. Moreover, we also prove the closure of families of L/U-CoLT358

matrices to matrix Hadamard product and matrix scaling. Therefore, the above359
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Fig. 4. The 2D random distribution problem. Left: The comparison of computational time
between the FS-2 algorithm and the IPOT method with different numbers of grid points N . Right:
The computational time required to reach the absolute error of the Wasserstein-1 metric.

Table 2
The 2D random distribution problem. The comparison between the IPOT method and the

FS-2 algorithm with different total number of grid nodes N × N . Columns 2-4 are the averaged
computational time of the two algorithms and the speed-up ratio of the FS-2 algorithm. Column 5
is the Frobenius norm of the difference between the transport plan computed by the two algorithms.

N×N Computational time (s)
Speed-up ratio ∥PFS − P∥FFS-2 IPOT

20×20 2.24× 10−2 4.88× 10−1 2.18× 101 2.40× 10−16

40×40 7.74× 10−2 1.34× 101 1.73× 102 1.52× 10−16

80×80 3.38× 10−1 4.79× 102 1.42× 103 1.40× 10−16

160×160 1.42× 100 1.46× 104 1.03× 104 8.51× 10−17

320×320 6.31× 100 − − −

Fig. 5. The image matching problem. Illustration of images.

Table 3
The image matching problem. The comparison between the IPOT method and the FS-2 algo-

rithm with the different total number of grid nodes N × N . Columns 2-4 are the averaged compu-
tational time of the two algorithms and the speed-up ratio of the FS-2 algorithm. Column 5 is the
Frobenius norm of the difference between the transport plan computed by the two algorithms.

N ×N Computational time (s)
Speed-up ratio ∥PFS − P∥FFS-2 IPOT

100×100 5.16× 10−1 1.44× 103 2.79× 103 6.44× 10−17

200×200 2.31× 100 3.69× 104 1.60× 104 4.65× 10−17

400×400 9.69× 100 − − −
800×800 4.18× 101 − − −

This manuscript is for review purposes only.



16 Q. LIAO, Z. WANG, J. CHEN, B. BAI, S. JIN AND H. WU

Fig. 6. The image matching problem. The errors between the numerical results generated by
FS-1 or FS-2 and the true Wasserstein-1 metric w.r.t. number of iterations.

Fig. 7. The image matching problem. The computational time required to reach the absolute
error of the Wasserstein-1 metric.

matrix operations are essentially updating the representation vectors, which reduce360

both time and space complexity to O(N). These results can be directly applied to361

the Inexact Proximal point method for Optimal Transport problem and reduce the362

overall computational complexity to O(N). From this, we develop the Fast Sinkhorn363

II algorithm. It does not seem to be an overstatement that for the computation of364

the Wasserstein-1 metric, we have probably obtained the most competitive method,365

both in terms of convergence speed and computational complexity.366
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