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Abstract. A Lagrangian surface hopping algorithm is implemented to study the two
dimensional massless Dirac equation for Graphene with an electrostatic potential, in
the semiclassical regime. In this problem, the crossing of the energy levels of the
system at Dirac points requires a particular treatment in the algorithm in order to
describe the quantum transition—characterized by the Landau-Zener probability—
between different energy levels. We first derive the Landau-Zener probability for the
underlying problem, then incorporate it into the surface hopping algorithm. We also
show that different asymptotic models for this problem derived in [O. Morandi, F.
Schurrer, J. Phys. A: Math. Theor. 44 (2011) 265301] may give different transition prob-
abilities. We conduct numerical experiments to compare the solutions to the Dirac
equation, the surface hopping algorithm, and the asymptotic models of [O. Morandi,
F. Schurrer, J. Phys. A: Math. Theor. 44 (2011) 265301].
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1 Introduction

We are interested in the description of the transport of electrons in a single graphene
layer. This material is a two-dimensional flat monolayer of carbon atoms which displays
unusual and interesting electronic properties arising from the bi-conically shaped Fermi
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surfaces near the Brillouin zone corners (Dirac points). The electrons propagate as mass-
less Dirac Fermions moving with the Fermi velocity vF, which is 300 times smaller than
the speed of light vF≈ c

300 ≈106 m.s−1, and their behavior reproduces the physics of quan-
tum electrodynamics but at much smaller energy scale. Although this model has been
studied for a long time, see [5] for a bibliography, it has remained theoretical until the
work of [32] where the graphene was produced for the first time. After these results, the
interest of researchers on this material has shown a remarkable increase including appli-
cations in carbon-based electronic devices [26] and numerical simulations, see e.g. [12]
and references therein.

In this paper, we will consider a model of a two-dimensional Dirac equation [2, 5, 31]
of a graphene sheet in the presence of an external potential. This model consists of a
small parameter h directly related to the Planck constant. We are interested in the design
of an efficient numerical method—the surface hopping method—for the graphene Dirac
equation in the semiclassical regime where h ≪ 1. In this regime, the solution of the
Dirac equation is highly oscillatory thus a huge computational cost is required to give
accurate wave functions or physical observables for either finite difference methods [4,16]
or time-splitting spectral method [18], since one needs to resolve the high frequency both
spatially and temporally.

The development of efficient numerical methods for the related Schrödinger equation
in the semiclassical regime has motivated many works in the last decade, see the review
paper [20] and references therein. In the semiclassical regime, one often uses asymptotic
analysis, such as the WKB analysis and the Wigner transform to help to reduce the com-
putational costs and to develop efficient computational methods based on the asymptotic
models. In the framework of Wigner transform, the idea is to construct a measure on
the phase space, called the Wigner measure, when h→ 0, to obtain the physical observ-
ables (such as density, flux, and energy) with a computational cost far less than a direct
quantum simulation. When the gap between different energy levels is of order one (the
so-called adiabatic case), the Wigner measure technique provides a simple description of
the motion: it can be well approximated by a fully diagonalized system, one classical
Liouville equation for each energy level [13]. However, in the graphene Dirac equation,
the energy levels cross at the Dirac points, where non-adiabatic transfers are observed and
the particles can tunnel from one band to the other. The standard Wigner approach then
needs to be revised to describe the non-adiabatic phenomena.

One of the widely used approaches to simulate the non-adiabatic dynamics is the
surface hopping method initially proposed by Tully and Preston [39] as an efficient com-
putational method to go beyond the classical Born-Oppenheimer approximation. This
method is widely used in chemistry and molecular dynamics, see for examples [7, 35, 38,
39]. The basic idea is to combine classical transport of the system on individual poten-
tial energy surfaces with instantaneous transitions from one energy surface to the other.
The transition rates for this band-to-band hopping are given by the well known Landau-
Zener formula [40]. From the mathematical point of view, the first rigorous analysis of
non-adiabatic transfer using Landau-Zener formula dates back to Hagedorn [15]. More
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recently, the Wigner measure techniques for separated energy levels have been extended
in [9] and [10] to systems presenting band crossing. The proof is based on microlocal
analysis to justify the Landau-Zener formula. Departing from the results in [9] and [10],
a rigorous surface hopping algorithm in the Wigner picture was proposed in [25] for
time-dependent two-level Schrödinger systems with conically intersecting eigenvalues
and implemented numerically in the Lagrangian formulation in [24]. The corresponding
Eulerian numerical scheme was proposed in [23] by formulating the hopping mecha-
nism as an interface condition which is then built into the numerical flux for solving the
underlying Liouville equation for each energy level.

In the present article we give a Lagrangian surface hopping algorithm for the graphene
Dirac equation similar to the algorithm in [24]. First, it is a classical result that the Wigner
transform leads to two decoupled classical Liouville equations for each energy level, un-
der the adiabatic assumption [13]. At the Dirac points where non-adiabatic transition oc-
curs, we first derive the Landau-Zener formula, and then incorporate it into the surface
hopping algorithm. We also show that a reduced asymptotic model developed in [30]
could give incorrect transition probability. We then compare through several numeri-
cal examples the solutions of the Dirac equation (solved by the time-splitting spectral
method), the surface hopping algorithm and the asymptotic models of [30]. Our numeri-
cal results show that, when there is no wave interference, the surface hopping algorithm
indeed gives the correct non-adiabatic transition at Dirac points, with a much greater
computational efficiency compared with the simulations based on solving directly the
Dirac equation.

The article is organized as follows: in Section 2 we give the graphene Dirac equa-
tion and its semiclassical limit via the Wigner transform in the adiabatic case. We give
some examples of potentials to show that non-adiabatic transition is indeed possible.
In Section 3, we derive the Landau-Zener transition probability for the graphene Dirac
equation. The surface hopping algorithm is given in Section 4. In Section 5, we study
the asymptotic models introduced in [30] and show that a reduced model could give the
incorrect transition probability. Numerical results are given in Section 6 for comparisons
of different models. For reader’s convenience we give the time-splitting spectral method
of the Dirac equation in Appendix A.

2 Quantum transport in graphene and the Wigner measure

We consider the description of the transport of electrons in a single graphene layer in the
presence of an external potential. Following [2, 5, 31], it is modelled by the two dimen-
sional Dirac equation:

{
ih̄∂tψ=[−ih̄vFσ1∂x1

−ih̄vFσ2∂x2 +qV]ψ, t∈ IR, x∈ IR2,
ψ(0,x)=ψI(x), x∈ IR2,

(2.1)

where h̄ is the reduced Planck constant, vF is the Fermi velocity, q is the elementary charge
of the electron and V(x)∈ IR is the electric potential. The Pauli matrices σ1,σ2 are given
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by:

σ1=

(
0 1
1 0

)
, σ2=

(
0 −i
i 0

)
.

The initial wave function ψI(x)∈C2 is normalized such that:

∫

IR2
|ψI(x)|2dx=1 (2.2)

and, using the mass conservation, the wave function ψ(t,x)∈C2 satisfies

∫

IR2
|ψ(t,x)|2dx=1, (2.3)

where t, x=(x1,x2) are the time and space variables respectively. We consider the system
(2.1) in the semiclassical regime. For this purpose, we rewrite the equations such that
there remains only one dimensionless parameter h. Proceeding as in [36], we change the
variables to dimensionless variables as follows

t→ t/T0, x→ x/L (2.4)

and define

uI(x)= LψI(Lx), u(t,x)= Lψ(T0t,Lx), (2.5)

where L is a reference length and T0= L/vF. We remark that uI(x) and u(t,x) are chosen
such that the change of variable preserves the normalization (2.2) and (2.3). Plugging
(2.5) into (2.1), and dividing by the reference energy mv2

F where m is the effective mass of
the electron, one gets the dimensionless graphene Dirac equation:

{
ih∂tu=[−ihσ1∂x1

−ihσ2∂x2 +U]u, t∈ IR, x∈ IR2,
u(0,x)=uI(x), x∈ IR2,

(2.6)

where

h=
h̄

mvF L
(2.7)

is a small dimensionless parameter and U(x) is the dimensionless potential defined by

U(x)=
q

mv2
F

V(Lx).

We will consider the solution of (2.6) in the limit h→0.
Non-adiabatic transfer happens at the Dirac points which are the crossing points of

the eigenvalues of the symbol related to (2.6). To be more precise, we consider the com-
plex 2×2-matrix-valued symbol:

P0(x,ξ)=B(ξ)+U(x)I, (x,ξ)∈ IR2
x× IR2

ξ , (2.8)
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where I is the 2×2 identity matrix, B(ξ) is given by

B(ξ)= ξ1σ1+ξ2σ2=

(
0 ξ1−iξ2

ξ1+iξ2 0

)
, ξ∈ IR2,

and U∈C∞(IR2, IR) is such that ∀β∈ IN2 there is a constant Cβ>0 verifying:
∣∣∣∂β

xU(x)
∣∣∣≤Cβ, ∀x∈ IR2 .

An easy computation shows that the matrix B(ξ) has eigenvalues ±|ξ| with correspond-
ing orthonormal set of eigenvectors given by

χ±(ξ)=
1√
2

(
1,± ξ1+iξ2

|ξ|

)T

. (2.9)

We remark that P0 is a 2×2 matrix with coefficients in S1(IR2× IR2), where S1(IR2× IR2)
is the set of all p∈C∞(IR2× IR2) such that ∀β,γ∈ IN2 there is a constant Cβ,γ>0 verifying:

∣∣∣∂β
x∂

γ
ξ p(x,ξ)

∣∣∣≤Cβ,γ(1+|ξ|)1−|γ|, ∀(x,ξ)∈ IR2× IR2

(see [17] for more details about this definition). Moreover, the Dirac equation (2.6) can be
rewritten as: {

ih∂tu
h=P0(x,hD)uh, t∈ IR,

uh(0)=uh
I ,

(2.10)

where P0(x,hD) is the Weyl operator defined for u∈C∞
0 (IR2)2 by the integral:

P0(x,hD)u(x)=
1

(2π)2

∫

IR2
ξ

∫

IR2
y

P0

(
x+y

2
,hξ

)
u(y)ei(x−y).ξdξdy, (2.11)

and D=−i∂x. The operator P0(x,hD) is essentially self-adjoint on the Hilbert space H=
L2(IR2)2 and the domain of its self-adjoint extension is H1(IR2)2. Therefore − i

h P0(x,hD)
generates a strongly continuous group of unitary operators solution to (2.10).

The eigenvalues λ±(x,ξ)=U(x)±|ξ| of the symbol P0(x,ξ) satisfy λ+(x,ξ)=λ−(x,ξ)
at the crossing set {ξ = 0} ⊂ IR2

x× IR2
ξ . The semiclassical limit away from the crossing

set was performed in [13] for systems of the form (2.10) with more general symbols and
initial data uh

I subject to additional conditions. In [13], the authors show that the semi-
classical limit for the different bands can be treated separately where, for each band, the
related eigenvalue plays the role of a scalar classical Hamiltonian.

2.1 Adiabatic semiclassical limit

We recall now some basic notions of the Wigner analysis involved in the semiclassical
limit. For u,v∈L2(IR2), the Wigner transform is defined by:

wh(u,v)(x,ξ)=
1

(2π)2

∫

IR2
u
(

x−h
y

2

)
v
(

x+h
y

2

)
eiξ.ydy
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and for u∈H, the 2×2 Wigner matrix is defined by:

Wh[u]=
(

wh(ui,uj)
)

1≤i,j≤2
.

We denote by wh[u] = trWh[u] the scalar Wigner transform of u. For any bounded se-
quence f h in H, there is a subsequence of Wh[ f h] which converges in S ′. Such a limit W0

is called a Wigner measure associated to f h. If f h admits only one Wigner measure, we
shall denote it by W0[ f h] and set w0[ f h]= trW0[ f h].

Another important object is the classical flow φ±
t (x,ξ)=(x±(t),ξ±(t)) corresponding

to the eigenvalues λ±, i.e. the solution to:
{

d
dt x±(t)=± ξ±(t)

|ξ±(t)| , x±(0)= x,
d
dt ξ±(t)=−∂xU(x±(t)), ξ±(0)= ξ,

(2.12)

where (x,ξ)∈ IR2
x× IR2

ξ . Indeed, the decoupled semiclassical limit is valid on a set of the

phase space which is stable under the flow φ±
t and where no band crossing occurs. More

precisely, if there exists an open subset Ω⊂ IR2
x× IR2

ξ such that:

Ω∩{ξ=0}=∅ and φ±
t (Ω)⊂Ω, ∀t∈ IR

and if the initial condition uh
I in (2.10) has a Wigner measure W0

I such that w0
I = trW0

I

satisfies
w0

I |Ωc =0,

then using the results in [13], it holds that wh[uh], the scalar Wigner transform of the
solution uh to (2.10), converges to

w0(t,x,ξ)=w0
+(t,x,ξ)+w0

−(t,x,ξ), (2.13)

where w0
±(t,·,·) is the scalar positive measure on IR2

x× IR2
ξ solving the classical Liouville

equations:
{

∂tw
0
±± ξ

|ξ|∂xw0
±−∂xU.∂ξw0

±=0, IRt×Ω,

w0
±(0,·,·)= tr

(
Π±W0

I

)
, Ω, w0

±(t,Ω
c)=0, t∈ IR.

(2.14)

For all (x,ξ)∈Ω, Π±(ξ) in (2.14) denotes the projection on the eigenspace related to the
eigenvalue λ±(x,ξ). Using formula (2.9), it can be expressed explicitly as follows:

Π±(ξ)=
1

2

(
I± 1

|ξ|B(ξ)

)
. (2.15)

Moreover, the density nh(t,x)= |uh(t,x)|2 converges to

n0(t,x)=
∫

IR2
w0(t,x,ξ)dξ .

It follows that for initial data uh
I such that the bands are separated initially, i.e. the support

of w0
I does not intersect with the crossing set {ξ =0}, the measure w0 is described by w0

I

if the support of w0
I is stable under the characteristics solution to (2.12) (in that case, the

characteristics starting from the support of w0
I do not reach {ξ=0}).
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2.2 Some case studies

2.2.1 Case U=0

In the case of the trivial potential, the solutions to (2.12) are given by:

(
x±(t),ξ±(t)

)
=

(
x± ξ

|ξ| t,ξ

)
(2.16)

for ξ 6=0 and we can take Ω= IR2
x× IR2

ξ\{ξ=0}. Then the system (2.14) writes:

{
∂tw

0
±± ξ

|ξ|∂xw0
±=0, IRt×{ξ 6=0},

w0
±(0,·,·)=w0

I,±, {ξ 6=0}, w0
±(t,x,0)=0, t∈ IR, x∈ IR2,

(2.17)

where

w0
I,±= tr

(
Π±W0

I

)
, ξ 6=0.

Using (2.16) in (2.17), we get that:

w0
±(t,x,ξ)=w0

I,±

(
x∓ ξ

|ξ| t,ξ
)

, ξ 6=0.

Therefore, the density nh(t,x)= |uh(t,x)|2 converges to

n0(t,x)=
∫

IR2
w0

I,−

(
x+

ξ

|ξ| t,ξ
)

dξ+
∫

IR2
w0

I,+

(
x− ξ

|ξ| t,ξ
)

dξ .

In the present case, if the support of the initial scalar Wigner measure w0
I does not contain

the point {ξ=0}, then no hopping occurs: the bands do not communicate and at any time
the measure w0 is described by the separate evolution of the level characteristics.

2.2.2 Case U=αx1, α∈ IR\{0}
In that case, the solutions to (2.12) are such that:

ξ±(t)= ξ−(αt,0) (2.18)

and we can take Ω= IR2
x× IR2

ξ\{ξ2 =0}. Then, system (2.14) becomes:

{
∂tw

0
±± ξ

|ξ|∂xw0
±−α∂ξ1

w0
±=0, IRt×{ξ2 6=0},

w0
±(0,·,·)= tr

(
Π±W0

I

)
, {ξ2 6=0}, w0

±(t,x,(ξ1,0))=0, t∈ IR, x∈ IR2, ξ1 ∈ IR.

(2.19)
Unlike in Section 2.2.1, non-adiabatic transfer may occur. Indeed, if the support of w0

I

does not intersect with the crossing set {ξ = 0} but contains points of the form (x,ξ)
where ξ =(ξ1,0) and ξ1 6= 0, then the characteristic curve ξ±(t), given by (2.18), starting
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from (ξ1,0), will reach the crossing set at the time t= ξ1

α and a band-to-band transition
will take place.

In these conditions, the system (2.19) does not describe correctly the asymptotics h→0
of the Wigner matrix Wh[uh].

The goal of this paper is to develop efficient semiclassical methods to compute the
non-adiabatic transition between different bands. To quantify the transition rates, we
propose in Section 3 a Landau-Zener formula which can be justified theoretically by using
the results in [10]. Indeed, in [10] the following symbol was considered:

P1(x,ξ)=A(ξ)+U(x)I, (x,ξ)∈ IR2
x× IR2

ξ , (2.20)

where I is the 2×2 identity matrix and

A(ξ)=

(
ξ1 ξ2

ξ2 −ξ1

)
. (2.21)

Using the unitary equivalence
B(ξ)=R∗A(ξ)R, (2.22)

where

R=
1√
2

(
1 1
i −i

)
, (2.23)

it follows that the two symbols have the same eigenvalues and P0 can be reduced to P1

after conjugation with the matrix R in the treatment of band crossing.

Remark 2.1. The functions w0
±(t,x,ξ) in (2.13) are the diagonal terms of the Wigner mea-

sure W0(t,x,ξ) :=W0[uh(t)](x,ξ). Indeed, it was shown in [13] that w0
± is given by

w0
±= tr

(
Π±W0

)
1Ω (2.24)

and that W0 is diagonal in the sense that W0 =Π+W0Π++Π−W0Π− on IRt×Ω. More-
over, an easy computation leads to:

Π±W0Π±= tr
(
Π±W0

)
Π±=w0

±Π± on IRt×Ω. (2.25)

3 The Landau-Zener transition

In this section we will study the Landau-Zener transition for the Hamiltonian P0(x,hD).

3.1 Classical flow around the crossing set

As remarked in Section 2, non-adiabatic transfer happens only when the characteristics
reach the crossing set {ξ = 0}. Proposition 3.1 below says that such characteristics will
exist as soon as the potential has points x∈ IR2 such that ∂xU(x) 6=0. We refer to [10] for
the proof.



A. Faraj and S. Jin / Commun. Comput. Phys., 21 (2017), pp. 313-357 321

Proposition 3.1. Consider x∈ IR2 such that ∂xU(x) 6=0, then there exist two unique curves
s 7→ (x±(s),ξ±(s)) which are continuous in s in a neighborhood of 0 and C1 for s 6=0 and
such that: {

d
ds x±(s)=± ξ±(s)

|ξ±(s)| , x±(0)= x,
d
ds ξ±(s)=−∂xU(x±(s)), ξ±(0)=0.

(3.1)

To illustrate the fact that a spectral transfer for the symbol P0 happens at the crossing
set, we will come back momentarily to the potential U=αx1 introduced in Section 2.2.2.
For such a potential, problem (3.1) writes:





d
ds x±(s)=± ξ±(s)

|ξ±(s)| , x±(0)= x,

d
ds ξ±(s)=−α

(
1
0

)
, ξ±(0)=0,

and ∀x∈ IR2, its unique solution is given by:

x±(s)= x∓sgn(α)

(
|s|
0

)
, ξ±(s)=−α

(
s
0

)
.

Plugging this solution in the projectors defined in (2.15), we get for s<0:

Π+(ξ
±(s))=

1

2

(
1 sgn(α)

sgn(α) 1

)
, Π−(ξ

±(s))=
1

2

(
1 −sgn(α)

−sgn(α) 1

)

and for s>0:

Π+(ξ
±(s))=

1

2

(
1 −sgn(α)

−sgn(α) 1

)
, Π−(ξ±(s))=

1

2

(
1 sgn(α)

sgn(α) 1

)
.

It is easy to see that the projectors Π+(ξ±(s)) and Π−(ξ±(s)) interchange one with the
other when the characteristics pass through the crossing set {ξ=0}.

3.2 A heuristic derivation of the Landau-Zener formula

In this section, we give a heuristic argument, similar to the one in [24] and [25], to derive
the Landau-Zener formula for the Hamiltonian P0(x,hD).

In general, the region for non-adiabatic transfer is not restricted to the crossing set
{ξ=0}, since quantum transition occurs as long as the two energy levels are sufficiently
close, in the case of avoided crossing [15]. As in [24] and [25], we define this region to
contain the points where the distance between the eigenvalues λ±(x,ξ) of P0(x,ξ) is mini-
mal. In our case |λ+(x,ξ)−λ−(x,ξ)|=2|ξ| and, when considered along the characteristics
solution to (2.12), the necessary condition for minimal gap is:

(
|ξ(s)|2

)′
=0⇔ ξ(s).∂xU(x(s))=0
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and the hopping surface is chosen as the set:

S={(x,ξ)∈ IR4;ξ.∂xU(x)=0}. (3.2)

The heuristics follows by inserting the characteristics in the trace-free part of the symbol
to obtain the system of ordinary differential equations:

ihψ′(s)=B(ξ(s))ψ(s).

After conjugation with the matrix R defined in (2.23) and using equation (2.22), one ar-
rives at the following new system:

ihψ′(s)=A(ξ(s))ψ(s).

Assume the particles defined by the trajectory ((2.12)) are near a point (x∗,ξ∗)∈S (due to
translation invariance we assume particles are at (x∗,ξ∗) initially), then the Taylor expan-
sion gives:

x(s)= x∗± ξ∗

|ξ∗| s+O(s2),

ξ(s)= ξ∗−∂xU(x∗)s+O(s2).

Ignoring the O(s2) terms, the system becomes:

ihψ′(s)=
(

ξ∗1−∂x1
U(x∗)s ξ∗2−∂x2U(x∗)s

ξ∗2−∂x2U(x∗)s −ξ∗1+∂x1
U(x∗)s

)
ψ(s).

After conjugation with the rotation matrix:

(
cosθ sinθ
−sinθ cosθ

)
,

where θ is the angle such that

(cos2θ,sin2θ)=
∂xU(x∗)
|∂xU(x∗)| ,

we get:

i
h

|∂xU(x∗)|ψ
′(s)=

(
−s

ξ∗∧∂xU(x∗)
|∂xU(x∗)|2

ξ∗∧∂xU(x∗)
|∂xU(x∗)|2 s

)
ψ(s),

where ξ∧ζ= ξ2ζ1−ξ1ζ2 for ξ,ζ∈ IR2. After conjugation with the matrix

(
0 1
1 0

)
,
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it follows:

i
h

|∂xU(x∗)|ψ
′(s)=

(
s

ξ∗∧∂xU(x∗)
|∂xU(x∗)|2

ξ∗∧∂xU(x∗)
|∂xU(x∗)|2 −s

)
ψ(s).

If we set ε= h
|∂xU(x∗)| and η= ξ∗∧∂xU(x∗)

|∂xU(x∗)|2 , the system becomes:

iεψ′(s)=
(

s η
η −s

)
ψ(s),

which is the well known Landau-Zener problem (see [40]) for which the transition prob-
ability is:

T= e−
π
ε η2

.

This allows us to propose the following non-adiabatic transition rate at the point (x∗,ξ∗):

T(x∗,ξ∗)= e
− π

h
(ξ∗∧∂xU(x∗))2

|∂xU(x∗)|3 . (3.3)

3.3 About the rigorous justification of the Landau-Zener formula

As already noticed in Section 2, the symbol P0 involved in the Dirac equation (2.10) satis-
fies the identity

P1(x,ξ)=RP0(x,ξ)R∗,

where P1 and R are given respectively by (2.20) and (2.23). Therefore, if uh denotes the
solution to (2.10), the function vh =Ruh satisfies the equation:

ih∂tv
h =P1(x,hD)vh, (3.4)

where P1(x,hD) is defined as in (2.11). The Landau-Zener formula was obtained rigor-
ously in [10] for the two-scale Wigner measure ν̃ of the function vh (see [10], [25] for the
definition of two-scale Wigner measures). This result is shown under precise assump-
tions, gathered in Assumption 1.2 of [11], on the initial data vh|t=0, its Wigner trans-
form and the potential U(x). It provides a rigorous proof of our Landau-Zener formula.
Indeed, if νI denotes the two-scale Wigner measure of uh, it follows that the two-scale
Wigner measure of vh is ν̃ = RνI R∗. Then, the Landau-Zener formula for νI can be de-
duced from the Landau-Zener formula for ν̃.

Remark 3.1. The Landau-Zener formula obtained in [10] writes

T= e
− πη2

|∂xU(x)| ,

where

η=δξ∧ ∂xU

|∂xU| .

When the direction δξ is equal to ξ√
h
, this corresponds to the Landau-Zener formula (3.3)

that we obtained heuristically in Section 3.2.
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4 A surface hopping algorithm

We give here a semiclassical Lagrangian algorithm for the evolution of the diagonal terms
of the Wigner matrix Wh(t,x,ξ) of the solution uh(t) to (2.10). The algorithm is adopted
from the method proposed in [24] for time-dependent two-level Schrödinger systems
with conically intersecting eigenvalues.

Define the level populations:

Ph
±(t)= ||Π±(hD)uh(t)||2H, (4.1)

where for u∈H, Π±(hD)u is the function defined via its Fourier transform Π±(hξ)û(ξ)
and û=Fu is given by:

Fu(ξ)=
1

2π

∫

IR2
u(x)e−ix.ξdx

(it is clear from (2.15) that Π±(hD)u=Π±(D)u). With similar computations as in [24], we
obtain:

Ph
±(t)=

∫

IR2
x

∫

IR2
ξ

wh
±(t,x,ξ)dxdξ , (4.2)

where
wh
±(t,x,ξ)= tr

(
Π±(ξ)W

h(t,x,ξ)
)

. (4.3)

As it appears from the following equation

Π±WhΠ±=wh
±Π± ,

which is obtained in a similar way as (2.25), wh
± are the diagonal terms of the Wigner

matrix Wh. Up to a small remainder, the function wh
± can be written in terms of the scalar

Wigner transform of the level projections of the solution uh(t). Indeed, using Lemma 2.3
in [13], it holds for all t∈ IR:

wh
±(t)=wh

[
uh
±(t)

]
+o(1) (4.4)

in D′
(

IR2
x×(IR2

ξ\{ξ=0})
)

when h→0, where uh
±(t) is the function with Fourier trans-

form given by
ûh
±(t,ξ)=Π±(hξ)ûh(t,ξ)1ξ 6=0,

and ûh(t) is the Fourier transform of uh(t). Comparing the relations (4.3) and (2.24), it
follows that, in the situation of Section 2 without band-crossing, the partial differential
equation in (2.14) satisfied by w0

± can be used to approximate the time evolution of wh
±.

In the case of band crossing, the idea is to use (2.14) for the time evolution of wh
± as long

as the classical trajectories solution to (2.12) are away from the hopping surface S defined
by (3.2). When a trajectory reaches a point (x∗,ξ∗)∈S a non-adiabatic transfer of weight
occurs between wh

+ and wh
− with transition probability T(x∗,ξ∗) given by (3.3).
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The algorithm

1. Initial sampling: in this step, an appropriate sampling of the function wh
I,± defined

in (4.8) is chosen. Specifically, a set of sampling points

{
(xk,ξk, jk)∈ IR2

x× IR2
ξ×{−,+}; k=1,··· ,N

}

are chosen with associated weights wk∈ IR given by:

wk =wh
I,jk

(xk,ξk).

2. Hopping transport: away from the set S, each particle (xk,ξk, jk) is transported by

the associated classical flow φ
jk
t solution to (2.12). In other words, for t ≥ 0 small

enough:

(xk(t),ξk(t))=φ
jk
t (xk(0),ξk(0)), wk(t)=wk(0). (4.5)

If there exists t∗ > 0 such that (xk(t
∗),ξk(t

∗)) =: (x∗k ,ξ∗k )∈ S, the weight is reduced
using the transition rate

T∗=T(x∗k ,ξ∗k ) ,

where T(x,ξ) is given by (3.3). Moreover, in order to describe completely the non-
adiabatic transfer, a new particle with index l>N is created. Specifically, for t> t∗

(xk(t),ξk(t))=φ
jk
t (xk(0),ξk(0)), wk(t)=(1−T∗)wk(t

∗)

and the new particle is created for t> t∗

(xl(t),ξl(t))=φ
jl
t−t∗(x∗k ,ξ∗k ), jl =−jk, wl(t)=T∗wk(t

∗).

3. Final reconstruction: at the final time t f >0, there are M≥N points

{
(xk,ξk, jk)∈ IR2

x× IR2
ξ×{−,+}; k=1,··· ,M

}

with associated weights wk which are approximations to wh
jk
(t f ,xk,ξk). Then, us-

ing Eq. (4.2), the surface hopping approximations Ph
sh,±(t f ) of the level populations

Ph
±(t f ) are given by:

Ph
sh,±(t f )=

M

∑
k=1

wkδ±jk ωk, (4.6)

where δi
j is the Kronecker symbol related to i and j, and ωk is an appropriate quadra-

ture weight.
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Remark 4.1. We note that this surface hopping algorithm is subject to some restrictions.
First only the dynamics of the diagonal components of the Wigner matrix away from the
crossing set are well approximated. Second, there are possible interferences which are
not captured if no particular treatment is performed. Indeed, if wh

+(t,x,ξ) and wh
−(t,x,ξ)

arrive at the same time at some point (x,ξ) close to the crossing set then a transfer of
weight using only the Landau-Zener formula (3.3) might give an incorrect approximation
of the dynamics. To avoid these interferences, we make the assumption that the initial
data uh

I in (2.10) satisfies

Π−(hξ)ûh
I (ξ)=0, (4.7)

where ûh
I is the Fourier transform of uh

I . Then, it follows from (4.4) that the diagonal terms
of the initial Wigner matrix

wh
I,±(x,ξ)= tr

(
Π±(ξ)Wh

[
uh

I

]
(x,ξ)

)
(4.8)

satisfy in D′
(

IR2
x×(IR2

ξ\{ξ=0})
)

wh
I,+=wh

[
uh

I

]
+o(1), wh

I,−= o(1) (4.9)

when h→0. Therefore, for the potential U(x)=αx1 given in Section 2.2.2, the condition
(4.7) insures that no interferences occur. Indeed, if wh

+(t,x,ξ) reaches the crossing set
{ξ = 0} at some time t∗> 0, the particle corresponding to wh

−(t,x,ξ) immediately moves
away as it appears from the equation

ξ±(t)=−α(t−t∗,0) (4.10)

for the momentum part of the characteristics solution to (2.12). Similarly, in the case
where the potential has no stationary points, i.e. ∂xU(x) 6=0, ∀x∈IR2, Eq. (4.10) is replaced
by

ξ±(t)=−
∫ t

t∗
∂xU

(
x±(s)

)
ds,

and the condition (4.7) insures that no interferences occur as long as |t−t∗| is small
enough.

Remark 4.2. To deal with this interference, a possible solution might be to use a hy-
brid method for the Dirac equation (2.10). Such a method was introduced in [22] for the
Schrödinger equation and mixes a Gaussian beam method or a Liouville equation in the
region where no-interferences occur and a complete quantum solver in the region where
the phase information of the wave function is required. In our case, the second region cor-
responds to the hopping region. Since the region which involves the quantum solver can
be chosen very small, a hybrid method allows an adapted treatment of the interferences
without increasing dramatically the numerical cost even if the semiclassical parameter
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tends to 0. In addition, the resulting algorithm is supposed to work regardless of the con-
ditions in Remark 4.1 on the potential and the initial data. Another possible solution is
to keep the off-diagonal entries, which contain information about the non-adiabatic tran-
sition in the Wigner transform, and then derive the semiclassical models for the entire
Wigner matrix, see [6, 30]. In the next section, we study such a model.

5 Transition rate of an asymptotic model derived in [30]

As it was mentioned, the surface hopping method breaks down where there are interfer-
ences. A possible remedy for this is to derive improved models using the Wigner trans-
form for the entire Wigner matrix, in which the off-diagonal entries contain non-adiabatic
transition information [6, 30]. In this section, we study such a model obtained in [30],
and compare the Landau-Zener transition rate of this model with the one we derived in
Section 3. To serve our purpose we will only consider the model for the potential studied
in Section 2.2.2, U=αx1, α∈ IR\{0}, for which the Wigner matrix does not depend on the
variable x2. It was shown in [30] how this asymptotic model can describe non-adiabatic
transfer as a quantum correction of the decoupled system (2.19).

When the Wigner matrix does not depend on the variable x2, the system (2.19) reads

{
∂tw

0
±± ξ1

|ξ|∂x1
w0
±−α∂ξ1

w0
±=0, IRt×{ξ2 6=0},

w0
±(0,·,·)= tr

(
Π±W0

I

)
, {ξ2 6=0}; w0

±(t,x,(ξ1,0))=0, t∈ IR, x∈ IR2, ξ1 ∈ IR.
(5.1)

By taking into account the scaling (2.4)(2.5), the asymptotic model in [30] is the following
correction of (5.1):





∂tw±± ξ1

|ξ|∂x1
w±−α∂ξ1

w±=±α ξ2

|ξ|2 Im
(

ξ1+iξ2

|ξ| wi

)
, IRt×{ξ2 6=0},

∂twi−iΛ(ξ)wi−α∂ξ1
wi=−i α

2
ξ2(ξ1−iξ2)

|ξ|3 (w+−w−),
(5.2)

where

Λ(ξ)=−2|ξ|
h

− αξ2

|ξ|2 .

In the limit h → 0, the function wi(t,x,ξ) approximates the off-diagonal terms of the
Wigner matrix of the solution uh to (2.10). As it appears from the last equation in (5.2),
the function wi depends on w+ and w−. As a consequence, wi provides a coupling term
at the r.h.s. of the first two equations in (5.2).

Using the method of characteristics, wi can be expressed as an explicit function of the
difference w+−w−. Inserting this solution in the first two equations in (5.2), the following
approximate equations for w±, in the limit h→0, are obtained in [30]:

∂tw±±
ξ1

|ξ| ∂x1
w±−α∂ξ1

w±=∓τ(ξ)(w+−w−), IRt× IRx1
× IRξ1

, (5.3)
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where ξ2 6=0 can be considered as a small parameter. In the domain
{

ξ∈ IR2 such that 0< |ξ2|≤
√

αh and |ξ1|≤
αh

|ξ2|

}
,

the coefficient τ(ξ) is given by:

τ(ξ)=
α

2

ξ2

|ξ|2
(

π

2
sgn(αξ2)−arctan

ξ1

ξ2

)
, (5.4)

where sgn(x) denotes the sign of x. As it will be the case in Section 6.2 for our surface
hopping algorithm, the set {ξ1 =0} is the important region for the hopping. Indeed, the
following lemma (proof left to the reader) shows that the set {ξ1=0} plays the role of an
interface where, in the limit ξ2→0, the solution to (5.3) will have a discontinuity.

Lemma 5.1. The function ξ1 7→τ(ξ1,ξ2) tends in D′(IR) to |α|βδξ1=0 when ξ2→0, where

β=
π2

4
. (5.5)

In the case α > 0, we show below that non-adiabatic transfer is possible using the
model (5.3) and give the corresponding transmission matrix at the interface. Define ω±
as the set:

ω±=(IRt× IRx1
× IRξ1

)∩{±ξ1 >0}
and consider an initial condition in the upper band and localized at the right of the inter-
face. In other words, the initial conditions for (5.3) are

w±(0,·,·)=wI,±,

where wI,−=0 and wI,+ is a function in C∞
0 (IRx1

× IRξ1
) which is independent of ξ2 and

has support in ω+. To perform the limit ξ2 → 0, the following assumptions are required
on the solution to (5.3):

A1. For all ξ2 6=0, w±∈C2(IRt× IRx1
× IRξ1

).

A2. There is a constant C which does not depend on ξ2 such that:

|∂x1
w±(t,x1,ξ1)|≤C, ∀(t,x1,ξ1)∈ω+∪ω− .

A3. There is a function w0
± which is continuous on ω+ and ω− such that w± tends to

w0
± when ξ2→0 uniformly on the compact subsets of ω+ and ω−.

A4. For all t∗>0 and x∗1 ∈ IR, the limit

lim
(t,x1,ξ1)→(t∗,x∗1 ,0)

(t,x1,ξ1)∈ω+

w0
±(t,x1,ξ1) (resp. lim

(t,x1,ξ1)→(t∗,x∗1 ,0)
(t,x1,ξ1)∈ω−

w0
±(t,x1,ξ1))

exists and is denoted wr
±(t

∗,x∗1) (resp. wl
±(t

∗,x∗1)).
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The characteristics related to (5.3) are the classical trajectories ϕ±
t (xI ,ξ I)= (x±1 (t),ξ

±
1 (t))

solution to: 



d
dt x±1 (t)=± ξ±1 (t)√

ξ±1 (t)2+ξ2
2

, x±1 (0)= xI ,

d
dt ξ±1 (t)=−α, ξ±1 (0)= ξ I .

(5.6)

Due to the localization of the support of the initial data wI,+, only positive initial mo-
menta ξ I >0 have to be considered in (5.6). Therefore, the classical trajectories will reach

the interface {ξ1 = 0} at the time t∗ = ξ I

α . Moreover, due to the condition wI,− = 0, the
behavior at the interface is described by the characteristics corresponding to the upper
band only. To be more precise, by differentiating the map s 7→w±(s,x+1 (s),ξ

+
1 (s)), one gets

by using (5.3):

d

ds

(
w+(s,x+1 (s),ξ

+
1 (s))

w−(s,x+1 (s),ξ
+
1 (s))

)
=−τ(ξ+(s))M

(
w+(s,x+1 (s),ξ

+
1 (s))

w−(s,x+1 (s),ξ
+
1 (s))

)
+F(s), (5.7)

where

ξ±(s)=(ξ±1 (s),ξ2), M=

(
1 −1
−1 1

)
and F(s)=

2ξ+1 (s)

|ξ+(s)|

(
0

∂x1
w−(s,x+1 (s),ξ

+
1 (s))

)
.

Applying the Duhamel formula to (5.7), it follows:

(
w+(t,x

+
1 (t),ξ

+
1 (t))

w−(t,x+1 (t),ξ
+
1 (t))

)
= e−

∫ t
0 τ(ξ+(s))dsM

(
wI,+(xI ,ξ I)
wI,−(xI ,ξ I)

)
+
∫ t

0
e−
∫ t

s τ(ξ+(µ))dµMF(s)ds.

(5.8)
Using (5.4), a direct computation shows that there is a constant C which does not depend
on ξ2 such that:

∀s, t∈ IR,
∣∣∣
∫ t

s
τ(ξ±(µ))dµ

∣∣∣≤C . (5.9)

Moreover it holds

lim
ξ2→0

∫ t

0
τ(ξ±(s))ds=

{
0 if 0< t< t∗ ,
β if t> t∗.

(5.10)

In addition, since the lower band is not occupied initially and most of the band-to-band
transfer occurs at the time t∗, it holds:

∀0< t< t∗, lim
ξ2→0

∂x1
w−(t,x+1 (t),ξ

+
1 (t))=0. (5.11)

In order to simplify the presentation, the proof of (5.11) is postponed until the end of
the present discussion. Consider first the case t< t∗ in (5.8). Using assumption A2 and
Eqs. (5.9) and (5.11), the dominated convergence theorem can be applied to the second
term at the r.h.s. of Eq. (5.8), which leads to:

∫ t

0
e−
∫ t

s τ(ξ+(µ))dµMF(s)ds −→
ξ2→0

0. (5.12)
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Combining assumption A3 with Eqs. (5.10) and (5.12), one can take the limit ξ2 → 0 in
(5.8) and obtain: (

w0
+(t,xI+t,ξ I−αt)

w0
−(t,xI+t,ξ I−αt)

)
=

(
wI,+(xI ,ξ I)
wI,−(xI ,ξ I)

)
. (5.13)

To obtain (5.13), we have used the limit below:

lim
ξ2→0

(x+1 (t),ξ
+
1 (t))=

{
(xI+t,ξ I−αt) if 0< t< t∗ ,
(xI+2t∗−t,ξ I−αt) if t> t∗,

which follows from the explicit formula of the classical trajectories solution to (5.6). Then,
by passing to the limit t→ t∗ in (5.13), it follows from assumption A4:

(
wr
+(t

∗,x∗1)
wr
−(t

∗,x∗1)

)
=

(
wI,+(xI ,ξ I)
wI,−(xI ,ξ I)

)
, (5.14)

where x∗1 =xI+t∗. The case t> t∗ follows the same line with the difference that (5.12) has
to be replaced by:

∫ t

0
e−
∫ t

s τ(ξ+(µ))dµMF(s)ds=
∫ t∗

0
e−
∫ t

s τ(ξ+(µ))dµMF(s)ds+
∫ t

t∗
e−
∫ t

s τ(ξ+(µ))dµMF(s)ds. (5.15)

The arguments used to deduce (5.12) can be applied here to show that the first integral
at the r.h.s of Eq. (5.15) tends to 0 when ξ2 → 0. Moreover, using assumption A2 and
Eq. (5.9), the second integral at the r.h.s of Eq. (5.15) is bounded by the quantity C(t−t∗),
which tends to 0 when t→ t∗ (here C is a constant which does not depend on ξ2). Then,
by taking successively the limit ξ2→0 and t→ t∗ in (5.8), we obtain:

(
wl
+(t

∗,x∗1)
wl
−(t

∗,x∗1)

)
= e−βM

(
wI,+(xI ,ξ I)
wI,−(xI ,ξ I)

)
. (5.16)

Putting together (5.14) and (5.16), we get
(

wl
+(t

∗,x∗1)
wl
−(t

∗,x∗1)

)
=

(
1−T T

T 1−T

)(
wr
+(t

∗,x∗1)
wr
−(t

∗,x∗1)

)
, (5.17)

where the transition probability T is given by:

T=
1−e−2β

2
, (5.18)

and the constant β is defined in (5.5). The system (5.17) has the form of the solution of the
well known Landau-Zener problem (see [40]). Since xI and ξ I >0 are arbitrary, Eq. (5.17)
is true for any t∗>0 and x∗1 ∈ IR.

We can now give the proof of (5.11). Differentiating (5.3) with respect to x1 gives the
following PDE for ∂x1

w−:

∂t (∂x1
w−)−

ξ1

|ξ| ∂x1 (∂x1
w−)−α∂ξ1

(∂x1
w−)=τ(ξ)(∂x1

w+−(∂x1
w−)). (5.19)
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Consider ϕ−
s (x̃I ,ξ I)= (x−1 (s),ξ

−
1 (s)), the lower band classical trajectory solution to (5.6)

with an initial condition (x̃I ,ξ I) such that ϕ−
t (x̃I ,ξ I)= ϕ+

t (xI ,ξ I). Then it holds

∂x1
w−(t,x

−
1 (t),ξ

−
1 (t))=∂x1

w−(t,x
+
1 (t),ξ

+
1 (t)),

and it is enough to show that ∂x1
w−(t,x−1 (t),ξ

−
1 (t)) tends to 0 when ξ2 tends to 0. Now, if

one differentiates the map s 7→∂x1
w−(s,x−1 (s),ξ

−
1 (s)), one gets using (5.19):

d

ds

(
∂x1

w−(s,x−1 (s),ξ
−
1 (s))

)
=τ(ξ−(s))

(
∂x1

w+(s,x−1 (s),ξ
−
1 (s))−∂x1

w−(s,x−1 (s),ξ
−
1 (s))

)
.

By integrating the previous equation with the Duhamel formula, it follows:

∂x1
w−(t,x−1 (t),ξ

−
1 (t))=

∫ t

0
e−
∫ t

s τ(ξ−(µ))dµτ(ξ−(s))∂x1
w+(s,x−1 (s),ξ

−
1 (s))ds, (5.20)

where we have used that wI,− = 0. Using assumption A2, together with Eqs. (5.9) and
(5.10), we can conclude that ∀0< t< t∗, the integral at the r.h.s. of (5.20) tends to 0 when
ξ2→0.

Remark 5.1. Although the system (5.17) has the correct form, the formula (5.18) for the
transition probability is different from the Landau-Zener transition probability (3.3) ob-
tained in Section 3.2 and which writes for our particular potential:

T= e
− πξ2

2
h|α| . (5.21)

It will be verified numerically in Section 6.4 that the band transmission corresponding to
the effective model (5.3) is given by (5.18) whereas the band transmission corresponding
to the model (5.2) is given by the correct transition probability (5.21). Therefore, the main
finding of the present section is that (5.3) does not agree with the results of the surface
hopping algorithm. On the other hand, the results of the surface hopping algorithm agree
with those of the original Dirac equation.

Remark 5.2. If the coefficient τ is replaced by 1
ξ2

, (5.3) becomes a hyperbolic relaxation

system (see [19,33]) and the solution to (5.3) satisfies w+=w− when ξ2→0. Since
∫

w++∫
w−=1 this leads to: ∫

w+=
∫

w−=
1

2
. (5.22)

We will observe numerically in Fig. 11 that (5.22) is true when the time is big enough.

6 Numerical results

In this section, the results provided by the surface hopping algorithm are compared with
the reference level populations given by (4.1) where the solution uh(t) is computed nu-
merically using an accurate method to solve the Dirac equation (2.10). In particular, it
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is verified numerically in Section 6.1 that the spectral method is more accurate than the
finite difference method. The image of the operator Π±(hD) is computed by using dis-
crete Fourier transform (DFT) and Fourier multiplication. A comparison of the surface
hopping algorithm with the models (5.2) and (5.3) is given in Section 6.4.

6.1 Setup and quantum level simulations

We suppose that the initial data uh
I is such that its Fourier transform ûh

I satisfies the rela-
tion:

ûh
I (ξ)= f̂ h(ξ)χ+(hξ), (6.1)

where χ+(ξ) is defined in (2.9) and f̂ h(ξ) is the Fourier transform of some function f h ∈
L2(IR2). Such an initial data satisfies the non-interference condition (4.7). We remark
that, like for the level population (4.1), χ+(hξ) can be replaced by χ+(ξ) in (6.1).

If f h is bounded in L2(IR2), using Lemma 2.3 in [13] again, we obtain the following
approximation for the scalar Wigner transform of uh

I :

wh
[
uh

I

]
=Wh

[
f h
]
+o(1) (6.2)

in D′(IR2
x×(IR2

ξ\{ξ =0})
)

when h→0, where Wh
[

f h
]
=wh( f h, f h). By plugging (6.2) in

(4.9), we obtain the following asymptotics for the initial value of the diagonal terms of
the Wigner matrix:

wh
I,+=Wh

[
f h
]
+o(1), wh

I,−= o(1) (6.3)

in D′(IR2
x×(IR2

ξ\{ξ = 0})
)

when h → 0. In the present section, the initial upper level
function is an h-scaled Gaussian wave packet:

f h(x)=(πh)−
1
2 e−

|x−xh
0 |

2

2h +i
ξ0.(x−xh

0)

h

with center xh
0 ∈ IR2, momentum ξ0 ∈ IR2 and norm ‖ f h‖L2(IR2)= 1. Its h-scaled Fourier

transform and its Wigner transform can be computed explicitly. Indeed,

F h f h(ξ)=(πh)−
1
2 e−

|ξ−ξ0|2
2h −i

xh
0.ξ

h ,

where ∀u∈L2(IR2),F hu(ξ)=h−1Fu(h−1ξ). Moreover,

Wh
[

f h
]
(x,ξ)=(πh)−2e−

|x−xh
0 |

2

h − |ξ−ξ0|2
h .

In this section, the parameter h is equal to its physical value given by (2.7). The effective
mass of the electron is given by

m=0.067me,

where me is the mass of the electron, the Fermi velocity is taken as vF = 106 m.s−1 and,
having in mind the simulation of devices of size equal to hundreds of nanometers as
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in [16, 30], we will take the reference length equal to L = 500nm. Then, the numerical
value of the parameter h corresponding to formula (2.7) is:

h=3.4557×10−3 ,

which is small enough for the problem to be considered in the semiclassical regime. The
simulation domain Ω is equal to

Ω=[−10
√

h,10
√

h]×[−5
√

h,5
√

h].

In the next section, we solve the Dirac equation (2.10) for different choice of the potential
U by using the time-splitting spectral method (TSSM) presented in Appendix A.

6.1.1 The Klein tunneling

The potential is equal to U=v01x1≥0 which corresponds to a Klein step. For this potential,
we compare the TSSM and the Finite difference time domain method (FDTD) in [16]. The
center and the momentum of the initial Gaussian wave packet f h are chosen as

xh
0 =(−5

√
h,0), ξ0=

1

2
(1,0).

The height of the Klein step and the simulation time are respectively

v0=2|ξ0| and t f =13
√

h.

For the TSSM, the number of grid points is given by

N1=256, N2=128

and for the FDTD by
N1=1024, N2=512.

For the two methods, the number of time steps is fixed as 104. For h=1, the convergence
of the TSSM is spectral in the space variable and of order 2 in the time variable. The FDTD
is of order 2 in both the space and time variables. The space and time discretizations are
chosen such that the TSSM method has converged according to Section B. The accuracy
of the FDTD is discussed below. We remark anyway that the discretization verifies the
stability condition of the FDTD, see [16]:

∆t≤ ∆x1√
2

,

where ∆x1 and ∆x2 are the mesh sizes in the x1 and x2 directions respectively.
In the present section and in the following section, the superscript h will be omitted

for the solution uh(t,x) to (2.10) and for the initial condition uh
I (x). Using the discrete

Fourier transform (DFT) (A.5), resp. its inverse, to approximate the Fourier transform,
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resp. the inverse Fourier transform, we get the following approximation of the projectors
Π±(hD)u(tn,xj):

Π±(hD)un
j =

1

N1N2
∑

k∈K
Π±(hξk)(̂un)keiξk .(xj−a), j∈J , (6.4)

where (̂un)k is the Fourier coefficient defined in (A.5) and the discretization is the same
as in Appendix A. Then, using formula (4.1), the approximation Ph

dir,±(t
n) of the level

populations Ph
±(t

n) of the Dirac equation is given by:

Ph
dir,±(t

n)=‖Π±(hD)un‖2
2 , (6.5)

where Π±(hD)un
j is defined by (6.4) and for u=(uj)j∈J , uj∈C2, we have

‖u‖2
2= ∑

j∈J
|uj|2∆x1∆x2 . (6.6)

Similarly, the initial condition uI(xj) defined by (6.1) is approximated by the formula:

(uI)j =
2π

(b1−a1)(b2−a2)
∑

k∈K
f̂ h(ξk)χ+(hξk)e

iξk .xj , j∈J .

We remark that in the previous formula, we used the exact value of the Fourier trans-

form f̂ h(ξk) instead of the DFT (̂ f h)k. The initial data for the TSSM with the parameters
described above is represented in Fig. 1. In Fig. 2, we depict the evolution with respect
to the time tn of the level populations Ph

dir,±(t
n) provided by the TSSM and by the FDTD.

The curve with title Upper level, resp. Lower level, refers to the plus sign, resp. minus

sign, in (6.5) and the curve with title Total refers to the total population ‖un‖2
2. Initially,

the charge is carried completely by the upper level, then non-adiabatic transfer occurs
at time t=0.28 and the charge is almost all transferred to the lower level. Moreover, we
remark that the TSSM is more accurate than the FDTD. Indeed, the TSSM total popula-
tion at final time is equal to 1 up to an error smaller than 10−10 whereas the FDTD total
population at final time is equal to 0.9947. This can be explained by the fact that the
first method conserves the total mass (A.8) whereas for the second method the total mass
decreases at the hopping time (it was shown in [16] that the quantity conserved by the
FDTD is not the mass but a related functional). To reduce this mass loss, the number of
spatial points has to be chosen big enough which increases the CPU time of the method.
In particular, the CPU times corresponding to the simulations of Fig. 2 are the following:
11644.224s for the FDTD, 441.612s for the TSSM.

We remark in Fig. 3 that the transition occurs when the charge reaches the Klein step
which is a classically forbidden region for the Upper level. The band transition to the
Lower level makes the Klein step an allowed region for the particles, which can tunnel in
the region x1≥0 with a probability almost equal to 1. This is the Klein paradox, see [37].
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Figure 1: Initial condition for the TSSM: |uI(x)|2 (top) and, in a smaller region, Re((uI)2(x)) (bottom).
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Figure 3: For different times and with respect to the space variable: representation of the position density of
the projection of the wave function u solution to (2.10) where U=v01x1≥0 and the initial condition is given by

(6.1). The upper half corresponds to |Π+(hD)un
j |2 and the lower half to |Π−(hD)un

j |2 where the projectors

are computed using (6.4). The solution u is computed with the TSSM.

6.1.2 Case U=αx1, α>0

In this section, the potential is given by U=αx1, α>0. The Dirac equation (2.10) is solved
using the TSSM. The center and the momentum of the initial Gaussian wave packet f h

are taken to be
xh

0 =(−5
√

h,0), ξ0=(1,0).

The level position density of the solution uh(t,x) to (2.10) is supported around (x±(t),ξ±(t)),
solution to: {

d
dt x±(t)=± ξ±(t)

|ξ±(t)| , x±(0)= xh
0 ,

d
dt ξ±(t)=−α(1,0) , ξ±(0)= ξ0.

The solution of the above problem can be computed explicitly. It is given by:

x±(t)= x∗∓(|t−t∗|,0) , ξ±(t)= ξ0−α(t,0) , (6.7)

where t∗= (ξ0)1

α is the time such that ξ+(t∗)=0 and the non-adiabatic transfer occurs. The

point x∗= x+(t∗)= xh
0+(t∗,0) is the point where the hopping occurs. The coefficient α is

chosen such that the potential at the hopping point is equal to U(x∗)=v0 where v0=
|ξ0 |

4 .
This leads to:

α=
v0−(ξ0)1

(xh
0)1

.

The simulation stops at time:

t f =13
√

h
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Figure 4: Time evolution of the level populations for the potential U=αx1, α>0.

and the number of space points is given by

N1=256, N2=128.

The number of time steps is equal to 104. The initial data (uI)j, the Lower level and

Upper level populations Ph
dir,±(t

n) and the Total population are computed as explained
in Section 6.1.1. The time evolution of the level populations is represented in Fig. 4.
The numerical hopping is observed around the time t = 0.39 which is accurate enough
compared to the predicted value t∗ = 0.3919 given by (6.7). Contrary to the case of the
Klein step potential, a significant part of the charge stays on the upper level.

The predicted value of the position corresponding to the hopping is x∗ = (9.7976×
10−2,0). We remark in Fig. 5 that the transition occurs when the charge reaches x∗. As
for the Klein step potential, the band transition to the lower level allows the particles to
tunnel in the region x1 ≥ x∗1 . However, for the potential considered here, we can observe
that the part remaining on the upper level is reflected. This could have been predicted
from Eq. (6.7). Indeed, for t≥ t∗, the classical flow corresponding to the upper level (plus
sign) moves to the left with respect to x∗ whereas the classical flow corresponding to the
lower level (minus sign) moves to the right with respect to x∗.

6.2 The surface hopping algorithm

In the present section, the potential U is equal to U=αx1 where α=15. The initial condi-
tion is as described in Section 6.1. The center and the momentum of the initial Gaussian
wave packet f h are taken as

xh
0 =(−5

√
h,0), ξ0=(1,0). (6.8)
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Figure 5: For different times and with respect to the space variable: representation of the position density of
the projection of the wave function u solution to (2.10) where U = αx1 and the initial condition is given by
(6.1). The upper half corresponds to |Π+(hD)un

j |2 and the lower half to |Π−(hD)un
j |2 where the projectors

are computed using (6.4). The solution u is computed with the TSSM.

The diagonal terms wh
±(t,x,ξ) of the Wigner matrix defined by (4.3) are computed using

the surface hopping algorithm presented in Section 4. Then, for different values of the pa-
rameter h and of the simulation time t f , the surface hopping level populations Ph

sh,±(t f )

are computed from wh
±(t f ,·,·) by using (4.6). The results provided by the surface hop-

ping algorithm are compared to the level populations Ph
dir,±(t f ) of the Dirac equation

computed as explained in Section 6.1.1.

For the level populations Ph
dir,±(t f ), the Dirac equation (2.10) is solved using the TSSM

in the simulation domain

Ω=[−11
√

h,11
√

h]×[−5
√

h,5
√

h].

Using Eq. (A.8), we can choose a time step size which does not depend on h. In all the
tests, the number of time steps is fixed as 104. The number of space points is given by:

N1=256, N2=128,

except for h=10−4 where

N1=1024, N2=512.

We verified in Appendix B that, for such a discretization and for all the values of h consid-
ered in the present section, the TSSM is accurate enough for the validation of the surface
hopping algorithm.
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For the level populations Ph
sh,±(t f ), the initial sampling is chosen as follows. We con-

sider a uniform J× J discretization of the domain of the x variable:

[a1,b1]×[a2,b2],

where (a1,a2)=xh
0−5

√
h and (b1,b2)=xh

0+5
√

h and a uniform K×K discretization of the
ξ variable domain

[c1,d1]×[c2,d2],

where (c1,c2)=ξ0−5
√

h and (d1,d2)=ξ0+5
√

h. The grid points xj, j=1,··· , J2 and ξk, k=
1,··· ,K2 are ordered such that

| f h(x1)|2≥···≥ | f h(xJ2)|2 ,

|F h f h(ξ1)|2≥···≥ |F h f h(ξK2)|2 .

Then, we determine the minimal numbers Nx of points of the x variable and Nξ of the ξ
variable such that

Nx

∑
j=1

| f h(xj)|2∆x2 ≥1−tolx,
Nξ

∑
k=1

|F h f h(ξk)|2∆ξ2 ≥1−tolξ ,

where ∆x= b1−a1
J = b2−a2

J , ∆ξ= d1−c1
K = d2−c2

K and tolx, tolξ are well chosen tolerances. The

phase space points (xj,ξk), j=1,··· ,Nx, k=1,··· ,Nξ are ordered such that:

Wh
[

f h
]
(x1,ξ1)≥···≥Wh

[
f h
]
(xNx Nξ

,ξNx Nξ
),

and we determine the minimal integer N such that:

N

∑
k=1

Wh
[

f h
]
(xk,ξk)∆x2∆ξ2 ≥1−tol,

where tol is a well chosen tolerance. This gives the first step of the algorithm of Section
4. Indeed, the initial sampling is the set:

{
(xk,ξk,+)∈ IR2

x× IR2
ξ×{−,+}; k=1,··· ,N

}
,

where, using Eq. (6.3), the associated weights wk∈ IR can be approximated by:

wk =Wh
[

f h
]
(xk,ξk).

In the present case, the hopping surface S defined by (3.2) is equal to:

S=
{
(x,ξ)∈ IR4; ξ1 =0

}
,
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and the second order derivative of the function s 7→|ξ±(s)|2, defined by the characteristics
solution to (2.12), is equal to: (

|ξ±(s)|2
)′′

=2α2
>0.

Therefore, for the potential considered here, the points of extremal gap are all minimas.
Moreover, the classical flow (x±(t),ξ±(t)) solution to (2.12) is given by

x±(t)= x±
∫ t

0

ξ±(s)
|ξ±(s)|ds, ξ±(t)= ξ−αt(1,0). (6.9)

In Eq. (6.9), the formula of the momentum is explicit and the hopping transport step

can be simplified. Indeed, for k = 1,··· ,N, if 0 <
(ξk)1

α < t f , the trajectory (xk(t),ξk(t)),

0< t< t f defined by (4.5) will pass through a point (x∗k ,ξ∗k )∈S at the time t∗= (ξk)1

α and
non-adiabatic transfer occurs. For such a k, the weight is changed such that for t> t∗

wk(t)=(1−T∗)wk(t
∗),

and a new particle is created on the lower band with index l > N. For the new particle,
the associated weight is such that for t> t∗

wl(t)=T∗wk(t
∗).

In the above equations, the transition rate T∗ is equal to

T∗=T(x∗k ,ξ∗k ),

where T(x,ξ) is given by (5.21). The surface hopping level populations defined by (4.6)
are then given by:

Ph
sh,+(t f )=

N

∑
k=1

wk(t f )∆x2∆ξ2 , Ph
sh,−(t f )=

M

∑
l=N+1

wl(t f )∆x2∆ξ2 .

For all the tests, the size of the sampling grids are equal to:

J=K=16.

The sampling tolerances are taken as:

tol=10−6, tolx = tolξ =10−3×tol.

For such parameters, the number of particles obtained numerically for the initial sam-
pling does not depend on h and is equal to N=6981.

For different values of the semiclassical parameter h, the level populations obtained
by the two methods are listed in Table 1. The simulation time is fixed as t f =0.13, except

for h=10−4 where t f =0.1. We remark that the reference lower level population Ph
dir,−(t f )



A. Faraj and S. Jin / Commun. Comput. Phys., 21 (2017), pp. 313-357 341

Table 1: At time t f and for different values of the semiclassical parameter h: level populations obtained by the
Dirac solver and the surface hopping method.

h Ph
dir,+(t f ) Ph

sh,+(t f ) Ph
dir,−(t f ) Ph

sh,−(t f ) CPU dir (s) CPU sh (s)

10−1 7.4804×10−2 9.0741×10−2 0.925196 0.909258 437.284 4.163

10−2 8.9815×10−2 9.0698×10−2 0.910185 0.909301 438.152 4.172

10−3 9.0700×10−2 9.0698×10−2 0.909300 0.909301 434.484 4.160

10−4 9.0698×10−2 9.0698×10−2 0.909301 0.909301 13046.8 4.144

increases when h increases. This is due to the fact that for larger values of h, the transition
process is slower and, at the time t f , the post-transition relaxation observed in Fig. 7, has

no yet happened. We notice that, for h smaller or equal to 10−2, the surface hopping
level populations Ph

sh,±(t f ) are almost constant with respect to h. This can be explained
by the fact that, for the potential considered, the transition rate depends only on the

variable ξ2/
√

h which does not depend on h when considered on the sampling points.
The column CPU dir, resp. CPU sh, denotes the CPU time required by the Dirac solver,
resp. the surface hopping method, to complete the simulations. For the surface hopping
algorithm, most of the CPU time corresponds to the choice of the initial sampling (the
time effectively spent by the processor on the surface hopping algorithm is smaller than
0.14s). We remark that the surface hopping CPU times (pre-processing and effective time)
are almost h-independent. It appears that the surface hopping method is very interesting.
Indeed, when h decreases, the numerical cost of the Dirac solver increases whereas the
surface hopping method provides very accurate results for a much smaller CPU time.

We depict in Fig. 6 the absolute error of the level population corresponding to the
upper level:

E h
+(t f ) := |Ph

dir,+(t f )−Ph
sh,+(t f )|, (6.10)

with respect to the semiclassical parameter h. The surface hopping level populations con-
verge numerically when h→0 to the level populations obtained at the quantum level. We
notice that the convergence order at h=10−4 can be improved by proceeding as proposed
in Remark B.1.

For h=10−3, the time evolution of the level populations provided by the Dirac solver
and the surface hopping algorithm are depicted in Fig. 7. The curve with title Upper
level dir, resp. Lower level dir, refers to Ph

dir,+(t), resp. Ph
dir,−(t). The same is true when

dir is replaced by sh. The total population of the Dirac equation, curve titled Total dir, is
obtained as explained in Section 6.1.1 and the surface hopping total population, curve ti-
tled Total sh, corresponds to Ph

sh,+(t)+Ph
sh,−(t). We observe that the numerically obtained

surface hopping total population is conserved. For a smaller CPU time, the time evo-
lution of the level populations provided by the surface hopping algorithm agrees well
with the one provided by the Dirac solver. Indeed, for the two methods, the charge
is initially carried completely by the upper level, then non-adiabatic transfer occurs at

time t= (ξ0)1

α = 1
15 = 0.0667 (time required by the classical flow to reach the crossing set
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Figure 6: At time t f , logarithmic plot of the absolute error (6.10) of the level population corresponding to the

upper level while varying the semiclassical parameter h=10−p, p=1,2,3,4.
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Figure 7: For h=10−3 and U=αx1, α=15: time evolution of the level populations provided by the Dirac solver
and the surface hopping algorithm.

{ξ=0} starting from the momentum ξ0 of the initial Gaussian wave packet) and the great
majority of the charge is transferred to the lower level. The CPU time required to com-
plete the simulation is 434.484s for the Dirac solver and 9.66400s for the surface hopping
method. For the second method, the CPU time is bigger than the time indicated in Table
1. This is due to the fact that the surface hopping curves in Fig. 7 are obtained by repeat-
ing the surface hopping algorithm described in the present section for the sequence of
times t f =0.13n/100, 1≤n≤100 (the pre-processing step to create the initial sampling is
performed only one time).
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6.3 Collision of two wave packets

In the present section, the potential is given by U=αx1, α>0 and we study the possibility
of the interaction of two wave packets, each packet is carried by a different energy level,
arriving at the same time at the same point of the hopping surface. In such a situation two
non-adiabatic transfers occur at the same time, one from the upper level to the lower level
and one from the lower level to the upper level, and we expect that in such a situation the
Landau-Zener formula for the transition probability will be affected by interference. It
is worth noting that such a breakdown of the semiclassical dynamics due to interference
was already observed in [1] in the case of the linear Schrödinger equation with non-
smooth potentials.

We suppose that the initial data uh
I is such that its Fourier transform ûh

I satisfies the
relation:

ûh
I (ξ)=

√
ρ f̂ h

+(ξ)χ+(hξ)+
√

1−ρe2iπµ f̂ h
−(ξ)χ−(hξ), (6.11)

where 0≤ρ≤1, 0≤µ<1, χ±(ξ) is defined in (2.9) and f̂ h
±(ξ) denotes the Fourier transform

of the h-scaled Gaussian wave packet:

f h
±(x)=(πh)−

1
2 e−

|x−xh
0,±|2

2h +i
ξ0.(x−xh

0,±)

h ,

with center xh
0,± ∈ IR2, momentum ξ0 ∈ IR2 and norm ‖ f h

±‖L2(IR2) = 1. Such an initial
data does not satisfy the non-interference condition (4.7). Using the orthogonality of the
eigenvectors χ±(ξ) and using the same arguments as in Section 6.1, we obtain that the
initial level probability densities, populations and diagonal terms of the Wigner matrix
are given by:

̂Π+(hD)uh
I =

√
ρ f̂ h

+(ξ)χ+(hξ), ̂Π−(hD)uh
I =
√

1−ρe2iπµ f̂ h
−(ξ)χ−(hξ),

||Π+(hD)uh
I ||2H=ρ, ||Π−(hD)uh

I ||2H=1−ρ,

wh
I,+=Wh

[
f h
+

]
+o(1), wh

I,−=Wh
[

f h
−
]
+o(1),

where the last relation holds in D′(IR2
x×(IR2

ξ\{ξ=0})
)

when h→0. In particular, it holds

‖uh
I ‖H=1. The parameter ρ gives the percentage of mass carried by each energy level and

the parameter µ is the phase difference between the two wave packets.
For such an initial condition, the position density of the solution uh(t,x) to (2.10)

is composed of two wave packets: one supported around (x+(t),ξ+(t)) and the other
around (x−(t),ξ−(t)), where (x±(t),ξ±(t)) are the characteristics solution to:

{
d
dt x±(t)=± ξ±(t)

|ξ±(t)| , x±(0)= xh
0,±,

d
dt ξ±(t)=−α(1,0) , ξ±(0)= ξ0.

In the present section, we may have (ξ0)2 6=0 and (6.7) has to be replaced by:

x±(t)= x∗,±±
∫ t

t∗

ξ±(s)
|ξ±(s)|ds, ξ±(t)= ξ∗−α(t−t∗,0) ,
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where t∗ = (ξ0)1

α is the time required to reach the hopping surface (i.e. the time such
that ξ±(t∗)=0) and (x∗,±,ξ∗)=(x±(t∗),ξ±(t∗)) is the point of the phase space where the
hopping occurs. The last is given by:

x∗,±= xh
0,±±

∫ t∗

0

ξ±(s)
|ξ±(s)|ds, ξ∗= ξ0−α(t∗,0).

To make the interference possible, the two wave packets should not only arrive at the
same time at the hopping surface but also at the same point of the phase space, in other
words:

(x∗,+,ξ∗)=(x∗,−,ξ∗). (6.12)

If the last equality is not true for the centers of the two wave packet, it should happen
at least for characteristics starting from two points of the phase space where the initial
probability density is not too small. We remark also that, if xh

0,+ < xh
0,−, the position

characteristics x+(t) and x−(t) will get closer from each other when t < t∗ and go in
opposite directions when t> t∗. In that case, when α is fixed, (ξ0)1 should be chosen so
that t∗ is big enough to ensure (6.12).

In the present section, we fixed α=15 and h=10−3. The centers of the initial Gaussian
wave packets f h

± are taken as:

xh
0,±=(∓4

√
h,0).

Different simulations will be performed corresponding to the following values of the
momentum of the initial Gaussian wave packets f h

±:

ξ0=(2,0) and ξ0 =(2,0.25).

The simulation time is fixed as t f =0.26. For the parameters considered here the hopping
time is equal to t∗=0.1333.

The Dirac level populations Ph
dir,±(t) are computed as explained in Section 6.2. For

ξ0=(2,0), the simulation domain and the number of space points for the TSSM are given
by:

Ω=[−11
√

h,11
√

h]×[−5
√

h,5
√

h],

N1=512, N2=256.

For ξ0=(2,0.25), they are given by:

Ω=[−11
√

h,11
√

h]×[−10
√

h,10
√

h],

N1=512, N2=512.

The number of time steps is fixed as 2×104.
The surface hopping algorithm is performed by applying two times the process ex-

plained in Section 6.2: one time for each energy level. For the upper level population
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Figure 8: For different values of the parameters ρ, µ and (ξ0)2: time evolution of the level populations provided
by the Dirac solver and the surface hopping algorithm.

Ph
sh,+(t) (resp. lower level population Ph

sh,−(t)), the space domain for the initial sampling

is centered at xh
0,+ (resp. xh

0,−). For each energy level, the size of the sampling grids and
the sampling tolerances are the same as in Section 6.2. The number of time steps is fixed
as 200.

The time evolution of the level populations provided by the Dirac solver and the sur-
face hopping algorithm for different values of the parameters ρ, µ and (ξ0)2 are depicted
in Fig. 8. The curve with title Upper level dir, resp. Lower level dir, refers to Ph

dir,+(t),

resp. Ph
dir,−(t). The same is true when dir is replaced by sh. In the first graph (top left), we

remark that, when the incidence is normal with respect to the line x1 =(x∗,±)1, the two
non-adiabatic transfers occur simultaneously without interacting with each other. The
second and the third graphs (top right and bottom left) are two situations of incidence
with a positive angle with respect to the x1-axis. In that case there is an interaction be-
tween the two levels which is responsible for periodic oscillations of the electrons from
the upper energy level to the lower energy level: we will call beating effect such oscil-



346 A. Faraj and S. Jin / Commun. Comput. Phys., 21 (2017), pp. 313-357

lations (a numerical and mathematical analysis of the beating effect in the case of the
Schrödinger equation with a double well potential can be found in [3, 14]). As it appears
in these graphs, the beating effect is not recovered by the surface hopping algorithm.
This shows that the Landau-Zener formula is not valid in the case of interference as ex-
pected in Remark 4.1. The last graphic is computed with the Dirac solver and shows that
the phase difference between the two initial wave packets implies a translation in the
beating oscillations.

In Table 2, we give, for the tests considered in Fig. 8, the absolute error of the level
population corresponding to the upper level at the final time t f . As in Section 6.2, it
is given by the formula (6.10). We remark that the oscillations observed in Fig. 8 are
localized in a small time interval around the hopping time t∗. After such a time, the
surface hopping level populations align again with the quantum ones. For this reason,
the absolute errors in Table 2 are all small even when interference occur (there is however
an increase of this error in the case of interference: line 2 to 4 of the table).

Table 2: At time t f and for different values of the parameters ρ, µ and (ξ0)2: absolute error of the level
population corresponding to the upper level.

ρ µ (ξ0)2 Absolute error

2/3 0.25 0 4.8393×10−7

0.5 0.25 0.25 3.5001×10−5

2/3 0.25 0.25 3.3183×10−5

2/3 0 0.25 4.2626×10−4

Fig. 9 corresponds to the second graphic of Fig. 8. It illustrates the fact that the wave
packet carried by the upper level and the wave packet carried by the lower level effec-
tively meet in some region of the space variable. The time for this collision matches with
the hopping time t∗ where both the ξ+ and ξ− characteristics starting from ξ0 reach the
hopping surface ξ1=0. As mentioned above, this condition is necessary to have interfer-
ence in the hopping process.

6.4 Simulations using the models of [30]

In this section we will compare numerically the models (5.2) and (5.3) with the two di-
mensional version of our surface hopping algorithm. The comparison will be performed
with h=10−3, t f =0.13 and with the same potential as is Section 6.2. The initial condition
is the 2D version of the initial condition in Section 6.2. In other words:

wh
+|t=0=Wh[ f h], wh

−|t=0=0

is replaced by

w+(0,x1,ξ1)=(πh)−1e−
(x1−(xh

0)1)
2

h − (ξ1−(ξ0)1)
2

h , w−(0,x1,ξ1)=0. (6.13)
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Figure 9: For different times and with respect to the space variable: representation of the position density of the
wave function u solution to (2.10) and of its projection where the initial condition is given by (6.11). The first
line corresponds to |un

j |2, the second line to |Π+(hD)un
j |2 and the third line to |Π−(hD)un

j |2. The solution u

is computed with the TSSM and the parameters ρ= 1
2 ,µ=0.25, (ξ0)2=0.25.

The functions w± and wi depend on ξ2. However, since ξ2 plays the role of a parameter,
this dependence is not written on the l.h.s. of the equations in (6.13). The center and the
momentum of the initial Gaussian wave packet are given by (6.8).

6.4.1 The two dimensional surface hopping algorithm

The x2-independent solutions to the surface hopping algorithm presented in Section 4 are
obtained by replacing the system (2.14) with its two dimensional version:

∂tw±±
ξ1

|ξ| ∂x1
w±−α∂ξ1

w±=0, ξ1 6=0. (6.14)

More precisely, Eq. (6.14) is used for the time evolution of w± as long as the classical
trajectories ϕ±

t (x1,ξ1) solution to (5.6) are away from the hopping surface {ξ1=0}. Then,
the hopping transport is described as follows.

Consider an initial set of sampling points

{(x1,k,ξ1,k,+)∈ IRx1
× IRξ1

×{−,+}; k=1,··· ,N},

with associated weights wk∈ IR given by:

wk=w+(0,x1,k,ξ1,k).
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For t≥0 small enough:

(x1,k(t),ξ1,k(t))= ϕ+
t (x1,k,ξ1,k), wk(t)=wk,

where, using (5.6), we have ξ1,k(t) = ξ1,k−αt. Then, for k = 1,··· ,N, if 0 <
ξ1,k

α < t f , the

classical trajectory is such that ξ1,k(t
∗)=0 at the time t∗= ξ1,k

α and non-adiabatic transfer
occurs. For such a k, the weight is changed such that for t> t∗

wk(t)=(1−T∗)wk(t
∗),

and a new particle is created on the lower band with index l > N. For the new particle,
the associated weight is such that for t> t∗

wl(t)=T∗wk(t
∗).

In the above equations, the transition rate T∗ is equal to:

T∗= e
− πξ2

2
h|α| .

The surface hopping level populations at the final time t f are then given by:

Ph
sh,+(t f )=

N

∑
k=1

wk(t f )∆x1∆ξ1 , Ph
sh,−(t f )=

M

∑
l=N+1

wl(t f )∆x1∆ξ1, (6.15)

where ∆x1 and ∆ξ1 are the mesh sizes in the x1 and ξ1 directions respectively.

6.4.2 Comparison with the models in [30]

For Eqs. (5.2) and (5.3), the simulation domain is:

(x1,ξ1)∈
[
−11

√
h,11

√
h
]
×
[
(ξ0)1−αt f −5

√
h,(ξ0)1+5

√
h
]

.

They are solved with periodic boundary conditions on a uniform grid with 500 points in
the x1-direction and 500 points in the ξ1-direction. The time step size is chosen such that
the condition of stability of the upwind method is satisfied [27]. More precisely, we take:

∆t=

(
1

∆x1
+

α

∆ξ1

)−1

.

Eqs. (5.2) and (5.3) are solved using a time-splitting method where the free equation
(without source term) is solved using a dimensional splitting: the free problem is splitted
in two one-dimensional problems and each one dimensional problem is solved using the
one-dimensional second order upwind MUSCL scheme (see [27]). The source term is in-
tegrated in time using a RK2 method for Eq. (5.2) (in order to preserve the second order
accuracy) and exactly for Eq. (5.3).
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For Eq. (5.2), we take:

wi|t=0=0

in addition to the initial condition (6.13). We remark that, since the MUSCL method is
written for real valued functions, the third equation in (5.2) has to be splitted in two
equations, one for the real part of wi and one for its imaginary part.

The level populations provided by the asymptotic model are defined by:

Ph
am,±(t)=

∫

IR2
w±(t,x1,ξ1)dx1dξ1,

where w± is the solution to (5.2) and the level populations provided by the effective
model are defined by:

Ph
em,±(t)=

∫

IR2
w±(t,x1,ξ1)dx1dξ1,

where w± is the solution to (5.3). For the level populations Ph
sh,±(t f ) defined in (6.15), the

initial sampling is chosen as follows. We consider a uniform J×K discretization of the
domain of the (x1,ξ1) variables:

[a,b]×[c,d],

where a=(xh
0)1−5

√
h, b=(xh

0)1+5
√

h and c=(ξ0)1−5
√

h, d=(ξ0)1+5
√

h. The grid points
(x1,j,ξ1,k), j=1,··· , J, k=1,··· ,K are ordered such that:

w+(0,x1,1,ξ1,1)≥···≥w+(0,x1,J×K,ξ1,J×K),

and we determine the minimal integer N such that:

N

∑
k=1

w+(0,x1,k,ξ1,k)∆x1∆ξ1 ≥1−tol,

where ∆x1 =
b−a

J , ∆ξ1 =
d−c

K and tol is a well chosen tolerance. Then, the initial sampling
is the set:

{(x1,k,ξ1,k,+)∈ IRx1
× IRξ1

×{−,+}; k=1,··· ,N}.

For all the tests in this section, the number of grid points for the two dimensional surface
hopping algorithm is:

J=100, K=100,

and the tolerance is

tol=10−9 .

We depict in Fig. 10 the time evolution of the level populations provided by the
asymptotic model (5.2) and the two dimensional surface hopping algorithm. The curve
with title Upper level am, resp. Lower level am, refers to Ph

am,+(t), resp. Ph
am,−(t). The

total population, curve titled Total am, corresponds to Ph
am,+(t)+Ph

am,−(t). The same is
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Figure 10: For h=10−3, ξ2=10−2 and U=αx1, α=15: time evolution of the level populations provided by the
asymptotic model (5.2) and the two dimensional surface hopping algorithm presented in Section 6.4.1.

true when am is replaced by sh. The surface hopping curves are obtained by repeat-
ing the surface hopping algorithm described in Section 6.4.1 for the sequence of times
t f = 0.13n/500, 1 ≤ n ≤ 500. The behavior is the same as in Section 6.2: the charge is
initially carried completely by the upper level, then hopping occurs at time t = 0.0667
and the great majority of the charge is transferred to the lower level. The time evolution
of the level populations provided by the asymptotic model fits well the one provided by
the two dimensional surface hopping: the surface hopping algorithm validates the model
(5.2).

Fig. 11 shows that non-adiabatic transfer is only partially recovered by model (5.3).
We depict the time evolution of the level populations provided by the asymptotic model
(5.3) and the two dimensional surface hopping algorithm where the transition probability
T∗ is replaced by (5.18), (5.5). The curve with title Upper level em, resp. Lower level em,
refers to Ph

em,+(t), resp. Ph
em,−(t). The total population, curve titled Total em, corresponds

to Ph
em,+(t)+Ph

em,−(t). The same is true when em is replaced by sh. As in Fig. 10, hopping
occurs at time t = 0.0667. However, using the simplified model (5.3), only about a half
of the charge is transferred to the lower level which is close to the transition probability
given by (5.18), (5.5) and substantially different from Fig. 10.

In Fig. 12, we verify numerically that the transition probability corresponding to the
effective model (5.3) is given by the formula (5.18). The curve with title Trans eff refers
to Ph

em,−(t f ), the population provided by the effective model (5.3) on the lower level and
at the final time, for 31 different values of the constant β distributed uniformly on the
interval [0,5]. The constant β given by (5.5) is made arbitrary in (5.18) by replacing the

coefficient τ appearing in (5.3) by τ̃ = β
π2/4

τ. The curve with title Trans th is the repre-
sentation of the coefficient T given by (5.18) for the same values of β. We remark that the
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Figure 11: For h=10−3, ξ2=10−2 and U=αx1, α=15: time evolution of the level populations provided by the
effective model (5.3) and the two dimensional surface hopping algorithm presented in Section 6.4.1 where the
transition probability T∗ is replaced by (5.18), (5.5).
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Figure 12: For h=10−3, ξ2 =10−2, t f =0.13 and U=αx1, α=15: numerical verification of the formula (5.18)

for the transition probability corresponding to the model (5.3).

two curves are very close which validates the limit ξ2 →0 performed in Section 5 for the
solution to (5.3).

In the present section, the fact that (5.2) is found to be correct, at least for the exam-
ple in question, is a significant finding in itself. In particular, it does not follow by the
standard Wigner measures theory.
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Appendix

A Time-splitting spectral method (TSSM)

The solution u(t,x) to (2.6) is computed on the domain:

Ω=[a1,b1]×[a2,b2]

using a time-splitting spectral method as in [18]. For r=1,2, we choose the spatial mesh
size ∆xr =

br−ar
Nr

in the r direction for a given integer Nr. Define a uniform grid

xj = a+(j1∆x1, j2∆x2), j∈J , (A.1)

where

J ={j=(j1, j2)∈N
2 |0≤ j1 <N1 , 0≤ j2<N2}

and a=(a1,a2). For a given time step size ∆t, let un
j denote the numerical approximation

of u(tn,xj) at the time tn = n∆t, n≥ 0. Then, un+1
j is computed from un

j by decomposing

the problem (2.6) in the two sub-problems

ih∂tu=[−ihσ1∂x1
−ihσ2∂x2 ]u (A.2)

and

ih∂tu=Uu. (A.3)

The free Dirac equation (A.2) is solved using a spectral method in space and exact time
integration, whereas Eq. (A.3) can be integrated exactly on [tn,tn+1]. To discretize (A.2),
we introduce the trigonometric interpolant of u:

ũ(t,x)=
1

N1N2
∑

k∈K
û(t)keiξk .(x−a), (A.4)

where ũ(t,xj)=u(t,xj). In Eq. (A.4), we have

K=

{
k=(k1,k2)∈Z

2
∣∣− N1

2
≤ k1 <

N1

2
,−N2

2
≤ k2<

N2

2

}

and

ξk =2π

(
k1

b1−a1
,

k2

b2−a2

)
.

For a given function f : IR2 →C2, f̂k is the discrete Fourier transform (DFT) of f defined
by

f̂k = ∑
j∈J

f je
−iξk.(xj−a), (A.5)



A. Faraj and S. Jin / Commun. Comput. Phys., 21 (2017), pp. 313-357 353

where f j= f (xj). When f =( f j)j∈J is a sequence with f j∈C2, the DFT of f is the sequence

f̂k defined by Eq. (A.5). Inserting (A.4) into (A.2), and using the orthogonality of the
set
{

eiξk .(x−a), k∈K
}

with respect to the scalar product of L2(Ω), one gets the following
system of ODE

d

dt
û(t)k =−iB(ξk)û(t)k .

For any t0∈ IR, the exact solution to the previous equation is given by:

û(t)k=M(t−t0,ξk)û(t0)k,

where

M(δ,ξ)= e−iδB(ξ) .

Applying an inverse discrete Fourier transform, one obtains the following expression for
the approximation u(t)j of u(t,xj):

u(t)j =
1

N1N2
∑

k∈K
M(t−t0,ξk)û(t0)keiξk .(xj−a) .

We remark that using the eigenvectors (2.9), the matrix B(ξ) can be diagonalized as fol-
lows:

B(ξ)=P(ξ)D(ξ)P(ξ)∗ ,

where

D(ξ)=diag(|ξ|,−|ξ|) , P(ξ)=(χ+(ξ),χ−(ξ))

and therefore

M(δ,ξ)=P(ξ)e−iδD(ξ)P(ξ)∗=
(

cos(δ|ξ|) −isin(δ|ξ|)(ξ1−iξ2)/|ξ|
−isin(δ|ξ|)(ξ1+iξ2)/|ξ| cos(δ|ξ|)

)
.

(A.6)
The Strang splitting is the second order method constructed as follows: solve the first
subproblem (A.2) over only a half time step of length ∆t

2 . Then, we use the result as data
for a full time step on the second subproblem (A.3) and finally take another half time step
on (A.2). This leads to the following method:

u∗
j =

1

N1N2
∑

k∈K
M(∆t/2,ξk)(̂un)keiξk .(xj−a),

u∗∗
j = e−

i
h Uj∆tu∗

j , (A.7)

un+1
j =

1

N1N2
∑

k∈K
M(∆t/2,ξk)(̂u∗∗)keiξk .(xj−a) .
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Remark A.1. It follows directly from the unitarity of the DFT and of the matrix M(δ,ξ)
given by (A.6) that the TSSM (A.7) conserves the discrete total charge, i.e.:

‖un‖2=‖u0‖2 , ∀n≥0, (A.8)

where the norm ‖.‖2 is defined in (6.6). Moreover, when the potential is equal to a con-
stant U=U0, the Dirac equation (2.6) admits the following plane wave solutions:

u(t,x)=χ±(k)e
i
h (k.x−(U0±|k|)t) ,

which are integrated exactly by the TSSM (A.7) if k∈ IR2 satisfies k
h = ξk′ for some k′∈K.

In the case of the Schrödinger equation, an analysis of the stability of the TSSM was
performed in [8] for initial conditions which are close to plane waves.

B Discussion on the accuracy of the TSSM

The Dirac equation (2.10) is solved using the TSSM presented in Section A. The potential
U, the initial condition and the simulation domain are as in Section 6.2. The final time is
t f =0.13.

The accuracy of solutions given in the second line of Table 3 represents the L2-norm
difference:

‖uh(t f ,.)−ũh(t f ,.)‖L2 (B.1)

of the final reference solution uh(t f ,.) and a coarser solution ũh(t f ,.). The number of space
points is given by (N1,N2)=(1024,512) for the reference solution and (N1,N2)=(256,128)
for the coarser solution, except for h=10−4 where the number of space points is given by
(N1,N2)=(2048,1024) for the reference solution and (N1,N2)=(1024,512) for the coarser
solution. The number of time steps is fixed as 104. Since it is the square of the L2-norm
which is relevant for the computation of the level populations, the accuracy for h=10−2

and 10−3 is close to the machine precision. For the other values of h the TSSM is accurate
enough for the validation of the surface hopping algorithm whose methodological error

is of the order of
√

h.

Table 3: At time t f =0.13: accuracy of the TSSM for different values of the semiclassical parameter h.

h 10−1 10−2 10−3 10−4

Accuracy 1.55×10−4 4.74×10−8 6.62×10−6 4.64×10−3

In Table 4, the accuracy is given by Eq. (B.1) where the reference solution uh(t f ,.) is

computed with 105 time steps and ũh(t f ,.) is a less resolved solution computed with var-
ious numbers of time steps. The number of space points is fixed as (N1,N2)=(1024,512).
The solution with 104 time steps is accurate enough for our purpose and takes 12202.94s
computing.
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Table 4: At time t f =0.13 and for h=10−2: accuracy of the TSSM for different values of the number of time
steps.

Time steps 104 103 102

Accuracy 7.70×10−3 8.47×10−2 0.83

Remark B.1. Since the simulation time t f is h-independent (this is imposed by the fact
that the hopping time is h-independent) and the size of the simulation box Ω tends to
0 when h tends to 0, the solution of the Dirac equation (2.6) will reach the boundary
of Ω for small values of h. Therefore, in addition to the periodic boundary conditions
provided by the spectral method, absorbing boundary layers can be used at the edge of
the simulation box, see e.g. [34]. We remark that, although it is not applied in the present
work, such boundary layers provide an improvement of the performance of the TSSM in
the case h=10−4.
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