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A GAUSSIAN BEAM METHOD FOR HIGH FREQUENCY
SOLUTION OF SYMMETRIC HYPERBOLIC SYSTEMS WITH

POLARIZED WAVES∗

LELAND JEFFERIS† AND SHI JIN‡

Abstract. Symmetric hyperbolic systems include many physically relevant systems of PDEs
such as Maxwell’s equations, the elastic wave equations, and the acoustic equations [L. Ryzhik,
G. Papanicolaou, and J. Keller, Wave Motion, 24 (1996), pp. 327–370]. In the current paper we
extend the Gaussian beam method to efficiently compute the high frequency solutions to such systems
with polarized waves, in which the dispersion matrix of the hyperbolic system has eigenvalues with
constant multiplicity greater than one over the domain of computation. The new results in this
paper include new Gaussian beam equations in the presence of multiple eigenvalues, error estimates
for Gaussian beam summation in the symmetric hyperbolic system case, and a new multidirectional
Eulerian summation formula which maintains accuracy after the formation of caustics.
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1. Introduction. We will study the general symmetric hyperbolic system of the
form1

(1.1)

{
A(x)∂uε

∂t +Dj ∂uε

∂xj
= 0,

uε(x, 0) = u0(x)e
iS0(x)/ε,

where u ∈ Cn, x ∈ Rd, A(x) is symmetric positive definite, and the Dj are symmetric
and independent of x and t. Many physical problems such as Maxwell’s equations,
the elastic wave equations, and the acoustic equations all may be written in such a
form with the correct choices of A(x) and the Dj , and these particular three examples
were discussed in [28]. In many physical applications, ε, which characterizes the wave
length, is very small compared to the scale of the computational domain, and the
numerical meshes and time steps need to resolve this small scale; thus computing the
high frequency solutions, particularly in high dimensions, is prohibitively expensive.

One efficient way to deal with high frequency wave problems is to solve the limiting
equation by finding the asymptotic equation when ε → 0. The Wigner transform,
introduced in [34], is a powerful mathematical tool for studying this limit [8, 20, 28],
since it is valid globally in time, even beyond caustic formation. The limiting equation
is the Liouville equation which does not depend on ε, permitting large time steps and
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mesh sizes. In a previous paper [11], we developed a numerical method based on this
approach for the problem under study. One should note that the Liouville equation–
based classical or geometric optic limit approach, derived via the limit ε → 0, does
not offer good accuracy near the caustics.

A more accurate approach is the Gaussian beam method, originally introduced in
[10, 25]. The key idea in all Gaussian beam methods is to take advantage of the fact
that high frequency waves have particle-like properties. Specifically, one decomposes
the initial wave function into localized wave packets (Gaussian beams) which are then
evolved individually along particle trajectories and finally summed up to construct the
solution at a later time. It was first studied rigorously in [27] and has seen many recent
developments in both Eulerian and Lagrangian frameworks [14, 15, 16, 19, 22, 23],
error estimates [2, 21], and fast Gaussian wave decompositions [1, 31, 26]. A related
approach, known as the Hagedorn wave packet method, was studied in [9, 7]. For
recent surveys for semiclassical computational methods for high frequency waves, see
[6, 12].

The main difficulties for Gaussian beam methods in the nonstrict hyperbolic sys-
tems are threefold. First, the multiple eigenvalues of the dispersion matrix combined
with the complex valued phase introduced in the Gaussian beam ansatz lead to an-
alytic difficulties which must be delicately dealt with. Second, one must determine
a meaningful ansatz for Gaussian beam solutions which are to represent the polar-
ized waves corresponding to multiple eigenvalues of the dispersion matrix. Third, one
must derive a meaningful coupling matrix (to represent polarized wave propagation)
with the correct analytic properties. In this paper, all of these difficulties have been
resolved. To handle the complex phase of the Gaussian beam ansatz, we introduce a
notion of spectrum preserving which any system must satisfy in order for our Gauss-
ian beam method to be applicable. We show, however, that many physically relevant
equations all satisfy this definition and are thus solvable by our method. The second
difficulty was overcome simply by making a careful choice and, by trial and error,
showing that our chosen ansatz gives meaningful results. To overcome the last dif-
ficulty, we derive a form for our coupling matrix which matches the one discovered
in [28], thereby showing a deep connection between this new Gaussian beam method
and our previous work [11].

In addition to developing a Gaussian beam method for nonstrict symmetric hy-
perbolic systems, we also obtain further supplementary results. Convergence results
for the decomposition of the initial condition are presented in [21, 30]; here we extend
and modify these convergence results to suit our case. The final summing process for
Eulerian Gaussian beams was shown to lose accuracy after the formation of caustics
in [14]; here we introduce a new Eulerian summation formula to solve this problem.
Numerical results are also provided in one and two dimensions to demonstrate the ef-
fectiveness of our method; these results pave the way toward heftier three-dimensional
simulations which could be well handled by our provided method.

We also would like to point out that some of the difficulties faced in this system
are shared in quantum dynamics with band-crossings. One example is the surface
hopping phenomenon in which particles tunnel through different electronic potential
surfaces and the classical Bohn–Oppenheimer approximation breaks down [32, 18, 13].
Another difficulty is the crossing of Bloch bands in the Schrödinger equation with
periodic potentials [29, 4]. The method developed in this paper sheds light on these
important physical and chemical problems.

The paper is outlined as follows. Section 2 introduces the Gaussian beam method
in the Lagrangian framework and proves essential results pertaining to this method’s
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convergence and boundedness. Section 3 introduces the Gaussian beams in the Euler-
ian framework, introduces a new Eulerian summation formula, and provides further
simplifications to the method in the one-dimensional case. Section 4 contains numeri-
cal results which include simulations in one and two dimensions as well as convergence
tests. Finally, section 5 contains our conclusions.

2. A Gaussian beam method.

2.1. The Lagrangian Gaussian beam method. The Gaussian beam ansatz
for (1.1) is2

(2.1) φla
ε (x, t) = [a0(x,q, t) + εa1(x,q, t) + · · · ]e i

εT (x,q,t),

where

(2.2) T (x,q, t) = S(q, t) + p(q, t) · (x− q) +
1

2
(x− q)TM(q, t)(x − q),

q = q(q0, t) ∈ Rd, p(q, t) ∈ Rd, and M ∈ Cd×d is assumed to be symmetric with a
positive definite imaginary part (so that (2.1) has a Gaussian profile). Define

(2.3) J ≡ A(x)dt +Dj∂xj ,

where

(2.4) dt ≡ ∂

∂t
+ (∂tq) · ∇q

is our notation for the total time derivative, which we distinguish from the symbol ∂
∂t

(appearing in (1.1)) for clarity. Substituting (2.1) into (1.1) and keeping the first two
orders in ε, one obtains

(2.5)
O(1/ε) : (J T )a0 = 0,

O(1) : J a0 + i(J T )a1 = 0.

By first multiplying by A−1 on the left side, the O(1/ε) equation of (2.5) may be
written as

(2.6) [dtT +A−1Dj∂xjT ]a0 = 0.

We define the dispersion matrix as

(2.7) L(x,k) ≡ A−1(x)kiD
i

so that we may write (2.6) as

(2.8) [(dtT ) I + L(x,∇xT )]a0 = 0.

Let 〈u,v〉 be the standard inner product on Cn; then define the new inner product

(2.9) 〈u,v〉A ≡ 〈Au,v〉
2In this paper, i denotes the imaginary unit

√−1 and is not a vector. i, when used, is an index.
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under which L(x,k) is self-adjoint when x and k are real. Note that the self-adjoint
property of L(x,k) guarantees that it has a complete set of eigenvectors when x and
k are real. We introduce the following definition.

Definition 2.1. A system of the form (1.1) with dispersion matrix L(x,k)
defined by (2.7) is nonstrict hyperbolic at some point (x,k) if L(x,k) has a multiple
eigenvalue at that point. The system is constantly nonstrict hyperbolic on some
domain D ⊂ R2d if the multiplicity (geometric and algebraic) of the eigenvalues of
L(x,k) remains constant over all points (x,k) ∈ D.

For the remainder of this paper we consider solutions on domains of constant
nonstrict hyperbolicity as defined in Definition 2.1. Let Hτ (x,k) be an eigenvalue
of L(x,k) with multiplicity r. Note that by our assumption in Definition 2.1, r
remains constant within the domain of computation. Here τ enumerates the unique
eigenvalues of Hτ (x,k) or L(x,k). Let b

τ,s(x,k) for s = 1, . . . , r be the eigenvectors
corresponding to Hτ (x,k) so that

(2.10) 〈bτ,i,bτ,j〉A = δij .

The next step is to observe that (2.8) implies that

(2.11) dtT +Hτ (x, p̃) = 0 and a0 =

r∑
s=1

cs(q, t)b
τ,s(x, p̃),

where

(2.12) p̃ ≡ ∇xT.

In (2.11), a0 spans the eigenspace of Hτ when x and k are real. However, it is only
when x and k are real that L(x,k) is self-adjoint in 〈·, ·〉A. Since p̃ = ∇xT is complex,
the dispersion matrix L(x, p̃) has no guaranteed nice structure of its spectrum. Thus
for (2.11) to be well defined, we must assume that we have an expression for our
complex eigenvalues and eigenvectors which is valid at least when p̃ has a small
imaginary part. We formalize this assumption with a definition.

Definition 2.2. A system (1.1) with dispersion matrix L(x,k) given by (2.7)
is spectrum preserving on some domain D ⊂ R

2d if in addition to having constant
nonstrict hyperbolicity on D (see Definition 2.1), the multiplicity of the eigenvalues
(algebraic and geometric) is also preserved when |Im(k)| < δ for some fixed δ > 0.

Remark 2.3. We have conjectured that a dispersion matrix L(x,k) which has
constant nonstrict hyperbolicity in the sense of Definition 2.1 on some domainD ⊂ R2d

is automatically spectrum preserving in the sense of Definition 2.2 on the same domain
D. This is easy to show in the d = 1 case (it follows easily from the observations
about one-dimensional systems presented in section 3.1), but the general d > 1 case
is not so simple. How to prove or disprove this conjecture remains an open question.
Nevertheless, in Appendix A we prove that Definition 2.2 holds in the case of the three-
dimensional acoustic equations, Maxwell’s equations, and the elastic wave equations,
respectively. Definition 2.2 also holds for the model problems considered in section 4,
but we omit the relatively simple proofs.

From this point forward we will assume that the system (1.1) is spectrum pre-
serving (Definition 2.2) on the domain of our interest. With this assumption, the
expansion shown in (2.11) is now valid. Taking derivatives of the first equation of
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(2.11) with respect to x, one obtains
(2.13)

0th: ∂tT + (∂tq) · ∇qT +Hτ = 0,

1st: ∂t∇xT + (∂tq) · ∇xqT +∇xHτ +∇p̃Hτ · ∇xxT = 0,

2nd: ∂t∇xxT + (∂tq) · ∇xxqT +∇xxHτ +∇xp̃Hτ∇xxT

+∇xxT∇p̃xHτ +∇xxT∇p̃p̃Hτ∇xxT +∇p̃Hτ∇xxxT = 0I,

where in the above Hτ = Hτ (q, p̃). Evaluating (2.13) at x = q gives
(2.14)

∂tS + (∂tq) · (∇qS − p) +Hτ = 0,

∂tp+ (∂tq) · (∂qp−M) +∇qHτ + (∇pHτ )M = 0,

∂tM + (∂tq) · (∇qM) +∇qqHτ + (∇qpHτ )M +M(∇pqHτ ) +M(∇ppHτ )M = 0I,

where now Hτ = Hτ (q,p). Finally, set (∂tq) = ∇pHτ to obtain

(2.15)

dtq = ∇pHτ ,

dtp = −∇qHτ ,

dtS = ∇pHτ · p−Hτ ,

dtM = −∇qqHτ −∇qpHτM −M∇pqHτ −M∇ppHτM.

The first two equations of (2.15) are the ray tracing equations or bicharacteristic equa-
tions which track the center of the Gaussian beam and form a Hamiltonian system.
For now, we assume that the matrix M is symmetric for all time (proved in section
2.2).

The solvability conditions for the O(1) equation of (2.5) are

(2.16) 〈b̄τ,i(x, p̃),J a0〉 = 0 for i = 1, . . . , r,

where we note that the conjugate b̄τ,i(x, p̃) is used in place of bτ,i(x, p̃) since the
adjoint of J T is not itself but J T . Substituting our assumed form for a0 given in
(2.11) into (2.16) gives, after some simplifications,
(2.17)

r∑
s=1

{
[dtcs(q, t)] 〈b̄τ,i(x, p̃),bτ,s(x, p̃)〉A + cs(q, t)〈b̄τ,i(x, p̃),Jbτ,s(x, p̃)〉} = 0.

Next, observe that

(2.18)
Adtb

τ,s = [(dtp)n − (Mdtq)n]A∂p̃n
bτ,s,

Djdxjb
τ,s = Dj [∂xjb

τ,s + {(∇p̃b
τ,s)M}ej ],

where ej is the jth coordinate vector. Letting x = q, using (2.15), and rearranging
terms gives that

(2.19) Jbτ,s|x=q = Dj {∇qb
τ,s + (∇pb

τ,s)M} ej −A∇pb
τ,s[∇qHτ +M∇pHτ ].
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Define the matrix Eτ as

(2.20) Eτ
is = 〈Abτ,i, A−1Dj{∇qb

τ,s + (∇pb
τ,s)M}ej −∇pb

τ,s[∇qHτ +M∇pHτ ]〉.
Letting x = q in (2.17) gives

(2.21) dtc(q, t) = −Eτc(q, t) with c(q, t)s = cs(q, t).

The matrix Eτ defined by (2.20) may be written in a more useful form by first defining
the skew symmetric coupling matrix N τ as

(2.22) N τ
is = 〈Abτ,i, A−1Dj∇qb

τ,sej −∇pb
τ,s∇qHτ 〉 − 1

2
∇q · ∇pHτ δis,

where we observe that this coupling matrix matches the one which appears in [28].
Then (2.20) may be written as

(2.23) Eτ
is =

1

2
Tr [∇qpHτ +M∇ppHτ ] δis +N τ

is.

The justification for (2.23), which relies on the symmetry of M , is nontrivial and
appears in Appendix B.

From (2.23) one may observe a few important properties of the matrix Eτ . First,
when the eigenvalue Hτ is simple (not multiple), the skew symmetric N τ vanishes
and Eτ becomes the scalar given by 1

2Tr [∇qpHτ +M∇ppHτ ]. Consequently, from
(2.23) we observe that in the case of multiple eigenvalues, all amplitudes cs(q, t)
given in (2.21) evolve as they would in the simple eigenvalue case except for coupling
between them determined by N τ . Furthermore, this coupling is a pure coupling
since N τ is skew symmetric and therefore has purely imaginary eigenvalues. Second,
the eigenvalues of Eτ may be explicitly written in terms of the eigenvalues of N τ . In
particular, if the eigenvalues ofN τ are given by λi for i = 1, . . . , r, then the eigenvalues
of Eτ are given by 1

2Tr [∇qpH
τ +M∇ppH

τ ] + λi. Finally, this result shows a deep
connection between the herein derived Gaussian beam method and the work in [28].
That the matrix N τ appears in both of these places is perhaps surprising given the
very different routes taken to derive it.

In summary, the evolution equations for the Lagrangian Gaussian beams are

(2.24)

dtq = ∇pHτ ,

dtp = −∇qHτ ,

dtS = ∇pHτ · p−Hτ ,

dtM = −∇qqHτ −∇qpHτM −M∇pqHτ −M∇ppHτM,

dtc = −{1
2Tr [∇qpHτ +M∇ppHτ ] I +N τ

}
c,

with N τ given by (2.22). As will be explained in section 2.4, the initial conditions for
(2.24) are given by

(2.25)

q(q0, 0) = q0,

p(q0, 0) = ∇xS0(q0),

S(q0, 0) = S0(q0),

M(q0, 0) = ∇xxS0(q0) +
i
ω I,

cs(q0, 0) = u0(q0) · [A(q0)b
τ,s(q0,p(q0, 0))],
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where ω > 0 is a real constant.
Remark 2.4. Note that the inclusion of ω in (2.25) differs from the previous

Gaussian beam formulation in [14]. Including this parameter is useful in numerical
simulations as seen in section 2.3, but it cannot be chosen arbitrarily. Please see the
end of section 2.3 for a complete description of the use of ω.

Remark 2.5. For the sake of computing, it may be preferable to write Eτ in the
equivalent form

(2.26) Eτ
is =

1

2
Tr [M∇ppHτ ] δis + 〈bτ,i, Dj∇qb

τ,sej −A∇pb
τ,s∇qHτ 〉

only because it has fewer terms when expressed this way.
At this stage, we have formulated exactly one Gaussian beam solution to (1.1),

but in practice one needs to sum over many Gaussian beam solutions. The details of
how to perform this summation are deferred to section 2.4 as we now turn to other
matters.

2.2. Conservation of Gaussian profiles. The matrix M , whose governing
equation appears in (2.24) and has initial condition given by (2.25), represents the
Hessian of the phase of a Gaussian beam, as can be seen from (2.2). In order for
the Gaussian beam to have bounded Gaussian profile, M must have positive definite
imaginary part. The Gaussian beam can be initialized with positive definite imaginary
part (2.25), but further proof is required to show that it remains positive definite for
all time. Note that Theorem 2.6 follows directly from the work in [27]. It is reproduced
here because some details of the proof are needed elsewhere in this paper.

Theorem 2.6. Let P (t,q(t,q0)) and R(t,q(t,q0)) be the (global) solutions of
the equations

(2.27)
dtP = (∇pqH)P + (∇ppH)R,

dtR = −(∇qqH)P − (∇qpH)R,

with the initial conditions

(2.28)
P (0,q0) = I,

R(0,q0) = M(0,q0),

where the matrix I is the identity matrix and Im(M(0,q0)) is positive definite. As-
suming that M(0,q0) is symmetric, then for each initial position q0 the following
hold:

1. P (t,q(t,q0)) is invertible for all t > 0.
2. The solution to the differential equation for M given in (2.24) is given by

(2.29) M(t,q(t,q0)) = R(t,q(t,q0))P
−1(t,q(t,q0)).

3. M(t,q(t,q0)) is symmetric, and Im[M(t,q(t,q0))] is positive definite for all
t > 0.

Proof. Since q(t,q0) is not directly involved in the proof, simply write M(t),
P (t), R(t) to represent the three matrices introduced in the theorem statement.

1. From (2.27), if we let n ∈ Cn, then z1 = P (t)n and z2 = R(t)n satisfy

(2.30)
dtz1 = (∇pqH)z1 + (∇ppH)z2,

dtz2 = −(∇qqH)z1 − (∇qpH)z2.
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Define

(2.31) σ(P,R,n) = z̄1 · z2 − z1 · z̄2.
Noting that H(p,q) is real, differentiate (2.31) to get
(2.32)

dtσ(P,R,n) = (dtz̄1) · z2 + z̄1 · dtz2 − (dtz1) · z̄2 − z1 · dtz̄2
= [−(∇pqH)z̄1 − (∇ppH)z̄2] · z2 + z̄1 · [(∇qqH)z1 − (∇qpH)z2]

− [(∇pqH)z1 + (∇ppH)z2] · z̄2 − z1 · [−(∇qqH)z̄1 − (∇qpH)z̄2]

= 0,

where we use (in the last step) that ∇ppH and ∇qqH are both symmetric and that
∇pqH = (∇qpH)T .

Next assume that P (t) is singular at time t > 0. Then let n ∈ Cn be nonzero so
that P (t)n = 0. Then one has

(2.33)

0 = P (t)n · R(t)n− P (t)n · R(t)n

= σ(P (t), R(t),n) = σ(P (0), R(0),n)

= P (0)n ·R(0)n− P (0)n ·R(0)n

= n̄ ·M(0)n− n ·M(0)n = 2in̄ · Im[M(0)]n,

which contradicts the fact that Im[M(0)] is positive definite. Thus P (t) is invertible
for all t ≥ 0.

2. Let M = RP−1. By differentiating one obtains

(2.34)

dtM = dt(RP−1)

= (dtR)P−1 +RdtP
−1

= (dtR)P−1 −RP−1(dtP )P−1

= [−(∇qqH)P − (∇qpH)R]P−1 −RP−1[(∇pqH)P + (∇ppH)R]P−1

= −∇qqH −∇qpHM −M∇pqH −M∇ppHM,

which agrees with (2.24).
3. Since both M(t) and its transpose M(t)T satisfy exactly the same equation,

the uniqueness of the solution (see, for example, [5]) implies that M(t) = M(t)T for
all t > 0, provided that the initial condition M(0) is symmetric. Next, since P (t) is
invertible, take an n′ ∈ Cn and define n = P (t)−1n′ so that

(2.35)

2in′ · Im[M(t)]n′ = 2iP (t)n · Im[M(t)]P (t)n

= P (t)n ·M(t)P (t)n− P (t)n ·M(t)P (t)n

= P (t)n ·R(t)n− P (t)n ·R(t)n

= σ(P (t), R(t),n) = σ(P (0), R(0),n)

= P (0)n · R(0)n− P (0)n · R(0)n

= n̄ ·M(0)n− n ·M(0)n

= 2in̄ · Im[M(0)]n.
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Thus, since M(0) is positive definite, M(t) is also. This completes the proof.
Theorem 2.6 now guarantees that our Gaussian beam solutions of (1.1) remain

with a Gaussian profile for all time, provided that they are initialized that way.

2.3. Convergence and Gaussian decomposition. Up until this point, we
have constructed just one Gaussian beam solution to (1.1). Here we will prove a few
results that show how an arbitrary initial condition of the form shown in (1.1) may
be approximated by a sum of many Gaussian beams. Results of this nature have
been proved in, for example, [30, 21]. Here, we generalize to the case of symmetric
hyperbolic systems. The theoretical results are presented in this section, and the
summing process itself is presented in section 2.4.

Lemma 2.7. Let f ∈ Cj+1
0 (Rd → R), and define

(2.36) v(x,y) =

(
1

2πε

) d
2

T y
j [f ](x)e

−|x−y|2/2ε,

where T y
j [f ](x) =

∑
|a|≤j

(x−y)a

a! ∂af(y) is the jth order Taylor polynomial of f(x)

centered at y. Then for p ≥ 1,

(2.37)

∥∥∥∥
∫
Rd

v(x,y)dy − f(x)

∥∥∥∥
Lp

≤ cε(j+1)/2.

Proof. We introduce the standard multi-index notation wherein if a = (a1, a2, . . . , ad)
is a d-tuple of nonnegative integers, then define

(2.38)

|a| ≡ a1 + a2 + · · ·+ ad,

a! ≡ a1!a2! · · · ad!,
∂a ≡ ∂a1

1 ∂a2
2 · · · ∂ad

d ,

xa ≡ xa1
1 xa2

2 · · ·xad

d .

For the above f , Taylor’s theorem reads as

(2.39)

f(x) = T y
j [f ](x) +Ry

j [f ](x)

=
∑
|a|≤j

(x−y)a

a! ∂af(y) +
∑

|a|=j+1

(x−y)a

a! ∂af(y + c(x− y)) for some c ∈ (0, 1),

where we define the remainder term as Ry
j [f ](x) =

∑
|a|=j+1

(x−y)a

a! ∂af(y+ c(x−y)).
First one can prove a simple upper bound for the remainder:

(2.40)

|Ry
j [f ](x)| ≤

∑
|a|=j+1

∣∣∣ (x−y)a

a! ∂af(y + c(x− y))
∣∣∣

= |x− y||a|
∑

|a|=j+1

∣∣∣ (x−y)a

|x−y||a|
1
a!∂

af(y + c(x− y))
∣∣∣

≤ |x− y|j+1
∑

|a|=j+1

∣∣ 1
a!∂

af(y + c(x− y))
∣∣

≤ c0|x− y|j+1,
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where c0 > 0 is a constant and the last step holds because all of ∂af are bounded. Also
note that in the above we exclude the point x = y where the bound holds trivially.

Next we define g =
(

1
2πε

) d
2 e−|x−y|2/2ε and then write

(2.41)

∥∥∥∥
∫
Rd

v(x,y)dy − f(x)

∥∥∥∥
Lp

=

∥∥∥∥
∫
Rd

g[T y
j [f ](x)− f(x)]dy

∥∥∥∥
Lp

=

∥∥∥∥
∫
Rd

gRy
j [f ](x)dy

∥∥∥∥
Lp

.

Since f(x) has compact support, assume that its support is contained in |x| < A, and
then note that when both |x| > A and |y| > A, Ry

j [f ](x) = 0. Define characteristic
functions χ1(x,y) = χ{|x|<A}∪{|y|<A}, χ2(x) = χ{|x|<2A}, and χ3(x) = χ{|x|≥2A}.
Then write
(2.42)∥∥∥∥

∫
Rd

gRy
j [f ](x)dy

∥∥∥∥
Lp

=

∥∥∥∥
∫
Rd

gχ1

{
χ2 +

|x−y|d+1

|x−y|d+1χ3

}
Ry

j [f ](x)dy

∥∥∥∥
Lp

≤
∥∥∥∥
∫
Rd

gχ1χ2

∣∣Ry
j [f ](x)

∣∣ dy +

∫
Rd

gχ1
|x−y|d+1

|x−y|d+1χ3

∣∣Ry
j [f ](x)

∣∣ dy∥∥∥∥
Lp

≤
∥∥∥∥
∫
Rd

gχ1χ2c0|x− y|j+1dy +

∫
Rd

gχ1
|x−y|d+1

|x−y|d+1χ3c0|x− y|j+1dy

∥∥∥∥
Lp

≤
∥∥∥∥c0χ2

∫
Rd

g|x− y|j+1dy +

∫
Rd

gχ1
|x−y|d+1

||x|−A|d+1χ3c0|x− y|j+1dy

∥∥∥∥
Lp

≤
∥∥∥∥c0χ2

∫
Rd

g|x− y|j+1dy + c0
||x|−A|d+1

∫
Rd

gχ1χ3|x− y|j+d+2dy

∥∥∥∥
Lp

≤ c0 ‖χ2‖Lp

∫
Rd

(
1

2πε

)d
2 e−|y|2/2ε|y|j+1dy

+ c0

∥∥∥ χ3

||x|−A|d+1

∥∥∥
Lp

∫
Rd

(
1

2πε

)d
2 e−|y|2/2ε|y|j+d+2dy

≤ c1ε
j+1
2 + c2ε

j+d+2
2 ,

where c1 and c2 are constants. In the fifth line of (2.42), we have used that |y| < A
together with the triangle inequality to get

(2.43) |x− y| ≥ ||x| − |y|| > ||x| −A|.
Also, in the seventh line of (2.42) we have used Minkowski’s inequality. Finally, for
ε < 1 one may redefine the constants to obtain

(2.44)

∥∥∥∥
∫
Rd

gRy
j [f ](x)dy

∥∥∥∥
Lp

≤ cε
j+1
2 .

This proves the lemma.
Theorem 2.8. Let a ∈ Cj+1

0 (Rd → R) and φ ∈ Cj+3
0 (Rd → R). Define

(2.45)
u(x) = a(x)eiφ(x)/ε,

v(x,y) =
(

1
2πεω

) d
2 T y

j [a](x)e
iTy

j+2 [φ](x)/ε−|x−y|2/2ωε.
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Then for p ≥ 1,

(2.46)

∥∥∥∥
∫
Rd

v(x,y)dy − u(x)

∥∥∥∥
Lp

≤ c1ε
−1(ωε)(j+3)/2 + c2(ωε)

(j+1)/2.

Proof. As in Lemma 2.7, define g(x,y) =
(

1
2πωε

) d
2 e−|x−y|2/2ωε, and use the

notation that f(x) = T y
j [f ](x)+Ry

j [f ](x), where R
y
j [f ](x) is the Lagrangian remainder

term from Taylor’s theorem given by (2.39). Then one has
(2.47)∥∥∥∥
∫
Rd

v(x,y)dy − u(x)

∥∥∥∥
Lp

=

∥∥∥∥
∫
Rd

g
[
T y
j [a]e

iTy
j+2[φ]/ε − aeiφ/ε

]
dy

∥∥∥∥
Lp

=

∥∥∥∥
∫
Rd

geiT
y
j+2[φ]/ε

[
a
(
1− eiR

y
j+2[φ]/ε

)
−Ry

j [a]
]
dy

∥∥∥∥
Lp

≤
∥∥∥∥
∫
Rd

∣∣∣g [a(1− eiR
y
j+2[φ]/ε

)
−Ry

j [a]
]∣∣∣ dy

∥∥∥∥
Lp

≤
∥∥∥∥
∫
Rd

g
[
|a|
∣∣∣(1− eiR

y
j+2[φ]/ε

)∣∣∣+ ∣∣Ry
j [a]
∣∣] dy∥∥∥∥

Lp

=

∥∥∥∥
∫
Rd

g
[
M2

∣∣sin(Ry
j+2[φ]/2ε)

∣∣+ ∣∣Ry
j [a]
∣∣] dy∥∥∥∥

Lp

≤
∥∥∥∥
∫
Rd

g
[
M/ε

∣∣Ry
j+2[φ]

∣∣+ ∣∣Ry
j [a]
∣∣] dy∥∥∥∥

Lp

,

where |a(x)| < M ∈ R+. Finally, we apply Minkowski’s inequality and Lemma 2.7 to
obtain that for ε < 1,
(2.48)∥∥∥∥
∫
Rd

v(x,y)dy − u(x)

∥∥∥∥
Lp

≤
∥∥∥∥
∫
Rd

g
[
M/ε

∣∣Ry
j+2[φ]

∣∣+ ∣∣Ry
j [a]
∣∣] dy∥∥∥∥

Lp

≤ M/ε

∥∥∥∥
∫
Rd

g
∣∣Ry

j+2[φ]
∣∣ dy∥∥∥∥

Lp

+

∥∥∥∥
∫
Rd

g
∣∣Ry

j [a]
∣∣ dy∥∥∥∥

Lp

≤ c1ε
−1(ωε)(j+3)/2 + c2(ωε)

(j+1)/2,

which completes the proof.
Corollary 2.9. Let a(x) ∈ Cj+1

0 (Rd → R
n) and φ ∈ Cj+3

0 (Rd → R). Define

(2.49)
u(x) = a(x)eiφ(x)/ε,

v(x,y) =
(

1
2πωε

) d
2 T y

j [a](x)e
iTy

j+2 [φ](x)/ε−|x−y|2/2ωε.

Then for p, q ≥ 1,

(2.50)

∥∥∥∥
∥∥∥∥
∫
Rd

v(x,y)dy − u(x)

∥∥∥∥
lq

∥∥∥∥
Lp

≤ c1ε
−1(ωε)(j+3)/2 + c2(ωε)

(j+1)/2,

where ‖x‖lq ≡ (
∑

i |xi|q)1/q.
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Proof. For any vector r ∈ Rn, ‖r‖lq ≤ ‖r‖l1 =
∑

i |ri|. Thus by Minkowski’s
inequality,

(2.51)

∥∥∥∥
∥∥∥∥
∫
Rd

v(x,y)dy − u(x)

∥∥∥∥
lq

∥∥∥∥
Lp

≤
∥∥∥∥∥
∑
i

∣∣∣∣
∫
Rd

vi(x,y)dy − ui(x)

∣∣∣∣
∥∥∥∥∥
Lp

≤
∑
i

∥∥∥∥
∫
Rd

vi(x,y)dy − ui(x)

∥∥∥∥
Lp

.

The result now follows by repeated use of Theorem 2.8.
These results differ slightly from those in [30, 21] because here we do not use a

“cutoff” function and we include the additional constant ω. The parameter ω plays a
similar functional role to the cutoff function in that it controls the initial beam width.
Even though we have avoided the cutoff function for the above convergence results,
one is still free to use it as a postprocessing tool (see [14]). Most importantly, our
results are generalized to the symmetric hyperbolic system case.

A function of the ω is to adjust the initial beam width in order to better approx-
imate the initial condition. However, in order for our Gaussian beam method to have
the correct asymptotic convergence, ω should be kept as a constant as ε → 0. The
use of ω is not new (see [3, 33, 17]). In particular, [17] discusses how to choose more
sophisticated initial Gaussian beam profiles.

In our numerical simulations, we found that ω = 1/20 was sufficient to resolve
the initial condition well for the range of ε values used. To clarify our use of ω, we
demonstrate numerically the improved approximation of the initial condition with
decreasing ω. This demonstration is the first numerical test in section 4. We wish to
stress that setting ω = 1 and taking ε → 0 is perfectly valid, but in some cases, ε is
quite small before the initial condition is well resolved enough to obtain a “reasonable”
result.

2.4. Lagrangian Gaussian beam summation. Using Corollary 2.9 with j =
0 and initial conditions given by (2.25), define

(2.52) ula
ε,τ (x, 0) ≡

∫
Rd

(
1

2πεω

)d/2
(

r∑
s=1

cs(q0, 0)b
τ,s(q0,p(q0, 0))

)
e

i
εT (x,q0,0)dq0,

where T is given by (2.2). Using the evolution equations for q,p, S,M , and c given
by (2.24) along with initial conditions given by (2.25), the discrete version of (2.52)
at a time t > 0 then reads as
(2.53)

ula
ε,τ (x, t) =

∑
qi
0

(
1

2πεω

)d/2
(

r∑
s=1

cs(q
i, t)bτ,s(qi,p(qi, t))

)
e

i
εT (x,qi,t)

∣∣Δqi
0

∣∣ ,
where qi ≡ q(qi

0, t), and qi
0 is an equidistant grid of points in the domain with

grid spacing
∣∣Δqi

0

∣∣. Equation (2.53) is the summation formula for our Lagrangian
Gaussian beam method corresponding to the eigenvalue Hτ . It may be performed at
any time t > 0. Performing the derivation in section 2.1 for each Hτ and summing
the results gives

(2.54) ula
ε =

∑
τ

ula
ε,τ ,
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which is our Lagrangian Gaussian beam approximate solution to (1.1). Finally, from
section 2.3, we have

(2.55)
∥∥∥∥ula

ε (x, 0)− uε(x, 0)
∥∥
lq

∥∥
Lp ≤ c1ε

−1(ωε)3/2 + c2(ωε)
1/2.

This completes the Lagrangian formulation of Gaussian beams, and we proceed to
the Eulerian formulation in the next section.

3. The Eulerian formulation. In the Lagrangian formulation of Gaussian
beams, individual beams, which may be evenly spaced over the domain when ini-
tialized, tend to spread apart over time. If one wishes to avoid this phenomenon,
they may employ an Eulerian formulation of Gaussian beams. We present one such
Eulerian formulation here.

Start by forming a vector function Φ(t,p,q) on phase space whose real part tracks
the evolution of each component of p and q by taking

(3.1) LΦ = 0 with Φ(0,p,q) = [p−∇qS0(q)]− i
ωq,

where

(3.2) L ≡ ∂t +∇pHτ · ∇q −∇qHτ · ∇p.

With the above vector function, a quick derivation gives the evolution equations and
initial conditions for the matrices −∇qΦ and ∇pΦ as

(3.3)

L(−∇qΦ) = −(∇pqHτ )(−∇qΦ)− (∇qqHτ )(∇pΦ)

with −∇qΦ(0,p,q) = ∇qqS0(q) +
i
ω I,

L(∇pΦ) = (∇ppHτ )(−∇qΦ) + (∇qpHτ )(∇pΦ)

with ∇pΦ(0,p,q) = I,

which are, by construction, the phase space equivalents to (2.27). As noticed in [14],
one may compute M(t,q,p) using the formula

(3.4) M = (−∇qΦ)(∇pΦ)−1,

where the initial condition for M given in (2.25) is satisfied by our choice of initial
condition for Φ shown in (3.1). It is important to note that one could just as well
solve the phase space equation for M which follows directly from (2.24), but by using
(3.1) instead, we trade solving a matrix of coupled Liouville equations for solving a
vector of homogeneous (uncoupled) Liouville equations.

Finally, the phase space equations for S and c follow directly from (2.24) so that,
in summary, we obtain the following collection of Liouville equations which defines
the Eulerian Gaussian beam formulation:

(3.5)

LΦ = 0

with Φ(0,q,p) = [p−∇qS0(q)]− i
ωq,

LS = ∇pHτ · p−Hτ

with S(0,q,p) = S0(q),

Lc = −{1
2Tr [∇qpHτ +M∇ppHτ ] I +N τ

}
c

with cs(0,q,p) = u0(q) · [A(q)bτ,s(q,p)],
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where N is the matrix given by (2.20) with M replaced by (−∇qΦ)(∇pΦ)−1 wherever
it appears in accordance with (3.4).

The Eulerian summation formula for eigenvalue Hτ follows from (2.52) in the
same way as it did in [14]. It reads as
(3.6)

ueu
ε,τ (x, t) =

∫
Rd

∫
Rd

(
1

2πεω

) d
2

r∑
s=1

cs(t,q,p)b
τ,s(q,p)e

i
εT (t,x,q,p)δ(Re[Φ(t,q,p)])dpdq.

Note that using (3.6) correctly is a subtle matter which we will discuss in section 3.2.
Performing the above derivation for each Hτ and summing the results gives

(3.7) ueu
ε =

∑
τ

ueu
ε,τ .

Equation (3.7) is our Eulerian Gaussian beam approximate solution to (1.1).

3.1. One-dimensional simplifications for Eulerian Gaussian beams. In
general, the disadvantage of the Eulerian formulation as compared to the Lagrangian
formulation is that it requires solving the Liouville equations (3.5) on 2d-dimensional
phase space. In general, one may take advantage of optimized numerical solvers to
help mitigate this computational cost (see, for example, [24]). However, when d = 1,
we may take advantage of the following simplifications.

For one-dimensional systems of the form (1.1), it is straightforward to show that
the eigenvalues of the dispersion matrix (2.7) will always be of the form Hτ (q, p) =
pf(q) for some function f(q). As a consequence, the eigenvectors are independent of
p. With the help of the following simple theorem, we can make use of these facts to
reduce the system (3.5) to one-dimensional computations. This trick was first used
in [11].

Theorem 3.1. The solution to

(3.8)

{
[∂t + f(q)∂q − pf ′(q)∂p]g = 0,

g(q, p, 0) = p− ∂qS0(q)

may be written as g(t, q, p) = pΓ1(t, q) + Γ0(t, q) with Γ0 and Γ1 governed by

(3.9)

{
[∂t + f(q)∂q]Γ0 = 0,

Γ0(q, 0) = −∂qS0(q)

and

(3.10)

{
[∂t + f(q)∂q − f ′(q)]Γ1 = 0,

Γ1(q, 0) = 1.

Proof. The proof is a simple substitution of the assumed form for g into (3.8).
With the above theorem, we may write the evolution equations for Eulerian

Gaussian beams as

(3.11)

[∂t + f(q)∂q]Γ0 = 0, with Γ0(0, q) = −∂qS0(q)− i
ω q,

[∂t + f(q)∂q]Γ1 = f ′(q)Γ1, with Γ1(0, q) = 1,

[∂t + f(q)∂q]S = 0, with S(0, q) = S0(q),

[∂t + f(q)∂q]c = −Eτc, with ci(0, q, p) = u0(q) · [A(q)bτ,i(q)],
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where Φ(t, q, p) = pΓ1 + Γ0 and where Eτ simplifies to

(3.12) Eτ
is = 〈bτ,i(q), D∂qb

τ,s(q)〉.

Solving (3.11) is now a one-dimensional computation which greatly increases effi-
ciency. The existence of an extension of the decomposition in Theorem 3.1 to higher-
dimensional space remains an open question.

3.2. New Eulerian summation formula. An Eulerian formulation for Gauss-
ian beams is not a new idea, but in such papers as [14], the Eulerian formulation lost
accuracy after the formation of caustics, and a semi-Lagrangian computation was
used there to avoid this problem. Here we introduce a new fully Eulerian summation
formula that also avoids this problem.

Observe that we may remove the delta-function from (3.6) by integrating over any
of the d coordinates out of the total 2d coordinates on phase space (since Re[Φ(t,q,p)]
is a d-dimensional vector), and the proper choice is the one which is least singular.
To illustrate this point, examine the one-dimensional case which has two-dimensional
phase space wherein one obtains
(3.13)

ueu
ε,τ (x, t) =

r∑
s=1

∫
R

∫
R

(
1

2πεω

) d
2

c(t, q, p)bτ,s(q, p)e
i
εT (t,x,q,p)δ(Re[Φ(t, q, p)])dqdp.

This may be written as
(3.14)

ueu
ε,τ (x, t) =

r∑
s=1

∑
pk(q)

∫
R

(
1

2πεω

) d
2

c(t, q, pk(q))b
τ,s(q, pk(q))

e
i
εT (t,x,q,pk(q))

|Re[∂pΦ(t, q, pk(q))]|dq

or
(3.15)

ueu
ε,τ (x, t) =

r∑
s=1

∑
qk(p)

∫
R

(
1

2πεω

) d
2

c(t, qk(p), p)b
τ,s(qk(p), p)

e
i
εT (t,x,qk(p),p)

|Re[∂qΦ(t, qk(p), p)]|dp,

where pk(q) and qk(p) enumerate (in k) the points where Re [Φ(t, q, p)] vanishes for
a given q or p value, respectively. Note that the value of k in pk(q) and qk(p) can
change for a given choice of q or p, respectively. In particular, k is often larger than
1 when a solution becomes multivalued. The points pk(q) and qk(p) may be found
by interpolation of the surface Re [Φ(t, q, p)] (see Remark 3.3). Either summation
formula, (3.14) or (3.15), is valid, but it makes sense to locally choose the less singular
of the two. To this end define

(3.16) Γq(a, b) = |Re[∂qΦ(t, q, p)]| and Γp(a, b) = |Re[∂pΦ(t, q, p)]|,

and let (qi, pj) be a rectangular grid on phase space with spacing hq and hp in the q
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and p coordinates, respectively. Then take

(3.17)

ueu
ε,τ (x, t) = hp

r∑
s=1

∑
qi

∑
{pk(qi)|Γp(qi,pk(qi))>Γq(qi,pk(qi))}[(

1
2πεω

) d
2 c(t, qi, pk(qi))b

τ,s(qi, pk(qi))
e

i
ε
T (t,x,qi,pk(qi))

Γp(qi,pk(qi))

]

+ hq

r∑
s=1

∑
pi

∑
{qk(pi)|Γp(qk(pi),pi)<Γq(qk(qi),pi)}[(

1
2πεω

) d
2 c(t, qk(pi), pi)b

τ,s(qk(pi), pi)
e

i
ε
T(t,x,qk(pi),pi)

Γq(qk(pi),pi)

]
.

This approach naturally avoids the lack of resolution near caustics, is fully Eulerian,
and, though appearing complicated when written out, is actually quite intuitive to
implement in code. It may also be extended to higher dimensions (see section 3.4)
and requires no manual tracking of the caustics. Notice that one could also change
coordinates in (3.13) and remove the delta-function using arbitrary coordinates, but
since we will be solving our Liouville equations on rectangularly gridded phase space,
our proposed approach is the easiest. As far as we are aware, a fully Eulerian method
such as this has not been introduced before. In the next section we recreate the
experiment in [14] to demonstrate the usefulness of this new approach.

3.3. New summation formula for the Schrödinger equation. In this sec-
tion, we present an illustrative example to demonstrate the effectiveness of our new
summation formula. One can show that Theorem 2.8 together with the initial condi-
tions for Γ1 specified by (3.11) implies that Γ1 > 0 for all t ≥ 0, which implies that
caustics will not form in the one-dimensional hyperbolic system. Because it is pre-
cisely when caustics form that our new summation formula (3.17) is most effective, we
would need at least a two-dimensional hyperbolic system with four-dimensional phase
space, which is hard to visualize and serves as a poor illustration of our method. Thus,
instead we present the following example involving the Schrödinger equation which
demonstrates not only how the method works but also that it may be applied to Eu-
lerian Gaussian beams for a wide class of problems beyond the symmetric hyperbolic
systems studied in this paper.

The example we take is Example 3 from [14]. Referring to [14] for the back-
ground, we take all parameters to be identical except instead of using ε = 1/10000,
we will use ε = 1/5000 because the images are clearer. Just as in [14], we use the
time splitting spectral method for the reference solution. After adjusting our new
summation formula (3.17) for the Schrödinger equation case, we compare the old and
new summation formulas in Figure 1. The new method clearly fares much better.

Remark 3.2. Each solution shown in Figure 1 was computed with exactly the
same data on the phase space with the difference being entirely in the postprocessing.
Also [14] did present a solution for the errors seen in Figure 1. However, the idea there
was to find the caustics manually, add beams near the caustics, and solve for them
using a semi-Lagrangian technique. Thus the method there was not truly Eulerian,
whereas our proposed method is.

To better understand the difference between (3.14) and (3.17), we note that the
two parts of (3.17) correspond to points in phase space which are evenly distributed
along the q-axis (“vertically” summed) and points evenly spaced along the p-axis
(“horizontally” summed). The difference becomes evident when we look at the actual
points along the zero set of the real part of Φ that each method is using. This is



GAUSSIAN BEAMS FOR POLARIZED WAVES 749

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

x

|Ψ
|

 

 
|Ψ

EGB(old)
|

|Ψ
TSS

|

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

x

|Ψ
|

 

 
|Ψ

EGB
|

|Ψ
TSS

|

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

x

E
rr

or

 

 
||Ψ

EGB(old)
|−|Ψ

TSS
||

||Ψ
EGB

|−|Ψ
TSS

||

Fig. 1. Top: Comparison of the Eulerian Gaussian beam (EGB) solution using the old sum-
ming method (3.14) with the reference solution computed with the time splitting spectral method
(TSS). Middle: Comparison of the solution using the new summing method (3.17) with the refer-
ence solution. Bottom: Comparison of the errors of each method.

depicted in Figure 2. Observe that the zero contour is well resolved even at the
caustics which are near q = ±.18.

Remark 3.3. In order to apply (3.17) one must numerically detect the zero set
of Re [Φ(t, q, p)]. In order to get any kind of reasonable results for the simulations
which resulted in Figure 1, one must use a method to find the zero set which is at
least second order in the step size. Our implementation used linear interpolation of
the surface Re [Φ(t, q, p)] to approximate points on the zero set.

3.4. New summation formula in higher dimension: A sketch. The idea
used in the new summation formula (3.17) may be extended to higher dimensions.
Although we have not implemented it in this paper, we present the idea.

In 2d-dimensional phase space we have the 2d coordinates (q,p), and we denote
the subsets of d coordinates as Sj = (sj1, . . . , s

j
n) where each sji equals some coordinate

in (q,p). Noting that there are
(
2d
d

)
of these subsets, we then compute the following

volumes at each point on the zero set:

(3.18) V j =
√
det(∇SjRe(Φ)),

where ∇Sj is the gradient with respect to the coordinates (sj1, . . . , s
j
n). For points

where V m ≤ V j for all j = 1, . . . , d, we perform the Eulerian sum in the coordinates
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Fig. 2. Left: The zero set along with the points selected by the new summation method (3.17)
separated by “vertical” summing and “horizontal” summing. Right top: This is a zoomed-in plot
of the left-hand plot. Right bottom: This is the same zoomed-in plot as the right top plot but using
the points selected from the old summation method (3.14). In all images, the caustics appear near
q = ±.18, and, as is seen, with the old method (right bottom plot) the caustics are not well resolved
by the selected points.

Sm. This way, the zero set of Re(Φ) is naturally divided into regions where each set
of coordinates Sj is used for the summation. This approach avoids any singularities
in the summation.

Finding the zero set in higher dimension is complicated. To see how it might be
done, consider the d = 2 case. We want to find the intersection of the zero sets of
Re [φ1(t,q,p)] and Re [φ2(t,q,p)]. Without loss of generality, assume our subset of
coordinates is q, so our goal is, given a q, to find all p where both Re [φ1(t,q,p)]
and Re [φ2(t,q,p)] are zero. Given q, we fix p1 and then vary p2 to find all values p2
where Re [φ1(t,q,p)] = 0. Finding these points is just a matter of looking for where
the sign of Re [φ1(t,q,p)] changes as we vary p2 over the Eulerian grid. Thus we can
formulate a possibly multivalued function p2(p1) which returns all values of p2 found
in (for example) increasing order. Then for each branch of this multivalued function,
we recursively use the same process on the function Re [φ2(t,q, (p1, p2(p1)))] which
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is now a one-dimensional function in p1. We can now vary p1 to find the zeros of
Re [φ2(t,q, (p1, p2(p1)))] which will give all the points on the intersection of the zero
sets of Re [φ1(t,q,p)] and Re [φ2(t,q,p)] for each q. For d > 2 dimensions, we can
use the same idea, where each recursive step drops the dimension of the search by one
until points are identified. An algorithm to perform the above may be implemented
in any programming language using recursive function calls. However, we have not
implemented the higher-dimensional case in this paper. Doing this efficiently may be
the subject of future work.

4. Numerical results. In this section we present our numerical results. These
examples include solutions to one- and two-dimensional systems, both Lagrangian
and Eulerian formulations as well as convergence results. As was discussed at the
end of section 2.3, the parameter ω should be chosen so that the initial Gaussian
beam decomposition is sufficiently accurate. This step was performed for all the
following numerical examples before the simulations were performed with various
decreasing values ε. The values chosen for ω are indicated in the parameters for
each experiment. A demonstration of this process is presented in the first numerical
simulation of section 4.1.

4.1. One-dimensional system. This numerical experiment will test the non-
strict hyperbolic case in one dimension. We use the following one-dimensional system
which we also used in [11].

In reference to (1.1) define D1 = I and A(x) by

(4.1) A−1 = RKRT

with

(4.2) K =

⎛
⎜⎜⎜⎝

a b b

b a b

b b a

⎞
⎟⎟⎟⎠ and R =

⎛
⎜⎜⎜⎝

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

⎞
⎟⎟⎟⎠ ,

where 0 < b < a and a, b, θ are functions of x. The eigenvalues and eigenvectors of the
dispersion matrix L which are orthonormal with respect to 〈·, ·〉A (defined by (2.9))
are
(4.3)⎧⎪⎨

⎪⎩
H1 = k(a− b), b1,1 =

√
a− bRv1,1,

b1,2 =
√
a− bRv1,2,

H2 = k(a+ 2b), b2 =
√
a+ 2bRv2,

where

⎧⎪⎨
⎪⎩
v1,1 = 1√

2
(1, 0,−1),

v1,2 = 1√
6
(1,−2, 1),

v2 = 1√
3
(1, 1, 1).

The coupling matrix (2.22) for H1 is

(4.4) N1 =

⎛
⎝ 0 (a−b)θ′

√
3

− (a−b)θ′
√
3

0

⎞
⎠ .

First we demonstrate our use of the ω parameter to improve the Gaussian beam
decomposition of the initial condition. Take the following parameter.

Parameters 4.1. Take a(x) = 2, b(x) = 1, and θ(x) = 10 sin(2πx). The domain is

x ∈ [−.5, .5]. The initial conditions are u0(x) = (e−40 tan(πx)2 , 0, 0), S0(x) = x. Take
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Fig. 3. Comparison of Lagrangian Gaussian beam (LGB) decomposition to the initial condition
(IC) for Parameters 4.1. Plotted are the real parts of the first component of the solution.

ε = 1/(100π), ω = 1, 1/5, 1/10, 1/15, and final time tf = 0. The number of beams is
150 evenly spaced over the domain.

Because tf = 0, in this simulation we decompose the initial condition into Gauss-
ian beams, and then immediately sum them up again. Figure 3 compares the result to
the initial condition for various values of ω. The decomposition of the initial condition
improves with decreasing ω as expected.

Next we test the full method with tf > 0 by performing a simulation with the
following parameters.

Parameters 4.2. Take a(x) = 2, b(x) = 1, and θ(x) = 10 sin(2πx). The domain is

x ∈ [−.5, .5]. The initial conditions are u0(x) = (e−40 tan(πx)2 , 0, 0), S0(x) = x. Take
ε = 1/(500π), ω = 1/20, and final time tf = .05. The number of beams is 150 evenly
spaced over the domain.

The result is illustrated in Figure 4 and shows good agreement.
For the above case when both a and b are constant in the matrix (4.2), many

terms of the Gaussian beam ODE system given by (2.24) vanish. For a numerical test
where these terms don’t vanish, take the following.

Parameters 4.3. Take a = 2(.5 + .4 sin(4πx)), b = (.5 + .4 sin(4πx)), and
θ(x) = sin(2πx). The domain is x ∈ [−.5, .5]. The initial conditions are u0(x) =

(e−40 tan(πx)2 , 0, 0), S0(x) = x. Let ε = 1/(500π) and ω = 1/20. The final time is
tf = .05. The number of beams is 150 evenly spaced over the domain.
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Fig. 4. Comparison of Lagrangian Gaussian beam method with a reference solution for Param-
eters 4.2. Plotted are the real parts of the first two components of the one-dimensional system with
constant a and b.
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Fig. 5. Comparison of Lagrangian Gaussian beam method with a reference solution for Param-
eters 4.3. Plotted are the real parts of the first two components of the one-dimensional system with
nonconstant a(x) and b(x).

The result is shown in Figure 5, and the agreement is again good.
We now verify numerically the Eulerian formulation using our new summation

method discussed in section 3.2. For this example, we use the same one-dimensional
system (4.2) with the following parameters.
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Fig. 6. Comparison of Eulerian Gaussian beam with the exact solution for Parameters 4.4.
Plotted are the real parts of the first two components of the one-dimensional system with nonconstant
a(x) and b(x).

Table 1

Convergence data for Lagrangian Gaussian beam method.

ε 1
32π

1
64π

1
128π

1
256π

Beam count 60 80 110 160 Convergence rate

L1 error 0.0286396 0.0186261 0.0111086 0.0061078 0.743

L2 error 0.0352813 0.0235541 0.0145400 0.0079232 0.716

L∞ error 0.0819148 0.0502886 0.0331277 0.0195358 0.681

Parameters 4.4. Take a = 2(.5 + .4 sin(4πx)), b = (.5 + .4 sin(4πx)), and
θ(x) = sin(2πx). The domain is x ∈ [−.5, .5]. The initial conditions are u0(x) =

(e−40 tan(πx)2 , 0, 0), S0(x) = x. Let ε = 1/(500π) and ω = 1/20. The final time is
tf = .05. The step size is h = 1/400.

Remark 4.1. Even though this computation is Eulerian, we need not perform
a simulation on phase space because of the simplifications presented in section 3.1.
Thus the domain listed in the above parameters is only one-dimensional.

The result is illustrated in Figure 6 and shows good agreement.

4.2. Convergence tests. To check convergence of the Lagrangian Gaussian
beams, we return to the one-dimensional problem of section 4.1 along with the fol-
lowing.

Parameters 4.5. Take a = 2(.5 + .4 sin(4πx)), b = (.5 + .4 sin(4πx)), and θ(x) =

sin(2πx). The domain is x ∈ [−.5, .5]. The initial conditions are u0(x) = e−40 tan(πx)2 ,
S0(x) = x. Let ω = 1/15. The final time is tf = .05.

The values for ε, the number of beams, and the errors in the L1, L2, and L∞

norms for each numerical run are shown in Table 1. The reference solutions were
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Fig. 7. Convergence of Lagrangian Gaussian beam method for Parameters 4.5. The plots show
the real part of the second component of the solution for successively smaller ε. The solid line was
computed using a converged Lax–Wendroff scheme. The dotted line was computed using Lagrangian
Gaussian beams. The errors are reported in Table 1.

Table 2

Convergence data for Eulerian Gaussian beam method.

ε 1
16π

1
32π

1
64π

1
128π

Beam count 300 400 550 800 Convergence rate

L1 error 0.1302495 0.0650149 0.0476501 0.0323120 0.648

L2 error 0.1423553 0.0743704 0.0557626 0.0378547 0.615

L∞ error 0.2793297 0.2037504 0.1317435 0.0814930 0.596

computed using a large number of points in the Lax–Wendroff solver. Note that
the number of beams used was taken to be proportional to ε−1/2. Figure 7 shows
the converging sequence of Lagrangian Gaussian beam solutions by displaying one
component of the solution for each ε used in Table 1.

To check convergence of the Eulerian Gaussian beams, a second test was per-
formed with the same parameters as listed above. The results are recorded in Ta-
ble 2. As can be seen from Tables 1 and 2, the convergence rates are all larger than
.5, but none reach or exceed 1. This is expected because Corollary 2.9 implies that
convergence should be at least O (ε1/2), as indicated by (2.55).

Remark 4.2. Although not explicitly indicated in Parameters 4.5, Δx and Δt for
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these numerical tests were chosen so that the Gaussian beam method converged for
each chosen value for ε. This was done to ensure that the convergence rates shown in
Tables 1 and 2 are strictly in terms of the decreasing ε and nothing else.

4.3. Two-dimensional Lagrangian. Next consider a nonstrict hyperbolic two-
dimensional system. This test is important since the one-dimensional case has many
simplifications that do not hold in general for higher-dimensional systems (see section
3.1). In particular, in one dimension, the Hessian matrix M term does not appear in
the matrix Eτ given by (2.20). Thus a two-dimensional test is essential.

In reference to (1.1) define

(4.5)

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/a 0 0 0

0 1/a 0 0

0 0 1/b 0

0 0 0 1/b

⎞
⎟⎟⎟⎟⎟⎟⎠

, D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where a, b > 0 are functions of x. The dispersion matrix is

(4.6) L(x,k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 ak1 ak2

0 0 −ak2 ak1

bk1 −bk2 0 0

bk2 bk1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues and eigenvectors of the dispersion matrix orthonormal with respect
to 〈·, ·〉A are
(4.7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(x,k) = −√
ab
√
k21 + k22 , b1,1(x,k) =

(
−√a

2
k2√
k2
1+k2

2

,−√a
2

k1√
k2
1+k2

2

, 0,
√

b
2

)
,

b1,2(x,k) =

(
−√a

2
k1√
k2
1+k2

2

,
√

a
2

k2√
k2
1+k2

2

,
√

b
2 , 0

)
,

H2(x,k) =
√
ab
√
k21 + k22 , b2,1(x,k) =

(√
a
2

k2√
k2
1+k2

2

,
√

a
2

k1√
k2
1+k2

2

, 0,
√

b
2

)
,

b2,2(x,k) =

(√
a
2

k1√
k2
1+k2

2

,−√a
2

k2√
k2
1+k2

2

,
√

b
2 , 0

)
.

The coupling matrix for H1 is
(4.8)

N1 =

⎛
⎜⎝ 0 1

2

√
b
a

1√
k2
1+k2

2

((∂x1a) k2 − (∂x2a) k1)

− 1
2

√
b
a

1√
k2
1+k2

2

((∂x1a) k2 − (∂x2a) k1) 0

⎞
⎟⎠
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Fig. 8. Comparison of the real part of the first and fourth components of the Lagrangian
Gaussian beam solution for Parameters 4.6. The left column is the reference solution, and the right
column is the Lagrangian Gaussian beam solution.

and N2 = −N1.
For our simulation we take the following.
Parameters 4.6. Take a(x1, x2) = .5 + .4 cos(4πx1) sin(4πx2), b(x1, x2) = 1. The

domain is (x1, x2) ∈ [−.5, .5]×[−.5, .5] periodic in x1 and x2. The initial conditions are

u0(x1, x2) = (e−10(tan(πx1)
2+tan(πx2)

2), 0, 0, 0), S0(x1, x2) = x1 + x2. Let ε = 1/(100π)
and ω = 1/20. The final time is tf = .1. The number of beams is 60×60 concentrated
near the initial conditions.

The result is plotted in Figure 8 and is compared to a reference solution computed
using the Lax–Wendroff scheme.

5. Conclusion. We have introduced a Gaussian beam method which solves the
high frequency solutions to the linear hyperbolic system (1.1) in the nonstrict hyper-
bolic case, provided that the system is spectrum preserving in the sense of Definition
2.2. In addition, we have provided convergence results for symmetric hyperbolic sys-
tems as well as an Eulerian summation formula that preserves solution accuracy even
after the formulation of caustics. Finally, we have provided numerical verification of
all methods and formulations introduced. In addition, our derivation for the cou-
pling which occurs in symmetric hyperbolic systems between Gaussian beams within
a higher-dimensional eigenspace of the dispersion matrix lays the groundwork for de-
veloping Gaussian beam methods for the case where eigenvalues have nonconstant
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multiplicity over the domain of computation. This, in turn, leads the way toward
developing Gaussian beam methods for other equations with nonconstant eigenvalue
multiplicity as well. Nonconstant eigenvalue multiplicity will be the subject of a fu-
ture paper. As a final note, we point out that within this paper we have provided only
an asymptotic justification that our Gaussian beam method converges to the exact
solution of (1.1). An elegant rigorous proof of convergence, however, is possible and
will appear shortly in a paper to follow.

Appendix A. Gaussian beams for three fundamental examples. The
critical step in our derived Gaussian beam method is in assuming the following form
for a0 in our Gaussian beam expansion:

(A.1) dtT +Hτ (x, p̃) = 0 and a0 =
r∑

s=1

cs(q, t)b
τ,s(x, p̃).

Since p̃ can be complex, it is critical that we are guaranteed a linearly independent set
of eigenvectors bτ,s(x, p̃) to use in such an expansion. Furthermore, in the subsequent
steps in the derivation of our Gaussian beam method which involve taking derivatives
of Hτ (x, p̃) and bτ,s(x, p̃), one must verify that these functions are well defined for
complex p̃ so that using the chain rule is justified. In particular, we need to show that
for a given real point p, there exists some complex neighborhood around p wherein
both Hτ (x, p̃) and bτ,s(x, p̃) are holomorphic.

Since we cannot prove, in general, that the above required details hold, one must
check them for each particular symmetric hyperbolic system being considered. To
establish the usefulness of our method, we present verification for the three important
three-dimensional physical equations considered in [28], namely the acoustic equa-
tions, Maxwell’s equations, and the elastic wave equations. To this end we begin with
some preliminaries.

A.1. Preliminaries. Central to the work to follow is a complete understanding
of the matrix

(A.2) P (k) =

⎛
⎜⎜⎜⎝

0 −k3 k2

k3 0 −k1

−k2 k1 0

⎞
⎟⎟⎟⎠ .

The three eigenvalues of (A.2) may be calculated as λ = 0,±i
√
k21 + k22 + k23 . Define

(A.3) ζ(k) =
√
k21 + k22 + k23 =

√
k · k,

where we note that ζ(k) may be complex if k is complex. In this form, the three
eigenvalues are written as λ = 0,±iζ. We now prove a lemma that establishes that
in some neighborhood in C

3 about a real point k0 = 0, ζ(k) defined by (A.3) is
holomorphic.

Lemma A.1. Suppose k0 ∈ Rd, where |k0| > 0; then the function ζ(k) =
√
k · k

is holomorphic inside the ball Bδ(k0) =
{
k ∈ C

d : |k− k0| < δ
}
, provided that δ <

(−1 +
√
2)|k0|.

Proof. We will show that we may choose an appropriate branch cut for the
square root function. We begin by starting with an arbitrary element of the ball
Bδ(k0) represented by k̃ = k0 + δk, where |k| = 1. Then

(A.4) k̃ · k̃ = |k0|2 + 2δk0 · k+ δ2k · k.
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Next

(A.5)

Re(k̃ · k̃) = |k0|2 + 2δk0 · Re(k) + δ2(|Re(k)|2 − |Im(k)|2)
≥ |k0|2 − 2δ|k0| − δ2

> 0,

where the final inequality follows from δ < (−1 +
√
2)|k0|. Thus since Re(k̃ · k̃) > 0,

we may choose the branch cut of the square root part of ζ(k) to be along the negative
real axis. Thus on Bδ(k0), ζ(k) =

√
k · k is a composition of holomorphic functions

and so is itself holomorphic.
Next we establish that in some neighborhood in C3 about a real point k0 = 0,

the eigenvectors of (A.2) are linearly independent and holomorphic. To do this, we
simply present the eigenvectors as follows.

For λ = 0 the holomorphic eigenvector is

(A.6) v0(k) = k̂ ≡ k/ζ(k).

For λ = ±iζ(k) we write the holomorphic eigenvectors in two separate regimes.
First, assuming that k1 = 0 or k2 = 0, we may write

(A.7) v±(k) =
1

ζ(k)
√

2 (k21 + k22)

(−k1k3 ∓ ik2ζ(k),−k2k3 ± ik1ζ(k), k
2
1 + k22

)
.

Second, assuming that k1 = 0 or k3 = 0, we may write

(A.8) v±(k) =
1

ζ(k)
√

2 (k21 + k23)

(−k1k2 ± ik3ζ(k), k
2
1 + k23 ,−k2k3 ∓ ik1ζ(k)

)
.

We remark that in the neighborhood Bδ(k0) of any real point k0 = 0 defined by
Lemma A.1, the vector v0(k) is a holomorphic function of k. By again using Lemma
A.1 with d = 2, we may conclude that v±(k) given by (A.7) are holomorphic inside

Bδ(k0) when δ < (−1 +
√
2)
√

k20,1 + k20,2, and v±(k) given by (A.8) are holomorphic

inside Bδ(k0) when δ < (−1 +
√
2)
√
k20,1 + k20,3. Finally, we observe that all three

eigenvectors are linearly independent, provided that k remains within Bδ(k0) simply
because the eigenvalues are all distinct in this neighborhood. Note that when k0 = 0
is real, then the vectors v0(k0),v±(k0) are orthonormal. However, orthonormality
does not hold inside of the complex ball Bδ(k0) no matter which δ is chosen.

We now have a relatively complete understanding of the eigenstructure of the
matrix (A.2), so we finish this section by introducing two new vectors which will
become useful in the following sections:

(A.9) z1(k) =
1√
2
(v+(k) + v−(k)) and z2(k) =

i√
2
(v+(k) − v−(k)) .

One may easily show that for these vectors,

(A.10) P (k)z1(k) = ζ(k)z2(k) and P (k)z2(k) = −ζ(k)z1(k),

and also that they are linearly independent, provided that v±(k) are linearly indepen-
dent. Finally, note that when k is real, z1(k) and z2(k) in (A.9) are also orthonormal.
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A.2. Acoustic equations. Referring the reader to [28] on the setup for the
acoustic equations, we summarize as follows. The dispersion matrix in block form is
given by

(A.11) L =

⎛
⎝ 0 k/ρ

kT /κ 0

⎞
⎠ ,

where ρ(x) is the density and κ(x) is the compressibility. The eigenvalues of the dis-
persion matrix are λ0 = 0 with multiplicity two and λ± = ±v(x)ζ(k) with multiplicity
one. The eigenvectors are

(A.12)

b(0,1)(x,k) =
(
z1(k)/

√
ρ, 0
)
,

b(0,2)(x,k) =
(
z2(k)/

√
ρ, 0
)
,

b+(x,k) =
(
k̂/

√
2ρ, 1/

√
2κ
)
,

b−(x,k) =
(
k̂/

√
2ρ,−1/

√
2κ
)
.

From these explicit forms for the eigenvalues and eigenvectors, it is clear that they
are holomorphic for k ∈ Bδ(k0) for any real point k0 = 0 (as discussed in section
A.1). Linear independence of the eigenvectors inside Bδ(k0) follows from the linear

independence of k̂, z1, and z2. Finally, note that (A.12) are orthonormal in 〈·, ·〉A
when k is real.

A.3. Maxwell’s equations. Referring the reader to [28] on the setup for Max-
well’s equations, we summarize as follows. The dispersion matrix for this problem is
given by

(A.13) L =

⎛
⎝ 0 − 1

εP (k)

1
μP (k) 0

⎞
⎠ ,

where P (k) is given by (A.2), ε(x) is the dielectric permittivity, and μ(x) is the
relative magnetic permeability. We will use z1 and z2, defined by (A.9), to construct
the eigenvectors of the dispersion matrix (A.13). The three eigenvalues of L, each with
multiplicity two, are given by λ0 = 0, λ+(x,k) = v(x)ζ(k), λ−(x,k) = −v(x)ζ(k)
with

(A.14) v(x) =
1√

ε(x)μ(x)

and ζ(k) defined by (A.9). Proving that these are the eigenvalues is a matter of
writing down the eigenvectors. For λ0 = 0 one has

(A.15) b(0,1) =
1√
ε
(k̂, 0), b(0,2) =

1√
μ
(0, k̂).

For λ+ = vζ one has

(A.16) b(+,1) =

(√
1

2ε
z1,

√
1

2μ
z2

)
, b(+,2) =

(√
1

2ε
z2,−

√
1

2μ
z1

)
.
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For λ− = −vζ one has

(A.17) b(−,1) =

(√
1

2ε
z1,−

√
1

2μ
z2

)
, b(−,2) =

(√
1

2ε
z2,

√
1

2μ
z1

)
.

We note that all of these eigenvectors will be linearly independent, provided that z±
are linearly independent. However, when k is complex, these vectors may not be
orthogonal. Finally, note that these eigenvectors are orthonormal in 〈·, ·〉A when k is
real.

A.4. Elastic equations. Referring the reader to [28] on the setup for the elastic
equations, we summarize as follows. The dispersion matrix for this problem is given
in block form by

(A.18) L = −

⎛
⎜⎜⎜⎜⎜⎜⎝

0 K(k)/ρ M(k)/ρ k/ρ

2μK(k) 0 0 0

μM(k) 0 0 0

λkT 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where K(k) = diag(k1, k2, k3) and

(A.19) M(k) =

⎛
⎜⎜⎜⎝

0 k3 k2

k3 0 k1

k2 k1 0

⎞
⎟⎟⎟⎠ .

By writing down the appropriate eigenvectors we will show that the eigenvalues of
the above dispersion matrix for k ∈ Bδ(k0) about a real point k0 = 0 (as discussed
in section A.1) are given by

(A.20)

λ0 = 0 with multiplicity four,

λP
± = ±vP (x)ζ(k) with multiplicity one, and

λS± = ±vS(x)ζ(k) with multiplicity two.

Note that the velocities are given by

(A.21) vP (x) =
√
(2μ(x) + λ(x))/ρ(x), vS(x) =

√
μ(x)/ρ(x),

where μ(x) and λ(x) are the Lame parameters and ρ(x) is the density (see [28] for
details). Then the eigenvectors are
(A.22)

bP
±(x,k)

=
(
k/

√
2ρ,∓2μK(k)k/

√
2(2μ+ λ),∓μM(k)k/

√
2(2μ+ λ),∓λ/

√
2(2μ+ λ)

)
,

b
Sj

± (x,k) =
(
zj/

√
2ρ,∓2

√
μ/2K(k)zj ,∓

√
μ/2M(k)zj , 0

)
, j = 1, 2,

b(0,j)(x,k) =
(
0,
√
2μK(zj)zj ,

√
μ/2M(zj)zj , 0

)
, j = 1, 2,

b(0,3)(x,k) =
(
0, 2

√
μK(z1)z2,

√
μM(z1)z2, 0

)
,

b(0,4)(x,k)

=
(
0, 2

√
λμK(k̂)k̂/

√
2(2μ+ λ),

√
λμM(k̂)k̂/

√
2(2μ+ λ),−2

√
λμ/
√
2(2μ+ λ)

)
,
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where z1 and z2 are given by (A.9) and k̂ is defined by (A.6). That equations (A.22)
are truly the eigenvectors relies on a couple of facts: First,

(A.23) 2K(k)2 +M(k)2 = kkT + k · kI.

Second,

(A.24)
k · z1 = −(kTP (k))z2/ζ(k) = 0,

k · z2 = (kTP (k))z1/ζ(k) = 0,

provided that ζ(k) = 0. That functions in (A.22) are holomorphic functions of k
inside some neighborhood Bδ(k0) of a real point k0 = 0 follows from Lemma A.1,
and the linear independence of these vectors inside Bδ(k0) follows from the linear
independence of k, z1, and z2. Finally, note that the eigenvectors given by (A.22) are
orthonormal in 〈·, ·〉A when k is real.

Appendix B. Simplification of the matrix Eτ . The purpose of this appendix
is to justify the simplification of the matrix Eτ given by (2.20) to the form shown
by (2.23). Since τ does not affect the following computation in any way, it will be
dropped from the notation for the sake of clean presentation.

Begin by restating (2.20):

(B.1) Eis = 〈Abi, A−1Dj{∇qb
s + (∇pb

s)M}ej −∇pb
s[∇qH +M∇pH ]〉.

Consider for now only the terms involving the matrix M(t,q), which, we recall, is
symmetric (see Theorem 2.6). In particular, we wish to rewrite the expression

(B.2) A−1Dj(∇pb
s)Mej −∇pb

sM∇pH.

Using Einstein summation notation, begin with the statement that the vector bs is
in the null space of A−1Djkj −HI which reads as

(B.3)
[
A−1

mlD
n
ljpn −Hδmj

]
bsj = 0.

Taking the partial derivative with respect to p gives

(B.4)
[
A−1

mlD
f
lj −

(
∂pf

H
)
δmj

]
bsj +

[
A−1

mlD
n
ljpn −Hδmj

] (
∂pf

bsj
)
= 0.

Multiplying by the matrix M gives

(B.5)
[
A−1

mlD
f
ljMfg −

(
∂pf

HMfg

)
δmj

]
bsj +

[
A−1

mlD
n
ljpn −Hδmj

] (
∂pf

bsjMfg

)
= 0.

Taking the partial with respect to p again and summing over the index g gives

(B.6)

− (∂pf
∂pgH

)
Mfgδmjb

s
j

+A−1
mlD

f
ljMfg

(
∂pgb

s
j

)
+A−1

mlD
g
ljMfg

(
∂pf

bsj
)

− (∂pf
H
)
Mfgδmj

(
∂pgb

s
j

)− (∂pgH
)
Mfgδmj

(
∂pf

bsj
)

+
[
A−1

mlD
n
ljpn −Hδmj

] (
Mfg∂pg∂pf

bsj
)
= 0.
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Because of the symmetry of M the two terms on the second line of (B.6) are the same,
and the two terms on the third line of (B.6) are also the same. Thus (B.6) may be
written as
(B.7)

A−1
mlD

g
ljMfg

(
∂pf

bsj
)− (∂pf

H
)
Mfgδmj

(
∂pgb

s
j

)
= 1

2

{(
∂pf

∂pgH
)
Mfgδmjb

s
j −
[
A−1

mlD
n
ljpn −Hδmj

] (
Mfg∂pg∂pf

bsj
)}

.

Note that the expression on the left side of (B.7) is exactly (B.2). Additionally recall
that the dispersion matrix is self-adjoint in 〈·, ·〉A so that the term A−1

mlD
n
ljpn−Hδmj

is also self-adjoint in 〈·, ·〉A. Using these facts, one has
(B.8)

〈Abi, A−1Dj(∇pb
s)Mej −∇pb

sM∇pH〉
= Amhb

i
h
1
2

{(
∂pf

∂pgH
)
Mfgδmjb

s
j −
[
A−1

mlD
n
ljpn −Hδmj

] (
Mfg∂pg∂pf

bsj
)}

= 1
2

[(
∂pf

∂pgH
)
Mfg

]
δis − 1

2

[
A−1

mlD
n
ljpn −Hδmj

]
bijAmh

(
Mfg∂pg∂pf

bsh
)

= 1
2

[(
∂pf

∂pgH
)
Mfg

]
δis

= 1
2Tr [M∇ppH ] δis.

This result shows that the off-diagonal terms (B.1) are not influenced by the matrixM .
Next derive the contribution to the diagonal of (B.1) from the terms not involving

M . One gets
(B.9)

〈Abs, A−1Dj∇qb
sej −∇pb

s∇qH〉 = 〈bs, Dj∇qb
sej〉 − 〈Abs,∇pb

s∇qH〉
= 〈bs, Dj∂qjb

s〉 − (∂qjH) 〈Abs, ∂pjb
s〉

= 1
2∂qj 〈bs, Djbs〉 − 1

2

(
∂qjH

)
∂pj 〈Abs,bs〉

= 1
2∂qj∂pjH − 1

2

(
∂qjH

)
∂pj1

= 1
2∂qj∂pjH.

In keeping with [28], define the skew symmetric matrix

(B.10) Nis = 〈Abi, A−1Dj∇qb
sej −∇pb

s∇qH〉 − 1

2
∇q · ∇pHδis.

Finally, (B.1) may be written as

(B.11)
Eis = 1

2 {∇q · ∇pH +Tr [M∇ppH ]} δis +Nis

= 1
2Tr [∇qpH +M∇ppH ] δis +Nis.

This is what we set out to show.
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[3] V. Červený, M. Popov, and I. Pšenč́ık, Computation of wave fields in inhomogeneous
media—Gaussian beam approach, Geophys. J. R. Astr. Soc., 70 (1982), pp. 109–128.

[4] L. Chai, S. Jin, and Q. Li, Semi-classical models for the Schrödinger equation with periodic
potentials and band crossings, Kinet. Relat. Models, 6 (2013), pp. 505–532.

[5] L. Dieci and T. Eirola, Preserving monotonicity in the numerical solution of Riccati differ-
ential equations, Numer. Math., 74 (1996), pp. 35–47.

[6] B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta Numer.,
12 (2003), pp. 181–266.

[7] E. Faou, V. Gradinaru, and C. Lubich, Computing semiclassical quantum dynamics with
Hagedorn wavepackets, SIAM J. Sci. Comput., 31 (2009), pp. 3027–3041.

[8] P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization limits and
Wigner transforms, Comm. Pure Appl. Math., 50 (1997), pp. 323–379.

[9] G. A. Hagedorn, Raising and lowering operators for semiclassical wave packets, Ann. Physics,
269 (1998), pp. 77–104.

[10] E. J. Heller, Frozen Gaussians: A very simple semiclassical approximation, J. Chem. Phys.,
75 (1981), pp. 2923–2931.

[11] L. Jefferis and S. Jin, Computing high frequency solutions of symmetric hyperbolic systems
with polarized waves, Commun. Math. Sci., 13 (2015), pp. 1001–1024.

[12] S. Jin, P. Markowich, and C. Sparber, Mathematical and computational methods for semi-
classical Schrödinger equations, Acta Numer., 20 (2012), pp. 1–89.

[13] S. Jin, P. Qi, and Z. Zhang, An Eulerian surface hopping method for the Schrödinger equation
with conical crossings, Multiscale Model. Simul., 9 (2011), pp. 258–281.

[14] S. Jin, H. Wu, and X. Yang, Gaussian beam methods for the Schrödinger equation in the semi-
classical regime: Lagrangian and Eulerian formulations, Commun. Math. Sci., 6 (2008),
pp. 995–1020.

[15] S. Jin, H. Wu, and X. Yang, Semi-Eulerian and high order Gaussian beam methods for
the Schrödinger equation in the semiclassical regime, Commun. Comput. Phys., 9 (2011),
pp. 668–687.

[16] S. Jin, H. Wu, X. Yang, and Z. Huang, Bloch decomposition-based Gaussian beam meth-
ods for the Schrödinger equation with periodic potentials, J. Comput. Phys., 229 (2010),
pp. 4869–4883.
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