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Abstract

We consider the Vlasov-Fokker-Planck equation with random electric field where the ran-

dom field is parametrized by countably many infinite random variables due to uncertainty.

At the theoretical level, with suitable assumption on the anisotropy of the randomness,

adopting the technique employed in elliptic PDEs [5], we prove the best N approximation

in the random space breaks the dimension curse and the convergence rate is faster than

the Monte Carlo method. For the numerical method, based on the adaptive sparse polyno-

mial interpolation (ASPI) method introduced in [2], we develop a residual based adaptive

sparse polynomial interpolation (RASPI) method which is more efficient for multi-scale lin-

ear kinetic equation, when using numerical schemes that are time dependent and implicit.

Numerical experiments show that the numerical error of the RASPI decays faster than the

Monte-Carlo method and is also dimension independent.

Key words. Dimension curse, Kinetic equation, Fokker-Planck operator, Hypocoercivity, Adaptive

sparse polynomial interpolation, Residual based greedy algorithm

1 Introduction

We consider the Vlasov-Fokker-Planck (VFP) equation with a random electric field due to

uncertainty. Typically uncertainty is modeled by a stochastic field, which by the Karhunen-

Lòeve approximation is parametrized by countably infinite random variables [29, 30]. One of

the difficulties in the development of numerical methods for such problems is the possible curse

of dimension. Sampling methods, such as the Monte-Carlo methods, are often used, which are

dimension independent. However, these methods suffer from the low convergence rate, as the

numerical errors are of O(N−
1
2 ) with N sample points. In this paper we seek a more efficient

numerical method based on best N approximation and greedy algorithms, originally developed

for elliptic equations, for uncertain VFP equation in which the electric field depends on high
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dimensional random variables in order to achieve a numerical convergence rate faster than the

Monte-Carlo methods.

There are two separated parts in this paper. In Section 3, we reviewe the best N approxi-

mation, and prove the convergence rate of it when applied to the VPF equation, under suitable

assumption on random field. We point out in Section 4, the best N approximation is a non-linear

approximation hard to implement in practice. Therefore, for the numerical method, we develop

a residual based adaptive sparse polynomial interpolation (RASPI) method, which is shown in

Section 5 by different numerical experiments to be efficient in practice and indeed converges

faster than the Monte Carlo method.

Our theoretical results in Section 3 are based on the results in a series of paper [3, 6, 7, 5]. For

uniformly distributed random variables, we seek approximate solutions in a finite dimensional

space spanned by the Legendre polynomial basis, that is u(z) ≈ uΛ(z) =
∑
ν∈Λ ωνLν(z) for

#(Λ) = N , where #(Λ) is the number of elements in Λ. The best N approximation is to

truncate the basis according to the N largest coefficient ων , so that the mean square error, which

is represented by
∑
ν /∈Λ |ων |2, can be as small as possible. It is summarized in [5] that holomorphy

and anisotropy of the solution in the random space implies that the best N approximation can

break the curse of dimension. Furthermore it converges faster than the usual Monte Carlo

Method. It has been successfully applied to elliptic equations, including parametric PDEs,

control problems, inverse problems, etc [11, 12, 23, 36, 35, 37, 8, 28]. However, since this result

requires analyticity of the solution in the random space, it hasn’t been widely used in other

PDEs, such as kinetic and related equations. Thanks to recent studies on the regularity of the

solution to most of the kinetic equations using hypocoercivity of the kinetic operators, which

give rise to high order regularity in the random space for kinetic equations with uncertainties, if

the (random) initial data and (random) coefficients have such regularities, [18, 27, 22, 39, 42, 19],

we first extend such reegularity study for the VFP equation with infinite dimensional random

variables, which gives the first error estimate for uncertain kinetic equation that is independent

of the dimension of the random variables. While for moderately high dimensionality, sparse grids

were used for uncertain kinetic equations [14], here we are interested in much high dimensions

in the the random space.

Based on the theoretical results, we develop a numerical method in Section 4, which is then

applied in Section 5 to several examples to verify that it indeed successfully breaks the curse of

dimension. The numerical method we develop is a residual based adaptive sparse polynomial

interpolation (RASPI) method, which combines the idea from the adaptive sparse polynomial in-

terpolation (ASPI) method and the residual based greedy search. The ASPI method, introduced

in [2] in line of [33, 32], is a non-intrusive method that computes a polynomial approximation by

interpolation of the solution map at N well chosen points. In particular it could be applied in

the case when the exact model is not known, and only the numerical solver is given. However, in

order to find the “well chosen” points, one needs to calculate the solution at number of sample

points much bigger than N , which can be very costly when the PDE is time dependent and

the numerical scheme is in implicit form. Actually for most multi-scale kinetic equations, one

indeed needs to use implicit schemes due to the presence of small parameter or numerical stiff-

ness [17, 20, 10, 21]. This means one needs to invert the approximate kinetic operator, for each

mesh point, which is a large matrix in each time step. As will be shown later, the inversion of

a large matrix can be avoided by computing the residual of the PDE instead. The idea of using
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residual of a PDE has been used in greedy algorithm [34] for parametric PDEs and recently also

applied to parametric control problems [26, 13], but mainly in low dimensions. Although such a

method may end up using even less basis compared to polynomial approximations, their offline

stage is potentially very costly, especially in high dimensions. The RASPI method combines the

advantages of both methods, so that one can save much computational cost by calculating the

residual of the PDE instead of the numerical solution of the PDE. At the same time, the offline

stage is still efficient in high dimensions.

We would like to point out that although all numerical experiments in Section 5 verify the

fast decay rate independent of the dimension, a rigorous proof that the ASPI and the RASPI

can achieve the convergence rate we obtained in Section 3 by the best N approximation is still

an open question.

Here is the structure of the paper. In Section 2, we introduce the VFP equation with random

electric field. In Section 3, we prove the best N approximation converges to the solution with

an error of O (N−s), for s > 1
2 , based on the result in [5]. We then in Section 4 give an

improved numerical method RASPI based on the ASPI introduced in [2], and provide explicitly

the computational cost it saved compared to the ASPI. Numerical experiments are conducted

in Section 5 to show the convergence rates for various electric fields. The paper is concluded in

Section 6.

Gallery of Notations 1.1. Define Ω = [0, l] × R to be the domain for x, v. The following

norms are defined in Ω:

- ‖h‖2 =

∫
Ω

h2 dxdv.

- ‖h‖2ω = ‖h‖2 + ‖∂vh‖2 + ‖vh‖2.

- ‖h‖2V = ‖h‖2 + ‖∂xh‖2.

- ‖h‖2V,ω = ‖h‖2ω + ‖∂xh‖2ω.

For the metric space V , accordingly, one has the following Poincare inequality,

‖∂xh‖2 ≥ Cs ‖h‖2V , Cs ≤
1

2
, for ∀h ∈ V and

∫
hdx = 0. (1.1)

Define U as the parameter space for z, and assume z is a random vector with probability density

function ρ(z), so it has a corresponding weighted L2 norm in the parameter space,

‖h‖2L2(U,dρ) =

∫
U

h2 dρ =

∫
U

h2ρ(z) dz. (1.2)

The following norms are defined in Ω× U :

- ‖h‖L∞(U,V ) = sup
z∈U
‖h(z)‖V ;

- ‖h‖L∞(U,W 1,∞
x ) = sup

z∈U

(
‖h(z)‖L∞x + ‖∂xh(z)‖L∞x

)
;

- ‖h‖2L2(U,V,dρ) =

∫
‖h(z)‖2V dρ.
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Define F to be the set of all sequences ν = (νj)j≥1 of nonnegative integers such that only finite

many νj are non-zeros. We call Λ ⊂ F an index set. The following notations are defined for

index ν:

- J(ν) = sup{j : νj > 0}, J(Λ) = sup{J(ν) : ν ∈ Λ};

- |ν| =
∑
j≥1

νj ;

- ν! =
∏
j≥1

νj !;

- ∂νzh = ∂ν1
z1 · · · ∂

νn
znh, for n = J(ν);

- For infinite dimensional vector d = (d1, d2, · · · ), dν =
∏
j≥1

d
νj
j .

2 The parametric Vlasov-Fokker-Planck equation

Consider the following parametric Vlasov-Fokker-Planck equation,

ε∂tf + v∂xf − ∂xφ∂vf =
1

ε
Qf, x, v ∈ Ω = (0, l)× R (2.1)

for ε ≤ 1 (without loss of generality), with periodic condition on x ∈ [0, l], and initial data

f(0, x, v, z) = f0(x, v, z). Here f represents the probability density distribution of particles at

position x with velocity v, ε represents the rescaled mean free path. F is the Fokker Planck

operator that reads

Qf = ∂v

(
M∂v

(
f

M

))
, (2.2)

with the global Maxwellian M ,

M(v) =
1√
2π
e−
|v|2

2 . (2.3)

φ(t, x, z) is a given parametric potential that reads,

φ(t, x, z) = φ̄(t, x) +
∑
j≥1

zjφj(t, x), (2.4)

and E(t, x, z) = −∂xφ is the parametric electric field that reads,

E(t, x, z) = Ē(t, x) +
∑
j≥1

zjEj(t, x) = ∂xφ̄(t, x) +
∑
j≥1

zj∂xφj(t, x). (2.5)

Here z ∈ U = [−1, 1]∞ is an infinite dimensional parameter. We assume assume z to be i.i.d

random variable following the uniform distribution on U , although other distributions can also

be used. φ̄(t, x) and Ē(t, x) are the expectations of φ,E respectively. We furthermore define the

corresponding weighted norm L2(U, dρ) ,

dρ =
⊗
j≥1

dzj
2
. (2.6)
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In addition, assume φ(t, x, z) and E(t, x, z) converge to φ∞(x, z) and E∞(x, z) respectively

uniformly in time. That is, for ∀ε > 0, there exists T , such that

sup
z∈U
‖φ(t, x, z)− φ∞(x, z)‖L∞x ≤ ε, sup

z∈U
‖E(t, x, z)− E∞(x, z)‖L∞x ≤ ε, for ∀t ≥ T. (2.7)

It is easy to check that

F (x, v, z) = e−φ
∞
M(v) (2.8)

is the stationary solution of (2.1), also called the global equilibrium. Let

h(t, x, v, z) =
f(t, x, v, z)− F (x, v, z)√

M(v)
(2.9)

be the perturbative distribution function around F, and furthermore define the perturbative

density and perturbative flux as follows,

σ =

∫
h
√
M dv, u =

∫
hv
√
M dv. (2.10)

Furthermore, in this paper, we will only focus on the randomness that comes from the electric

random field. Therefore, we assume the following condition on the initial data.

Assumption 2.1. Assume there is no initial random perturbation around the steady state

F(x,v,z), and the initial perturbative mass is zero. That is, the initial data satisfies the following

two equations:

f(0, x, v, z) = F (x, v, z) + h(0, x, v)
√
M(v); (2.11)∫

h(0, x, v)
√
M(v)dxdv = 0. (2.12)

It is easy to check that h satisfies,

ε∂th+ v∂xh−
1

ε
Lh = −E

(
∂v −

v

2

)
h+ v

√
M (E − E∞) e−φ

∞
, (2.13)

where L is the linearized Fokker-Planck collision operator,

Lh =
1√
M
∂v

(
M∂v

(
h√
M

))
, (2.14)

which satisfies the local coercivity property [9],

−〈Lh, h〉 ≥ λ ‖(1−Π)h‖2ω , (2.15)

where λ < 1 is a constant, Π is the projection operator onto the null space of L,

Πh =

(∫
R
h dv

)√
M. (2.16)

We call equation (2.13) the microscopic equation.

3 Decay rate of the best N approximation

In this section, we first review the best N approximation, and then study the convergence

rate of this method applied to the Vlasov-Fokker-Planck equation with random electric field.
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3.1 The best N approximation and our result

Since the solution f(t, x, v, z) = F +
√
Mh(t, x, v, z), where F and M are given in (2.8) and

(2.3) respectively, as long as one gets the approximate solution for h, then one can easily obtain

the approximation solution for f . Hence we seek approximate solution hΛ in a finite dimensional

space,

PΛ = {hΛ : hΛ =
∑
ν∈Λ

hν(t, x, v)Lν(z)}, (3.1)

where Λ is an index set with infinite dimensional vectors ν. Here Lν(z) is the orthonormal

Legendre polynomial which forms a basis in L2(U, dρ) such that,

Lν =
∏
j≥1

Lνj (zj),

∫ 1

−1

Lk(zj)Ll(zj)
dzj
2

= δkl. (3.2)

If h solves (2.13), then naturally one has the projection of the solution h onto PΛ,

PΛh =
∑
ν∈Λ

(∫
U

hLνdρ

)
Lν :=

∑
ν∈Λ

hνLν = argmin
hΛ∈PΛ

‖h− hΛ‖L2(U,V,dρ) . (3.3)

The best N approximation is a form of nonlinear approximation that searches for ν ∈ Λ according

to the largest N coefficients ‖hν‖V . It is proved in [5] that the decay rate of such approximation

depends on the holomorphy and anisotropy of the solution in the random space, as stated in the

following theorem.

Theorem 3.1 (Corollary 3.11 of [5]). Consider a parametric equation of the form

P(f, a) = 0, (3.4)

with random field a = ā(x) +
∑
j≥1 zjψj(x) ∈ X, z ∈ U , where X is certain space of x. Assume

the solution map a→ f(a) admits a holomorphic extension to an open set O ∈ X which contains

a(U) = {a(z) : z ∈ U}, with uniform bound

sup
a∈O
‖f(a)‖V ≤ C. (3.5)

If in addition
(
‖ψj‖X

)
j≥1
∈ `p(N) for some p < 1, then for the set of indices Λn that corresponds

to the n largest fν =
∥∥∫ fLνdρ∥∥V , one has,∥∥∥∥∥f − ∑

ν∈Λn

fνLν

∥∥∥∥∥
L2(U,V,dρ)

≤ Cp
(n+ 1)s

, s =
1

p
− 1

2
(3.6)

where Cp :=
∥∥(‖fν‖V )

ν∈F

∥∥
`p

.

In order to apply the above theorem, one needs to prove the holomorphy of the solution map.

In the case of kinetic equation, since we are only dealing with a real function, the holomorphy

of a solution map is equivalent to: There exists constant B and Cj , such that∥∥∥∂kzjh∥∥∥2

V
≤ BCkj k!, for any nonnegative integer k. (3.7)

This result will be proved in Theorem 3.4. In the following context, ν always represents an

infinite dimensional index, ej is an infinite dimensional vector with only the j-th component

being 1 and all others zeros. ∂ν represents ∂νz for the convenience of writing. Theorems 3.4 and

3.5 are both based on the following assumptions on E(t, x, z) and {Ej(t, x)}j≥1.
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Assumption 3.2. Assume E(t, x, z) = Ē(t, x)+
∑
j≥1 zjEj(t, x) satisfies the following assump-

tions,

sup
t≥0
‖Ej(t)‖L∞(U,W 1,∞

x ) ≤ Cj , (Cj)j≥1 ∈ l
p(N), for some p ≤ 1 (3.8)

‖E(t)‖L∞(U,W 1,∞
x ) ≤

∥∥Ē(t)
∥∥
W 1,∞
x

+
∑
j≥1

‖Ej(t)‖W 1,∞
x
≤ CE , for all t, CE ≤

λCs
8
. (3.9)

There exists a continuous function D(t), such that∥∥∥∂ν ((E − E∞) e−φ
∞
)∥∥∥2

L∞(U,V )
≤ D(t)(Kνν!)2, for all t,

∫ ∞
0

D(s)dt = D̄, (3.10)

where (Kj)j≥1 ∈ l
p(N), for some p ≤ 1.

Remark 3.3. If one uses the Karhunen-Loève expansion to parametrize the random field,

then the smoothness properties of the covariance function for the random field determine the

`p−summability of the random variables. For random field a(ω, x) ∈ L2(Ω, dP ;L∞(D)) in a

polyhedral domain D ⊂ Rd with mean field Ea(x) =
∫

Ω
a(ω, x)dP (ω) and covariance Va(x, x′) =∫

Ω
(a(ω, x)− Ea(x)) (a(ω, x′)− Ea(x′)) dP (ω), if the stationary covariance ga(z) is analytic out-

side of z = 0, and Ck at zero, where Va(x, x′) = ga (|x− x′|), then it is `d/k-summable. See

[38, 40] for details.

In the above assumptions, equation (3.8) guarantees the anisotropy of E. (3.9) - (3.10) are

required for the analyticity of the solution in the random space. Basically, it requires E to be

bounded and converges to E∞ fast enough so that the improper integral D(t) exists.

We first state our Theorem about the analyticity of h.

Theorem 3.4. Under Assumptions 2.1 and 3.2 the ν-th derivative of the perturbative solution

to (2.13) in the random space can be bounded as follows,

‖∂νh(t)‖L∞(U,V ) ≤ Q(t) (|ν|!) dν , (3.11)

where d is an infinite dimensional vector with the j-th component

dj = max

{√
20Cj
λCs

,Kj

}
, (3.12)

where Cj ,Kj are defined in (3.8), (3.10) respectively; Q(t) is a function exponentially decaying

in t,

Q(t) = min

{
1

ε
e−

ξ

ε2
t, e−ξt

}
2

‖h(0)‖V +

√
λD̄

CE

 , (3.13)

for ξ = λCs
10 , Cs, λ, D̄ are constants defined in (1.1), (2.15), (3.10) respectively.

By taking ν = kej , one can derive the inequality (3.7), which implies the analyticity of h in

the random space. Therefore, based on the above theorem and assumptions, we can conclude

that the best N approximation converges independent of dimensionality of the parameter z and

faster than the Monte Carlo method, as stated in the following theorem:
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Theorem 3.5. If E(t, x, z) satisfies Condition 3.2, then the approximate solution obtained by

the best N approximation converges to the exact solution with the error,

‖f − fΛ‖L2(V,U,dρ) ≤
Cp

(n+ 1)s
, s =

1

p
− 1

2
, (3.14)

where p ≤ 1 depends on (3.9), Cp = ‖(‖fν‖V )ν∈F‖`p <∞.

Remark 3.6. How large is Cp?

- For the case when
∥∥d/√3

∥∥
`1
< 1:

[6] gives a way to calculate the upper bound for Cp when
∥∥d/√3

∥∥
`1
< 1. First by Rodrigre’s

Formula (See Section 6 of [6]),

‖hν‖V =

∥∥∥∥∫ hLνdρ

∥∥∥∥
V

=

(√
3
)−ν
ν!

‖∂νh‖L∞(U,V ) .

Then by the estimate in (3.11), one has

‖hν‖V ≤ B(t)
|ν|!
ν!

(
d√
3

)ν
.

According to Theorem 7.2 of [6], let α = d√
3

be an infinite dimensional vector, then if

‖α‖`1 ≤ 1, and α ∈ `p, one has

‖(‖hν‖V )ν∈F‖`p ≤
2

η
exp

(
2(1− p)(J(η) + ‖α‖p`p)

p2η

)
(3.15)

where η =
1−‖α‖`1

2 , J(η) is the smallest positive integer such that
∑
j≥J |αj |p ≤

η
2 .

- For the case
∥∥d/√3

∥∥
`1
≥ 1:

There is no explicit expression for the upper bound of Cp (See Remark 3.22 of [5]).

3.2 Proof of Theorem 3.4

Define a Lyapunov functional

Gνi = θi

( ε
2
‖∂νh‖2V

)
+

1

2ε

(
ε 〈∂νu, ∂x∂νσ〉+

1

2
‖∂νσ‖2

)
, i = 1, 2. (3.16)

with θ1 = 8
7λ , θ2 = 8

7λε2 . Similar Lyapunov functional has been introduced in [15] for the

deterministic nonlinear Vlasov-Poisson-Fokker-Planck (VPFP) system with ε = 1. For the case

where the uncertainty and scaling parameter ε are involved, [22] gives a modified Lyapunov

functional, which is more suitable for different scaling of ε. Actually, Gνi is equivalent to ‖∂νh‖2V .

Since by Young’s inequality, one has

−ε
2

2
‖∂ν∂xu‖2 −

1

2
‖∂νσ‖2 ≤ ε 〈∂ν∂xu, ∂νσ〉 ≤

ε2

2
‖∂ν∂xu‖2 +

1

2
‖∂νσ‖2 ,

so,

− ε
4
‖∂ν∂xu‖2 ≤

1

2ε

(
−ε 〈∂ν∂xu, ∂νσ〉+

1

2
‖∂νσ‖2

)
≤ ε

4
‖∂ν∂xu‖2 +

1

2ε
‖∂νσ‖2 .
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Because that ‖u‖2 , ‖σ‖2 ≤ ‖h‖2, the above inequality becomes

− ε
4
‖∂νh‖2V ≤

1

2ε

(
−ε 〈∂ν∂xu, ∂νσ〉+

1

2
‖∂νσ‖2

)
≤ 1

2ε
‖∂νh‖2V . (3.17)

Plug the above inequalities to the definition of Gνi , one ends up with

for θ1 =
8

7λ
,

ε

2λ
‖∂νh‖2V ≤ G

ν
1 ≤

3

2λε
‖∂νh‖2V (3.18)

for θ2 =
8

7λε2
,

1

2λε
‖∂νh‖2V ≤ G

ν
2 ≤

3

2λε
‖∂νh‖2V . (3.19)

Lemma 3.7. Under Condition 3.2, for ∀z ∈ U , the following estimates hold,

for |ν| = 0 : ∂tG
0
i +

η

ε
‖h‖2V ≤

1

εCE

∥∥∥∂ν ((E − E∞) e−φ
∞
)∥∥∥2

V
; (3.20)

for |ν| > 1 : ∂tG
ν
i +

η

ε
‖h‖2V ≤

2

λε

∑
νj 6=0

ν2
jCj

∥∥∂ν−ejh∥∥2

V
+

1

εCE

∥∥∥∂ν ((E − E∞) e−φ
∞
)∥∥∥2

V
,

(3.21)

where i = 1, 2, η = Cs
10 , and

ε

2λ
‖∂νh‖2V ≤ G

ν
1 ≤

3

2λε
‖∂νh‖2V ,

1

2λε
‖∂νh‖2V ≤ G

ν
2 ≤

3

2λε
‖∂νh‖2V . (3.22)

Proof. See Appendix A.

Lemma 3.8. For fixed z, the following estimates hold,

Gνi (t) ≤ (|ν|!)2
(2d)2ν

(
G0
i (0) +

D̄

εCE

)
− η

ε

∫ t

0

‖∂νh(s)‖2V ds, (3.23)

where d = (d1, d2, · · · ) with dj = max
{√

2Cj
λη ,Kj

}
.

Proof. First for |ν| = 0, by (3.20) in Lemma 3.7, one has

G0
i (t) ≤ G0

i (0) +
1

εCE

∫ t

0

D(s)ds− η

ε

∫ t

0

‖h(s)‖2 ds, (3.24)

which satisfies (3.23). Then by induction, assume the following holds,

G
ν−ej
i (t) ≤ ((|ν| − 1)!)

2
(2d)2(ν−ej)

(
G0
i (0) +

D̄

εCE

)
− η

ε

∫ t

0

∥∥∂ν−ejh(s)
∥∥2

V
ds. (3.25)

By integrating (3.21) over t, one has,

Gνi (t) ≤ Gνi (0)− η

ε

∫ t

0

‖∂νh(s)‖2V ds+
2

λε

∑
νj 6=0

ν2
jCj

∫ t

0

∥∥∂ν−ejh(s)
∥∥2

V
ds+

D̄

εCE
(Kνν!)2.

(3.26)

Since the initial perturbation h is independent of the parameter z, so Gνi (0) = 0 for ∀|ν| > 0.

Multiplying
2ν2
jCj
λη to (3.25), and summing it over νj 6= 0, then combining it with (3.26), one gets

Gνi (t) +
∑
νj 6=0

2ν2
jCj

λη
G
ν−ej
i (t) ≤

∑
νj 6=0

2ν2
jCj

λη
((|ν| − 1)!)

2
(2d)2(ν−ej)

(
G0
i (0) +

D̄

εCE

)

+
D̄

εCE
(Kνν!)2 − η

ε

∫ t

0

‖∂νh(s)‖2V ds . (3.27)
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Since Gν−ej (t) is always positive, we can omit the second term on the LHS. In addition, note

that
2Cj
λη (2d)2(ν−ej) ≤ (2d)2ν/2, so

D̄

εCE
(Kνν!)2 +

∑
νj 6=0

2ν2
jCj

λη
((|ν| − 1)!)

2
(2d)2(ν−ej)

(
G0
i (0) +

D̄

εCE

)

≤ D̄

εCE
(dνν!)2 + (2d)2ν 1

2

(
G0
i (0) +

D̄

εCE

)
((|ν| − 1)!)

2
∑
νj 6=0

ν2
j

≤ D̄

εCE
(dνν!)2 + ((2d)ν |ν|!)2 1

2

(
G0
i (0) +

D̄

εCE

)
≤((2d)ν |ν|!)2

(
1

2

(
G0
i (0) +

D̄

εCE

)
+

1

2

D̄

εCE

)
≤ ((2d)ν |ν|!)2

(
G0
i (0) +

D̄

εCE

)
(3.28)

where the second inequality is because of
∑
νj 6=0 ν

2
j ≤ |ν|2, and the third inequality holds for

any |ν| > 0. Plugging (3.28) into (3.27), and omitting the second term on the LHS give (3.23)

complete the induction and consequently the proof for Lemma 3.8.

From Lemma 3.8, and the equivalent relationship between Gν1 and ‖∂νh‖2V in (3.22), (3.23),

one has

ε

2λ
‖∂νh‖2V ≤ (|ν|!(2d)ν)

2

(
3

2λε
‖h(0)‖2V +

D̄

εCE

)
− η

ε

∫ t

0

‖∂νh(s)‖2V ds,

‖∂νh‖2V ≤ (|ν|!bν)
2

(
3

ε2
‖h(0)‖2V +

2λD̄

ε2CE

)
− 2λη

ε2

∫ t

0

‖∂νh(s)‖2V ds. (3.29)

By Grownwall’s inequality

‖∂νh(t)‖V ≤
2

ε
|ν|!bν

‖h(0)‖V +

√
λD̄

CE

 e−
ξt

ε2 , (3.30)

for ξ = λCs
10 . Similarly, for Gν2 , by (3.22) and (3.23), one obtains

‖∂νh(t)‖2V ≤ (|ν|!bν)2

(
3 ‖h(0)‖2V +

2λD̄

CE

)
− 2λη

∫ t

0

‖∂νh(s)‖2V ds.

Grownwall’s inequality then implies,

‖∂νh(t)‖V ≤ 2|ν|!bν
‖h(0)‖V +

√
λD̄

CE

 e−ξt, (3.31)

which gives the conclusion in Theorem 3.4.

4 The Numerical Method

The convergence rate obtained in Theorem 3.5 is based on the best N approximation, which

means one needs to calculate all coefficients of the Legendre series hν in order to find the N

largest ‖hν‖V . In practice, one needs a more efficient numerical method to find the best basis.

Based on the greedy search method introduced in [2], in line of [33, 32], we formulate a new

residual based adaptive sparse polynomial interpolation (RASPI) method. We will first introduce

10



the framework of the adaptive sparse polynomial interpolation (ASPI) method in Section 4.1.

Then in Section 4.2 the new residual based method will be introduced, and the reason why this

method is computationally efficient, particularly for time dependent kinetic equation when ε is

small, is also explained in Section 4.2. Finally a comparison of the computational cost between

the ASPI and the RASPI methods for general kinetic equations is given in Section 4.3.

In this section, we assume ‖Ej(t, x)‖V decreases as j increases for all t ≥ 0.

4.1 The adaptive sparse polynomial interpolation (ASPI)

The ASPI is a numerical method that approximates the solution map by a sparse polynomial

interpolation at well chosen points. Let us first define the representation of infinite dimensional

random variable and polynomial interpolation bases. For a sequence Γ = (βk)k≥0 of distinct

points in [−1, 1], and index ν = (νj)j≥1, define points

zν = (βνj )j≥1 (4.1)

and hierarchical Lagrange basis

Hν(z) =
∏
j≥1

lνj (zj), l0 = 1, lk(β) =

k−1∏
m=0

β − βm
βk − βm

. (4.2)

Note that

Hν(zν) = 1, for all ν ∈ F , Hν(zν̃) = 0, for all ν̃ < ν. (4.3)

Here ν̃ ≤ ν if and only if all components of ν̃ are smaller than or equal to ν; ν̃ < ν represents

that ν ≤ ν and ν̃ 6= ν. We call the index set {Λk}k≥1 monotone if Λk ⊂ Λk+1 for all k. We

further call index set Λ ⊂ F downward closed,

if ν ∈ Λ, ν̃ ≤ ν, then ν̃ ∈ Λ. (4.4)

Secondly, when is the infinite dimensional polynomial interpolation well defined? Actually

for a downward closed set Λ ⊂ F , given the grid zΛ and the corresponding solution fΛ on the

grids,

zΛ := {zν , ν ∈ Λ}, fΛ := (fν)ν∈Λ := (f(t, x, v, zν))ν∈Λ , (4.5)

there exists a unique polynomial

IΛ(t, x, v, z) =
∑
ν∈Λ

αν(t, x, v)Hν(z), (4.6)

such that IΛ has the same value as fΛ at zΛ. Namely, IΛ is the polynomial interpolation

of fΛ at interpolating points zΛ. From the above framework, the multi-dimensional polynomial

interpolation is uniquely determined by the sequence Γ and index set Λ. There are three questions

to be answered at this point.

• How to choose the sequence Γ = (βk)k≥0;

• How to calculate IΛ if given zΛ and fΛ;

11



• How to find the Λn with #(Λn) = n, such that IΛn is the closest to f(t, x, v, z),

where #(Λn) represents number of elements in Λn.

Choosing different sequences will result in different stability and accuracy of the interpola-

tion mapping, which is characterized by the Lebesgue constant. The Leja sequence is usually

considered a good choice, which starts with an arbitrary β0 ∈ [−1, 1], and then defined by,

βk := argmax

{
k−1∏
l=0

|β − βl| : β ∈ [−1, 1]

}
. (4.7)

[2] proved that if the Lebesgue constant of a univariate polynomial interpolation on sequence

{βl}kl=0 is O
(
(k + 1)θ

)
, then the Lebesgue constant λΛ of polynomial interpolation on zΛ is

O(#(Λ)θ+1) for any monotone set Λ. [4] proved the Lebesgue constant on the Leja sequences

is less than 3(k + 1)2 log(k + 1), which implies the Lebesgue constant of the multidimensional

polynomial interpolation on zΛ is less than O
(
#(Λ)4

)
.

After determining the sequence Γ, given arbitrary Λn = {ν1, · · · , νn}, and the corresponding

zΛn , fΛn , since the interpolation polynomial satisfies
Hν1

(zν1
) · · ·Hνn(zν1

)
...

Hν1(zνn) · · ·Hνn(zνn)



αν1

...

ανn

 =


fν1

...

fνn

 , (4.8)

one can invert the first matrix to get the coefficient (αν)ν∈Λn
. In general, one needs to do the

inversion all over again if the index Λn changes.

However, if {Λn}Nn=1 is monotone and downward closed, there is a progressive construction

of the interpolation operator, which allows to avoid inverting a matrix. If Λn = Λn−1 ∪ {νn},
then

IΛn = IΛn−1
+ ανnHνn , ανn = fνn − IΛn−1

(zνn) , with IΛ0
= 0. (4.9)

Actually, one can prove this by induction. For n = 1, IΛ1 = fν1 is indeed the interpolation

on zν1
. Assume IΛn−1

constructed in the above way is the interpolation on zΛn−1
, then since

ν1 < · · · < νn−1 < νn, so by (4.3), Hνn(zνk) = 0, for k ≤ n− 1; Hνn(zνn) = 1. Therefore

k ≤ n− 1 : IΛn(zνk) = IΛn−1
(zνk) = fνk , (4.10)

k = n : IΛn(zνn) = IΛn−1
(zνn) + (fνn − IΛn−1

(zνn)) = fνn , (4.11)

which implies that IΛn is the interpolation operator on zΛn .

In order to use this progressive construction to find the interpolation operator, we require

the index set {Λn}Nn=1 to be monotone and downward closed, that is,

Λn+1 = Λn ∪ {νn+1}, νn ∈ N(Λn), N(Λn) = {ν /∈ Λn,Λn ∪ {ν} is downward closed}

where we call N(Λn) the neighborhood of index set Λn.

Now we come to the last question. Assume we already determined Λn, in order to find the

best Λn+1, how should one select the optimal νk+1 from the neighborhood of Λn? First we

notice for infinite dimensional z, #{N(Λk)} is also infinite. Even for finite dimension z ∈ Rd,
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#{N(Λk)} ∼ O(kd), which is too big to search numerically. So we introduce anchored neighbors

Ñ(Λ),

Ñ(Λ) = {ν ∈ N(Λ) : νj = 0 if j < j(Λ) + 1}, j(Λ) = max{j : νj > 0 for some ν ∈ Λ} (4.12)

The reason why searching the anchored neighbor makes sense is because we assume at the

beginning of this section ‖Ej(t, x)‖W 1,∞
x

decreases as j increases, then from Theorem 3.4, one

notices the upper bound of
∥∥∂zjh(t, z)

∥∥
V

decreases as j increases, which formally indicates that

zj becomes less sensitive when j increases. So if for all ν ∈ Λn, the components larger than and

equal to (j(Λn) + 1) of zν are the same, then when searching for the next interpolation point,

one should first consider adding a point along (j(Λk) + 1)-st component before all the other

components larger than (j(Λk) + 1).

Note that because of the monotonicity of Λn, one can actually construct Ñ(Λn) based on

Ñ(Λn−1) in the following way. Define

N̂(Λn) = {ej(Λn)+1, νn + ej , j ≤ j(νn)}, j(ν) = max{j : νj > 0} (4.13)

N∗(Λn) = N̂(Λn)\
(
Ñ(Λn−1) ∩ N̂(Λn)

)
, (4.14)

then

Ñ(Λn) = Ñ(Λn−1) ∪N∗(Λn). (4.15)

Here is an example that shows the anchored neighbors in three dimension. Since we assume

(a) (b) (c)

Figure 1: The blue dots represent the anchored neighbors of Λ0 = {z∗0},Λ1 = {z∗0, z∗1},Λ2 = {z∗0, z∗1, z∗2}
for z = (z1, z2, z3) ∈ [−1, 1]3.

the direction z1 is more important than z2, z3, so in Figure 1(a), we explore more points in

the direction z1 first, so Ñ({(0, 0, 0)}) = {(1, 0, 0)}. Then in Figure 1(b), since we already

have 2 points on the z1-axis, instead of exploring more points on the z1 direction, we start

to explore the z2 direction, so Ñ({(0, 0, 0), (1, 0, 0)}) = {(2, 0, 0), (0, 1, 0)}. Assume after doing

greedy search on Ñ(Λ1), one gets ν2 = (0, 1, 0). Then in Figure 1(c), Since one has two points

on z1, z2 respectively, so one starts to explore more points on the third direction z3 at this step.

so Ñ({(0, 0, 0), (1, 0, 0), (0, 1, 0)}) = {(2, 0, 0), (0, 2, 0), (1, 1, 0), (0, 0, 1)}
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Note that the size of N∗(Λn) depends on j(νn), and j(νn) ≤ n, so

#(Ñ(Λn)) ≤ #(Ñ(Λn−1)) + n, (4.16)

which gives the size of Ñ(Λn) is at most

#(Ñ(Λn)) ≤ 1

2
n(n− 1) ∼ O(n2). (4.17)

After one constructed the anchored neighbors of Λn, one searches for the ν ∈ Ñ(Λn) that

maximizes the interpolation error at the new grid point. In summary, we have the following

algorithm.

Algorithm 4.1. (ASPI) [2]

– Step 0. Construct the Leja sequence Γ = {βj}j≥0 starting from 0 as in (4.7) and the basis

{lk(β)}k≥1 as in (4.2).

– Step 1. Define Λ1 = {0} as the null multi-index and the corresponding polynomial inter-

polation IΛ1(z) = f(zν1).

– Step n. Assume we already have Ñ(Λn−1), Λn and IΛn .

- Construct N̂(Λn) by (4.13), then N∗(Λn) can be constructed through (4.14), Ñ(Λn)

through (4.15).

- νn+1 = argmax
ν∈Ñ(Λn)

∥∥IΛn+1 − IΛn
∥∥
L2(U,V,dρ)

= argmax
ν∈Ñ(Λn)

‖αν‖V ‖Hν‖L2(U,dρ),

where αν(t, x, v), Hν(z) are defined in (4.9), (4.2) respectively.

After step 0, the polynomial interpolation will be uniquely depending on the index set Λ.

In step n, it gives the way to find the best Λn such that IΛn(t, x, v, z) is closest to f(t, x, v, z)

in the L2(U, V, dρ) space. In the greedy search step, the reason why
∥∥IΛn+1

− IΛn
∥∥
L2(U,V,dρ)

=

‖αν‖V ‖Hν‖L2(U,dρ) is because of the progressive construction of the polynomial interpolation,

which is interpreted in (4.9). argmaxν∈Ñ(Λn) is obtained by directly searching for the maximal

value.

Furthermore, note that when calculating αν , one actually needs to calculate the function value

f(T, x, v, zν) at point zν . Although the final approximate solution f(T, x, v, z) is a polynomial

interpolating on N points f(zν1
), · · · , f(zνN ), in order to get the best zνn+1

(1 ≤ n ≤ N), one

needs to do the greedy search on Ñ(Λn), which includes calculating f(zν) for all ν ∈ Ñ(Λn).

Since most PDEs have no analytic solution, the computational cost of obtaining the solution at

sample point zν highly depends on the numerical algorithm. We will see in the next section, the

ASPI method is computationally inefficient for time dependent kinetic equation with small ε.

4.2 The residual based adaptive sparse polynomial interpolation (RASPI)

As stated at the end of the previous section, we will explain in more details in this section

why the ASPI is not as efficient as the RASPI for general linear kinetic equation. The general

form of a kinetic equation without uncertainty reads,

∂tf + v∂xf =
1

ε
Q(f), (4.18)
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where f(t, x, v) is the probability density distribution of particles, Q(f) describes the collision

between particles. The parameter ε represents the dimensionless mean free path or the Knudsen

number, which connects the microscopic kinetic model to the macroscopic hydrodynamic model

when ε → 0. Kinetic equations give a uniform description of both mesoscopic and macroscopic

physical quantities for all range of ε. A numerical scheme that preserves the asymptotic tran-

sitions from kinetic equations to their macroscopic limits in the numerically discrete space is

called Asymptotic Preserving (AP) scheme [16, 17]. For numerical stability independent of ε,

the numerical scheme that is AP usually is implicit for the discretization of Q(f). Let fm ∈ RM

be the discretized vector for f(mδt, x, v), where δt is the time step, then the general form of the

scheme for a linear Q(f) = Bf with B independent of f is,

fm+1 − fm

δt
+Afk − 1

ε
Bm+1fm+1 = 0, (4.19)

where A,Bm+1 ∈ RM×M are constant matrices.

For the kinetic equation with uncertainty in the collision operator,

∂tf + v∂xf =
1

ε
Q(f, z), (4.20)

for ∀z ∈ U , the general form of the scheme is

fm+1(z)− fm(z)

δt
+Afm(z)− 1

ε
Bm+1(z)fm+1(z) = 0. (4.21)

For example, the VFP equation (2.1) we considered in this paper, if one moves the forcing term

E∂vf to the RHS of the equation as is typically done in the high field regime [20], then the

collision operator becomes,

Q(f, z) = ∂v ((v + E)f + ∂vf) .

That’s why in the most general case, the numerical operator B depends on both z and t. Equiv-

alently, (4.21) can also be written as,

fm+1(z) =

(
1

δt
− 1

ε
Bm+1(z)

)−1(
fm(z)

δt
−Afk(z)

)
. (4.22)

This means that in order to calculate f(T, x, v, zν) at T = Ntδt, one needs to invert an RM×M

matrix for Nt times, where M = Nx × Nv with Nx, Nv being the number of grid points in x

and v respectively. So for each zν , the cost is O(NtM
3). Algorithm 4.1 requires calculating

f(T, x, v, zν) for all zν ∈ Ñ(Λn), where the size of Ñ(Λn) could be O(n2/2). So the ASPI

method (Algorithm 4.1) for multi-scale kinetic equations could be computationally expensive,

see Section 4.3 for the total cost.

Next we will introduce an algorithm where calculating f(T, x, v, zν) for all zν ∈ Ñ(Λn) can

be avoided.

At step n, we already have Λn = {ν1, · · · νn} and the numerical solution fmνk = f(mδt, zνk)

and fm−1
νk

= f((m− 1)δt, zνk) for 1 ≤ k ≤ n. Let operator S be the numerical kinetic operator,

S(fm(z), fm−1(z)) =
fm(z)− fm−1(z)

δt
+Am−1fm−1(z)− 1

ε
Bm(z)fm(z). (4.23)

For fmνk , f
m−1
νk

obtained from the numerical scheme, it must satisfy S(fmνk , f
m−1
νk

) = 0. For the

interpolation approximations ImΛn(z), Im−1
Λn

(z) interpolating on fmνk , f
m−1
νk

respectively, 1 ≤ k ≤ n,
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S(ImΛn(z), Im−1
Λn

(z)) represents the residual of the scheme for the polynomial interpolation ImΛn at

z. So one can search for the biggest residual with respect to S(ImΛn(z), Im−1
Λn

(z)) on ν ∈ Ñ(Λn)

to get νn+1. We will later see that the greedy search in this way costs less than the ASPI

method. Since the interpolation ImΛn(z) on data fmνk for 1 ≤ k ≤ n can be represented by a linear

combination of fmνk , which can be written as

ImΛn(z) =

n∑
k=1

γkΛn(z)fmνk , (4.24)

where

[
γ1

Λn
(z) · · · γnΛn(z)

]
=
[
Hν1

(z) · · ·Hνn(z)
]

Hν1
(zν1

) · · ·Hνn(zν1
)

...

Hν1(zνn) · · ·Hνn(zνn)


−1

, (4.25)

hence, plugging (4.24) into operator S gives

S(ImΛn(z), Im−1
Λn

(z)) =

n∑
k=1

γkΛn

(
fmνk − f

m−1
νk

δt
+Am−1fm−1

νk

)
− 1

ε
Bm(z)

n∑
j=1

γkΛnf
m
νk

=

n∑
k=1

γkΛn

(
1

ε
Bmνkf

m
νk

)
− 1

ε
Bm(z)

n∑
k=1

γkΛnf
m(zνk)

=
1

ε

n∑
k=1

γkΛn
(
Bmνkf

m
νk
−Bm(z)fmνk

)
, (4.26)

where the second equality is because of S(fmνk , f
m−1
νk

) = 0.

In addition, when calculating γΛn(z) = [γ1(z), · · · , γn(z)] in (4.25), we don’t need to invert

the whole matrix on the RHS at every step. Because of the monotonicity of Λn = Λn−1 ∪ {νn},
and the Schur complement of the inversion from the previous step, we can avoid computing the

inversion. Specifically, define

HΛn(zΛn) :=


Hν1

(zν1
) · · ·Hνn(zν1

)
...

Hν1(zνn) · · ·Hνn(zνn)

 , HΛn−1
(zν) = [Hν1

(zν), · · · , Hνn−1
(zν)], (4.27)

then by (4.3), HΛn(zΛn) can also be written in the form of block matrix,

HΛn(zΛn) =

[
HΛn−1(zΛn−1) 0(n−1)×1

HΛn−1(zνn) 1

]
. (4.28)

It is easy to check that,

H−1
Λn

(zΛn) =

[
H−1

Λn−1
(zΛn−1

) 0

−γΛn−1
(zνn) 1

]
. (4.29)

Let

SΛn
ν =

n∑
k=1

γkΛn(zν) (Bνkfνk −Bνfνk) ∈ RM (4.30)

be the residual of interpolation of zν at time T , where fνk = f(T, zνk), Bν = B(T, zν), so based

on this residual, we construct the following new algorithm.
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Algorithm 4.2. (RASPI)

– Step 0, Step 1 are the same as Algorithm 4.1.

– Step n. Assume we have Λn, Ñ(Λn−1) and IΛn(z),

- Construct N̂(Λn) by (4.13), then N∗(Λn) can be constructed through (4.14), Ñ(Λn)

through (4.15).

- νn+1 = argmaxν∈Ñ(Λn)

∥∥SΛn
ν

∥∥
V

, where SΛn
ν is defined in (4.30).

Compared with Algorithm 4.1, the above algorithm is more efficient since for each z ∈
Ñ(Λn), one only needs to multiply an RM×M matrix to a M−dimensional vector once. The

computational cost for each zν is O(M2), which is much less than O(NtM
3). We will compare

the total computational cost of the two algorithms in details in the next section.

4.3 Computational cost

In this section, we will compare the computational costs between the ASPI (Algorithm 4.1)

and the RASPI (Algorithm 4.2). In order to get an approximate solution with an error less

than δ, for a first order discretization in the phase space, one needs to use Nx = O(δ−1),

Nv = O(δ−1). So the explicit expression of the approximate solution f̂(T, z) = IΛN (z) at time

T should be an M -dimensional vector where M = Nx · Nv = O(δ−2). In the random space,

according to Theorem 3.5, the best N approximation gives the error
∥∥∥f − f̂∥∥∥

L2(V,U,dρ)
≤ N−s,

thus one requires N = O
(
δ−1/s

)
to get an O(δ) error.

For the ASPI method, at the n-th step of Algorithm 4.1, one needs to do the following

calculation:

0 From the previous steps, one has,

- ανk ∈ RM , for all νk ∈ Λn;

- αν ∈ RM , for all ν ∈ Ñ(Λn−1).

- cν = ‖αν‖ ‖Hν‖L2(V,dρ), for all ν ∈ Ñ(Λn−1).

1 Obtain f(T, zν) ∈ RM by numerical scheme (4.21), for all ν ∈ N∗(Λn).

2 Obtain αν = f(T, zν)− IΛn(zν) for all ν ∈ N∗(Λn).

- To get the value of IΛn(zν), one needs to do the summation IΛn(zν) =
∑n
k=1 ανkHνk(zν).

3 Obtain cν = ‖αν‖ ‖Hν‖L2(V,dρ) for all ν ∈ N∗(Λn) and find νn+1 = argminν∈Ñ(Λn) cν .

In step 1 , one needs to calculate the numerical solution to the PDE at time T for all

zν ∈ N∗(Λn), where the size of N∗(Λn) is O(n). For general implicit scheme as (4.21), the

computational cost to obtain f(T, z) ∈ RM is O((M3 + M2)Nt), where M3 comes from the

inversion of matrix, M2 comes from the multiplication of matrices, and these have to be done

in each step. Therefore, the computational cost in step 1 is

O(n× (M3 +M2)Nt). (4.31)
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There are also cases where the inversion can be completed within a cost of O(M2), or the

inversion only needs to be done once if B is time independent, then the computational cost of

these are calculated in Remark 4.3.

In step 2 , for each ν ∈ N∗(Λn), the computational cost to get IΛn(zν) is O (nM

+
∑n
k=1 Cost{Hνk(zν)}), where the cost of Hνk(zν) is O(k) for each ν. Hence one requires

O
(
n×

(
nM + n2

))
(4.32)

of computational operations to complete step 2 .

At last, calculating ‖αν‖ ‖Hν‖ for each ν ∈ N∗(Λn) requires O(M+n
√
M) operations. Then

searching for the smallest one requires O
(

#
(
Ñ(Λn)

))
operations. Hence the total cost is

O
(
n×

(
M + n

√
M
)

+ n2
)
. (4.33)

To sum up, the total cost at the n-th step of the ASPI method is

O
(
nM3Nt + n2M + n3

)
. (4.34)

Plug in M = O(δ−2), and assume time T ∼ O(1) and δt ∼ δx, so Nt ∼ O(δ−1), hence the total

computational cost at the n-th step of Algorithm 4.1 is

O
(
δ−7n+ δ−2n2 + n3

)
. (4.35)

While for the RASPI method, one needs to do the following calculation at the n-th step,

0 From the previous steps, one has,

- H−1
Λn−1

(
zΛn−1

)
;

- γΛn−1
(zν), for ν ∈ Ñ(Λn−1) and ν = νn;

- fνk , Bνkfνk , Bνfνk for all νk ∈ Λn, ν ∈ Ñ(Λn−1) .

1 Obtain γn(zν), for all ν ∈ Ñ(Λn):

- Get H−1
Λn

by (4.29).

- For ν ∈ Ñ(Λn−1), γΛn(zν) = [γΛn−1
(zν)−Hνn(zν)γΛn−1

(zνn), Hνn(zν)].

- For ν ∈ N∗(Λn), γn(zν) = [HΛn−1
(zν)H−1

Λn−1
−Hνn(zν)γΛn−1

(zνn), Hνn(zν)].

2 Obtain SΛn
ν by (4.30).

3 Find νn+1 = argminν∈Ñ(Λn)

∥∥SΛn
ν

∥∥2
.

Firstly in step 1 , since one already has H−1
Λn−1

(
zΛn−1

)
and γΛn−1

(zν) from the previous step,

one only needs to plug them in to get H−1
Λn

. For each ν ∈ Ñ(Λn−1), one needs O(n) operations to

get γn(zν). While for each ν ∈ N∗(Λn), one needs O((n−1)2 +
∑n
k=1 Cost{Hνk(zν)}) operations

to get γn(zν). The total computational cost is

O
(
(n− 1)2 × n

)
+O

(
n×

(
(n− 1)2 + n2

))
. (4.36)

In step 2 , for each ν ∈ Ñ(Λn−1), since one already has Bνkfνk − Bνfνk from the previous

step, so one only needs to do the weighted sum operations given γΛn(zν) , which requires
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O(nM) computational cost. For each ν ∈ N∗(Λn), one needs to calculate Bνfνk first then does

the summation, whose computational cost is O(M2 + nM). Therefore the total computational

cost in 2 is

O((n− 1)2 × nM) +O(n× (M2 + nM)). (4.37)

At last, Obtaining ‖S(T, zν)‖2 and finding the minimum among all ν ∈ Ñ(Λn) requires

computational cost of order

O(n2 ×M + n2). (4.38)

To sum up, the total cost at n-th step of the RASPI is

O
(
n3M + nM2

)
. (4.39)

Plugging in M = O(δ−2) gives the total cost of Algorithm 4.2 at the n-th step

O(nδ−4 + n3δ−2). (4.40)

Summing (4.35) and (4.40) over 1 ≤ n ≤ O
(
ε−1/s

)
, and based on the fact that 1/s ≤ 2, one

has

Computational cost of ASPI : O(δ−7−2/s), (4.41)

Computational cost of RASPI :

O(δ−2−4/s), 1
2 ≤ s ≤ 1

O(δ−4−2/s), s ≥ 1
(4.42)

The ratio of the two costs is

Computational cost of ASPI

Computational cost of RASPI
=

O(δ−5+2/s), 1
2 ≤ s ≤ 1,

O(δ−3), s ≥ 1.
(4.43)

From (4.43), one can see that the computational cost of the ASPI is O(δ−5+2/s) times that of

RASPI for s ≤ 1 andO(δ−3) times that of the RASPI for s ≥ 1. Since s ≥ 1
2 , therefore the RASPI

is always more efficient. In addition, the faster ‖φj(x)‖W 1,∞
x

decays, the more computational

cost the RASPI saves.

Remark 4.3. 1. The inversion of a matrix in (4.22) does not necessarily need the cost of

O(M3). For example, when the matrix is positive definite, one can invert an RM×M

matrix by the conjugate gradient method with computational cost of O(M2). Also, when

the collision operator Q(f) is time independent, then the matrix Bm+1 in the numerical

method (4.22) is the same constant matrix for all m, so one only needs to invert the matrix

once. In both cases, the computational cost of calculating f(T, x, v, zν) for a specific zν ∈ U
is O(M2Nt), which reduces the total computational cost of the ASPI to O(δ−5−2/s). Then

the ratio of the two costs becomes

Computational cost of ASPI

Computational cost of RASPI
=


O(δ3−2/s), 1

2 ≤ s <
2
3 ,

O(δ−(3−2/s)), 2
3 ≤ s ≤ 1,

O(δ−1), s ≥ 1.

(4.44)

When 1
2 ≤ s <

2
3 , the ASPI method is more efficient than the RASPI, while s ≥ 2

3 , RASPI

is still better than ASPI.
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2. Another deterministic method called Quasi Monte Carlo (QMC) is also widely used in

parametric PDEs. However, in general, since the convergence rate of QMC is O( log(N)d

N )

[31, 1], which depends on dimensionality of the parameter, so it is not comparable in high

dimension. Nevertheless, as discussed in [25, 24] for parametric elliptic equation using

modified QMC method, it enjoys the same convergence rate as the best N approximation

when the randomness ‖ψj‖ ∈ `p for 2/3 ≤ p ≤ 1. Its performance for kinetic equations

remain to be investigated.

3. In general whether the ASPI method can achieve the error estimates we get in Section 3

is still an open question. However, under stronger assumptions, [41] showed that a certain

type of adaptive sparse grid interpolation will produce sequences of active index sets in

polynomial basis function space which will give a dimension independent convergence rate.

5 Numerical examples

In this section, we conduct some numerical experiments for the linear Vlasov-Fokker-Planck

equation with random electric field E(t, x, z) ,

ε∂tf + v∂xf − E∂vf =
1

ε
Ff, x, v ∈ Ω = (0, 2π)× R (5.1)

with periodic condition on x ∈ [0, 2π], and initial data

f(0, x, v) =
sin(x)√

2π
e−

v2

2 + F, (5.2)

where F = e−φ
∞
M is defined in (2.8). We consider z ∈ [−1, 1]100, and set the electric field as,

E(t, x, z) =
sin(x)

2
+

100∑
j=1

Ej(t, x)zj (5.3)

with different choices of Ej(t, x) in the experiments. We solve (5.1) by finite difference method

with unified meshes in space and velocity δx = 2π
Nx on [0, 2π] and δv = 12

Nv
on [−6, 6]. The scheme

we use here is from [21, 20]

ε
fm+1
i,j − fmi,j

δt
+
fm+1
i+ 1

2 ,j
− fm+1

i− 1
2 ,j

δx
=

1

ε
Pz

(
fm+1
i,j√
Mi,j

)
, (5.4)

where fmi,j = f(mδt, iδx, jδv − 6). The transport term v∂xf is approximated by the upwind

scheme

fmi+ 1
2 ,j

=
|vj |+ vj

2
fmi,j −

|vj | − vj
2

fmi+1,j .

For the other terms, since

1

ε
(εE∂vf + F(f)) =

1

ε
∂v

(
Ml∂v

(
f

Ml

))
with

Ml(z) =
1√
2π
e−
|v−εE|2

2 ,
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depending on z, so one can define an operator Pz(f) as the discretization of ∂v

(
Ml∂v

(
f
Ml

))
as

following,

Pz(fj) =
1

δ2
v

(√
(Ml)j+1(Ml)j

(
fj+1

(Ml)j+1
− fj

(Ml)j

)
−
√

(Ml)j−1(Ml)j

(
fj

(Ml)j
− fj−1

(Ml)j−1

))
.

(5.5)

Since the scheme is in implicit form, for the operator above, one needs to do NxNt times inversion

of a RNv×Nv matrix for each numerical solution f(T, x, v, z) at a sample point z. One efficient

way to reduce the computational cost is to set [21]

gmi,j =
fmi,j√

(Ml)mi,j

, (5.6)

then

P̃z(gj) =

√
(Ml)j

δ2
v

√
(Ml)j

(√
(Ml)j+1(Ml)j

(
gj+1√

(Ml)j+1

− gj√
(Ml)j

)

−
√

(Ml)j−1(Ml)j

(
gj√

(Ml)j
− gj−1√

(Ml)j−1

))

=

√
(Ml)j
δ2
v

(
gj+1 −

(√
(Ml)j+1√
(Ml)j

+

√
(Ml)j−1√
(Ml)j

)
gj + gj−1

)
. (5.7)

In this way, scheme (5.4) becomes,

ε
gm+1
i,j − fmi,j/

√
(Ml)

m+1
i,j

δt
+
gm+1
i+ 1

2 ,j
− gm+1

i− 1
2 ,j

δx
=

1

ε
P̃z

(
gm+1
i,j

)
, (5.8)

therefore we can get a symmetric positive definite matrix multiplied to gm+1
i , which can be

inverted with less computational cost, for example, by the conjugate gradient method.

For all numerical experiments, we set Nx = 32, Nv = 64, δt = δx
8 , T = 0.1, ε = 1.

5.1 Convergence rate

We test three different time independent random electric fields in the form of (5.3), where

Ej(x) is given by the following functions:

a) Ej(x) =
cos(jx)

2j
; b) Ej(x) =

cos(jx)

j2
; c) Ej(x) =

cos(jx)

j
. (5.9)

Let f(T, z) represent the numerical solution obtained from scheme (5.4), f̂(T, z) represents

the approximate solution obtained by sparse polynomial interpolation on sample points ΓΛn .

Specifically, for the ASPI algorithm, we get ανn , 1 ≤ n ≤ N , then f̂(zi) =
∑N
n=1 ανnHνn(zi).

Similarly, for the RASPI algorithm, we get H−1
ΛN

(zΛN ) and fΛN , then

[αν1
, · · · , ανN ] = H−1

ΛN
(zΛN )fΛN ,

hence one can get f̂(T, zi) =
∑N
n=1 ανnHνn(zi).
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For the convergence rate, we check the mean square error defined as following,

Error =

√√√√ 1

N

N∑
i=1

∥∥∥f̂(T, zi)− f(T, zi)
∥∥∥2

L2
x,v

(5.10)

with N = 105, where zi is uniformly drawn from [−1, 1]100, to test the accuracy of the sparse

interpolation.

The left column of Figure 2 shows how the error decays when adding sample points adaptively

by the ASPI method and the RASPI method. From the numerical results one can see that both

methods enjoy almost the same convergence rate. The convergence rates are different for three

different electric fields. By comparing the decay rate of error for each example, one finds that if

‖Ej(x)‖V decays faster, then the approximation also converges with a faster rate. We further

show the algebraic decay rate s in the slope. For Ej(x) given in (5.9) that decays in the order

of O
(
2−j
)
, O
(
j−2
)
, O
(
j−1
)

respectively, the decay rate of the error in terms of the number of

basis or number of sampling points is about O
(
N−2,7

)
, O

(
N−1.2

)
, O

(
N−0.7

)
respectively for

N basis or sample points, which are all faster than the Monte Carlo method of O
(
N−0.5

)
.

However, as stated at the end of Section 4.1, for the ASPI method, in order to get the optimal

N bases, one needs to compare all possible aν for ν ∈ Ñ(Λn), which involves the computation

of the solution f(T, x, v, z) at zν for ν ∈ Ñ(Λn). In other words, the number of sample points

used is #(N(Λ100)), which is much larger than 100. For example, it is 300, 2325, 3933 for case

(a), (b), (c) respectively. By taking all of these sample points into account, the decay rate of

ASPI corresponding to the number of sample points are shown in Figure 3. For each sample the

decay rate for each example is O
(
N−2

)
, O

(
N−0.9

)
, O

(
N−0.3

)
respectively. In particular, for

the case Ej = O
(
j−1
)
, it converges slower than the Monte Carlo method.

The right column of Figure 2 shows the projection of the 100 selected sample points on each

dimension. One finds that for all three cases, the number of projection points gets smaller as the

dimension gets higher. One also notes that all the dimensions larger than 17, 66, 88 only have

one projection point for three cases respectively. This indicates that when ‖Ej‖ decay slower,

then more points are projected to higher dimension.

5.2 Efficiency of the greedy search

For both methods, one needs to do greedy search for ν ∈ Ñ(Λn) at the n-th step. In Figure 4,

we show that the greedy search is more efficient than just randomly choosing νn+1 from Ñ(Λn).

We call the method without greedy search the anisotropic Monte Carlo method. At the n-th

step, one does the following,

Algorithm 5.1. (Anisotropic MC)

• At n-th step, one has Λn, IΛn .

- Construct Ñ(Λn).

- Uniformly draw νn+1 from Ñ(Λn), compute fνn+1 = f(T, zνn+1), then construct

ανn+1 = fνn+1 − IΛn(zνn+1).

Since we have shown in Figure 2 that ASPI and the RASPI have almost the same decay rate,

so only the decay rate of the RASPI is shown in Figure 4. Figure 4 shows that for the same
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(a) The convergence rate for the case of E(x, z) =
sin(x)

2
+

100∑
j=1

cos(jx)

2j
zj

(b) The convergence rate for the case of E(x, z) =
sin(x)

2
+

100∑
j=1

cos(jx)

j2
zj

(c) The convergence rate for the case of E(x, z) =
sin(x)

2
+

100∑
j=1

cos(jx)

j
zj

Figure 2: The convergence rate for error defined in (5.10) of the approximate solution to (5.1) at t = 1

with different E obtained by the ASPI method and the RASPI method, for ε = 1.
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(a) (b) (c)

Figure 3: The convergence rate for error defined in (5.10) of the approximate solution by the ASPI

method with respect to the number of sample points actually calculated. (a), (b), (c) are the cases of

different Ej in (5.9).

number of sample points one calculated, including those in the greedy search, the adaptive greedy

search methods (ASPI and RASPI) have faster decay of error compared with the anisotropic

Monte Carlo method. And one notices that as s becomes bigger, that is ‖φj‖W 1,∞
x

decays faster,

the benefit one gains from the greedy search becomes more significant.

5.3 Time dependent electric field

Now, we will test some examples where the electric field is time dependent,

a). Ej(t, x) =
1

2j

(
cos(jx) +

1

(1 + t)2

)
,

b). Ej(x) =
1

j2

(
cos(jx) +

1

(1 + t)2

)
,

c). Ej(x) =
1

j

(
cos(jx) +

1

(1 + t)2

)
. (5.11)

The decay rate of the RASPI is shown in Figure 5. We see the decay rate is slower than the

case independent of t as shown in Figure 2, which is expected from the theoretical result. Since

the decay rate in Theorem 3.5 depends on {‖∂νf‖}ν∈F , and ‖∂νf‖ = ‖∂νh‖, for |ν| > 0. Notice

that the upper bound of ‖∂νh‖ is

‖∂νh(t)‖L∞(U,V ) ≤ Q(t) (|ν|!) dν ,

where

Q(t) = min

{
1

ε
e−

ξ

ε2
t, e−ξt

}
2

‖h(0)‖V +

√
λD̄

CE

 .

For the different cases of Ej in (5.9) and (5.11), since limt→∞Ej(t, x) in (5.11) is equal to Ej in

(5.9), so the only difference in the upper bound of ‖∂νh‖ is on D̄ appearing in Q(t) and defined in

(3.10). Specifically, D̄ = 0 for the time independent case and D̄ > 0 for the time dependent case.

So the time dependent case should have slower decay rate compared to the time independent

case.

5.4 ε dependency

Finally, we will check the error dependence on different ε. The error of the RASPI method

is shown in Figure 6. The decay rate for different ε is similar, but smaller ε yields smaller error.
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(a) The error for the case of E(x, z) =
sin(x)

2
+

100∑
j=1

cos(jx)

2j
zj

(b) The error for the case of E(x, z) =
sin(x)

2
+

100∑
j=1

cos(jx)

j2
zj

(c) The error for the case of E(x, z) =
sin(x)

2
+

100∑
j=1

cos(jx)

j
zj

Figure 4: The error of the approximate solution to (5.1) at t = 1 with different Ej obtained by

Algorithm 5.1 and the RASPI, where we set ε = 1.
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(a) (b) (c)

Figure 5: The convergence rate for error of the approximate solution by the RASPI with respect to

the number of sample points. (a), (b), (c) are the cases of different Ej in (5.11).

Our explanation on this is that for smaller ε, the solution is closer to the global Maxwellian

(2.3), which is deterministic thus the sampling error is less relevant.

Figure 6: The error of the RASPI with respect to the number of sample points, with Ej defined in

(5.9) b).

6 Conclusion

In this paper, we first showed theoretically that if the forcing term E(t, x, z) = Ē(t, x) +∑
j≥Ej(t, x)zj has anisotropic property in random space, converges to the steady state E∞(x, z)

fast enough and is bounded above, then the best N approximation based on the Legendre basis

converges to the solution of the Vlasov-Fokker-Planck equation in random space with an error

of O
(
N−( 1

p−
1
2 )
)

, for
(
‖Ej‖W 1,∞

)
j≥1
∈ `p.

Numerically, we develop the residual based adaptive sparse polynomial interpolation (RASPI)

method based on the adaptive sparse polynomial interpolation (ASPI). We show through nu-

26



merical examples that RASPI converges to the solution independent of dimension of the random

variables. We also show that for general linear kinetic equation, or equivalently, for general time

dependent and implicit scheme, the ratio of the computation cost of the ASPI to the RASPI is

O(δ−5+2/s) for 1
2 ≤ s ≤ 1 and O(δ−3) for s ≥ 1, which means that the faster ‖Ej‖W 1,∞ decays,

the more the RASPI saves.

There are still several open questions worthy of study in the future. For example, the rig-

orous convergence rate of the RASPI and the ASPI method remain to be established. Another

important problem is whether nonlinear kinetic equations, such as the Boltzmann equation and

Vlasov-Poisson-Fokker-Planck equations with high dimensional uncertain parameters, can be

solved by these methods.
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Appendices

A The proof of Lemma 3.7

A.1 The proof of the time independent random electric field

We will first prove the case when the random electric field is time independent, that is,

E(t, x, z) ≡ E(x, z).

Lemma A.1. Under Condition 3.2, for ∀z ∈ U , the following estimates hold,

|ν| = 0 : ∂tG
0
i +

η

ε
‖h‖2V ≤ 0; (A.1)

|ν| > 1 : ∂tG
ν
i +

η

ε
‖∂νh‖2V ≤

2

λε

∑
νj 6=0

ν2
jCj

∥∥∂ν−ejh∥∥2

V
, (A.2)

where i = 1, 2, η = Cs
10 , and

ε

2λ
‖∂νh‖2V ≤ G

ν
1 ≤

3

2λε
‖∂νh‖2V ,

1

2λε
‖∂νh‖2V ≤ G

ν
2 ≤

3

2λε
‖∂νh‖2V . (A.3)

Proof. For E(t, x, z) ≡ E(x, z), the microscopic equation (2.13) for the perturbative solution

h(t, x, v, z) is simplified to,

ε∂th+ v∂xh−
1

ε
Lh = E

(
∂v −

v

2

)
h, (A.4)
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where L is the linearized Fokker Planck operator defined in (2.14) that satisfies the local coerciv-

ity property as in (2.15). If one multiplies
√
M and v

√
M to (A.4) respectively, and integrates

them over v, then one gets the macroscopic equations,
ε∂tσ + ∂xu = 0

ε∂tu+ ∂xσ +

∫
v2
√
M(1−Π)∂xhdv +

1

ε
u = −Eσ.

(A.5)

(A.6)

The first equation is the perturbative continuity equation, while the second one is the perturba-

tive momentum equation. Notice the operators Π and 1−Π are perpendicular to each other in

L2
x,v, that is,

‖h‖2 = ‖Πh‖2 + ‖(1−Π)h‖2 = ‖σ‖2 + ‖(1−Π)h‖2 . (A.7)

If one takes ∂ν and ∂ν∂x to (A.4), and multiplies ∂νzh and ∂ν∂xh respectively, then integrates

them over x, v and adds the two equations together, one has

ε

2
∂t ‖∂νh‖2V +

λ

ε
‖(1−Π)∂νh‖2V,ω

≤
〈
∂ν
(
E
(
∂v −

v

2

)
h
)
, ∂νh

〉
︸ ︷︷ ︸

I

+
〈
∂ν∂x

(
E
(
∂v −

v

2

)
h
)
, ∂ν∂xh

〉
︸ ︷︷ ︸

II

, (A.8)

where the second term II comes from the hypocoercivity of L in (2.15). If one takes ∂ν to (A.6)

, and multiplies ∂ν∂xσ, then integrates it over x, v, one has

∂t

(
ε 〈∂νu, ∂ν∂xσ〉+

1

2
‖∂νσ‖2

)
+

1

2
‖∂ν∂xσ‖2

≤‖∂ν∂xu‖2 +
1

2
‖(1−Π)∂νh‖2V,ω − 〈∂

ν(Eσ), ∂ν∂xσ〉︸ ︷︷ ︸
III

. (A.9)

Here the first term on the LHS and the first term on the RHS come from

〈∂t∂νu, ∂ν∂xσ〉 = ∂t 〈∂νu, ∂ν∂xσ〉 − 〈∂νu, ∂t∂ν∂xσ〉

=∂t 〈∂νu, ∂ν∂xσ〉+
1

ε

〈
∂νu, ∂ν∂2

xu
〉

= ∂t 〈∂νu, ∂ν∂xσ〉 −
1

ε
‖∂ν∂xu‖2 , (A.10)

where the second equality is because of the continuity equation (A.5). The second term on the

LHS of (A.9) is because of

1

ε
〈∂νu, ∂ν∂xσ〉 =

〈
−1

ε
∂ν∂xu, ∂

νσ

〉
= 〈∂t∂νσ, ∂νσ〉 =

1

2
∂t ‖∂νσ‖2 . (A.11)

Furthermore since,

〈∂ν∂xσ, ∂ν∂xσ〉+

〈∫
v2(1−Π)∂x∂

νh
√
M dv, ∂ν∂xσ

〉
≥ 1

2
‖∂ν∂xσ‖2 −

1

2
‖(1−Π)∂ν∂xh‖2ω ,

(A.12)

this gives the third term on the LHS and the second term on the RHS of (A.9).

Furthermore, integrate (A.5) over x, by the periodic boundary condition, one has,

∂t

∫
σdx = 0.
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Since from (2.12), we know that∫
σ(0, x, z)dx =

∫
h
√
Mdxdv = 0,

so ∫
σ(t, x, z)dx =

∫
σ(0, x, z)dx = 0.

Similar equality can be obtained for ∂νσ. Therefore, one can apply the Poincare inequality (1.1)

to ‖∂xσ‖2 to get,

‖∂ν∂xσ‖2 ≥ Cs ‖∂νσ‖2V .

By adding θi(A.8) + 1
2ε (A.9), and the fact that

‖∂ν∂xu‖2 ≤ ‖(1−Π)∂ν∂xh‖2 ≤ ‖(1−Π)∂νh‖2V,ω ,

one has,

∂tG
ν
i +

λθi
ε
‖(1−Π)∂νh‖2V,ω +

Cs
4ε
‖∂νσ‖2V ≤

3

4ε
‖(1−Π)∂νh‖2V,ω + θi (I + II)− 1

2ε
III,

(A.13)

where Cs comes from the Poincare inequality (1.1). In order to find an estimate for Gνi , one

needs to estimate terms θi (I + II)− 1
2εIII. First notice that(

∂v +
v

2

)
∂ν∂ix(Πh) = −v

2

(
∂ν∂ixσ

)√
M +

v

2

(
∂ν∂ixσ

)√
M = 0, for i = 0, 1, (A.14)

which implies that terms I and II can be simplified to, for i = 0, 1,

I, II =−
〈
∂ν∂ix(Eh),

(
∂v +

v

2

)
∂ν∂ixh

〉
= −

〈
∂ν∂ix(Eh),

(
∂v +

v

2

) (
∂ν∂ix(Πh) + (1−Π)∂ν∂ixh

)〉
=−

〈
∂ν∂ix(Eh),

(
∂v +

v

2

)
(1−Π)∂ν∂ixh

〉
. (A.15)

Another inequality that will be used frequently later is that for i = 0, 1,∥∥∥(∂v +
v

2

)
(1−Π) ∂ν∂ixh

∥∥∥2

=
∥∥∂v(1−Π)∂ν∂ixh

∥∥2
+

1

4

∥∥v(1−Π)∂ν∂ixh
∥∥2

+

∫
Ω

v

2
∂v
(
(1−Π)∂ν∂ixh

)2
dxdv

=
∥∥∂v(1−Π)∂ν∂ixh

∥∥2
+

1

4

∥∥v(1−Π)∂ν∂ixh
∥∥2 − 1

2

∥∥(1−Π)∂ν∂ixh
∥∥2 ≤

∥∥(1−Π)∂ν∂ixh
∥∥2

ω
.

(A.16)

Based on (A.15) and (A.16), we will bound the term θi (I + II) − 1
2εIII for the cases |ν| =

0, |ν| > 1 respectively. Firstly, for the case |ν| = 0,

θi (I + II)− 1

2ε
III

=θi

〈
Eh,

(
∂v +

v

2

)
(1−Π)h

〉
+ θi

〈
∂x (Eh) ,

(
∂v +

v

2

)
(1−Π)h

〉
− 1

2ε
〈Eσ, ∂xσ〉

≤θi
2
‖E‖L∞x

(
ε ‖h‖2V +

1

ε
‖(1−Π)h‖2V,ω

)
+
θi
2
‖∂xE‖L∞x

(
ε ‖h‖2 +

1

ε
‖(1−Π)∂xh‖2ω

)
+

1

4ε
‖E‖L∞x

(
‖σ‖2 + ‖∂xσ‖2

)
. (A.17)
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Since ‖E‖L∞(U,W∞x ) ≤ CE , and ‖h‖2V = ‖σ‖2V + ‖(1−Π)h‖2V , one can further simplify (A.17) to

(A.17) ≤ CE
((

εθi
2

+
1

4ε

)
‖σ‖2V +

θi
ε
‖(1−Π)h‖2V,ω

)
. (A.18)

Plug the above estimate into (A.13), one has,

∂tG
0
i +

λθi
ε
‖(1−Π)h‖2V,ω +

Cs
4ε
‖σ‖2V

≤ 3

4ε
‖(1−Π)h‖2V,ω + CE

((
εθi
2

+
1

4ε

)
‖σ‖2V +

θi
ε
‖(1−Π)h‖2V,ω

)
, (A.19)

which implies,

∂tG
0
i + C0

h ‖(1−Π)h‖2V,ω + C0
σ ‖σ‖

2
V ≤ 0, (A.20)

where

C0
h =

λθi
ε
− 3

4ε
− CEθi

ε
, C0

σ =
Cs
4ε
− CE

(
εθi
2

+
1

4ε

)
. (A.21)

Since CE ≤ λCs
8 ≤ λ

16 , so λ − CE ≥ 15
16λ, which implies (λ− CE) θiε ≥

4
λ for both i = 1, 2.

Therefore C0
h ≥ 3

ε . Since Cs − CE ≥ 7
8Cs, and εCEθi ≤ εCs

7 for both i = 1, 2, therefore

C0
σ ≥ 7Cs

32ε −
εCs
14 ≥

Cs
10ε . Hence plug back C0

h, C
0
σ ≥ Cs

10ε to (A.20), one has,

∂tG
0
i +

η

ε
‖h‖2V,ω ≤ 0, for η =

Cs
10
, (A.22)

which is exactly (A.1) in Lemma A.1.

For the case where |ν| > 0, based on (A.15), (A.16) and the definition of E = Ē(x) +∑
j≥1Ej(x)zj , one can bound θi (I + II)− 1

2εIII by

θi (I + II)− 1

2ε
III

≤θi
〈
E∂νh,

(
∂v +

v

2
)(1−Π

)
∂νh

〉
+ θi

〈
∂x (E∂νh) ,

(
∂v +

v

2

)
(1−Π)∂ν∂xh

〉
− 1

2ε
〈E∂νσ, ∂ν∂xσ〉

+
∑
νj 6=0

(
θi

〈
νjEj∂

ν−ejh, (∂v +
v

2
)(1−Π)∂νh

〉
+ θi

〈
∂x
(
νjEj∂

ν−ejh
)
, (∂v +

v

2
)(1−Π)∂ν∂xh

〉
− 1

2ε

〈
νjEj∂

ν−ejσ, ∂ν∂xσ
〉)

. (A.23)

Since the three terms in the second line of the above equation is similar to the case where |ν| = 0,

hence one can get similar estimates as in (A.18). In addition, by assumption ‖Ej‖L∞(U,W 1,∞
x ) ≤

Cj , one has

(A.23)

≤CE
((

εθi
2

+
1

4ε

)
‖∂νσ‖2V +

θi
ε
‖(1−Π)∂νh‖2V,ω

)
+
θi
2

∑
νj 6=0

Cj

(
εν2
j

∥∥∂ν−ejh∥∥2

V
+

1

ε
‖(1−Π)∂νh‖2V,ω

)
+

1

4ε

∑
νj 6=0

Cj

(
ν2
j

∥∥∂ν−ejσ∥∥2
+ ‖∂ν∂xσ‖2

)
≤CE

(
1

2

(
εθi +

1

ε

)
‖∂νσ‖2V +

3θi
2ε
‖(1−Π)∂νh‖2V,ω

)
+
∑
νj 6=0

ν2
jCj

(
εθi
2

+
1

4ε

)∥∥∂ν−ejh∥∥2

V
,

(A.24)
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where the second inequality is because that
∑
j≥1 Cj ≤ CE . Hence plug (A.24) into (A.13), one

has,

∂tG
ν
i + Cνh ‖(1−Π)∂νh‖2V,ω + Cνσ ‖∂νσ‖

2
V ≤

∑
νj 6=0

ν2
jCj

(
εθi
2

+
1

4ε

)∥∥∂ν−ejh∥∥2

V
, (A.25)

where

Cνh =
λθi
ε
− 3

4ε
− 3CEθi

2ε
≥ η

ε
, Cνσ =

Cs
4ε
− CE

2

(
εθi +

1

ε

)
≥ η

ε
(A.26)

and

εθi
2

+
1

4ε
≤ 2

λε
, (A.27)

for both i = 1, 2, which gives (A.2) in Lemma A.1.

A.2 The proof of Lemma 3.7

If one takes ∂ν and ∂ν∂x to (2.13), and multiplies ∂νzh and ∂ν∂xh respectively, then integrates

them over x, v and adds the two equations together, one has

ε

2
∂t ‖∂νh‖2V +

λ

ε
‖(1−Π)∂νh‖2V,ω

≤
〈
∂ν
(
E
(
∂v −

v

2

)
h
)
, ∂νh

〉
+
〈
∂ν∂x

(
E
(
∂v −

v

2

)
h
)
, ∂ν∂xh

〉
,

−
〈
v
√
M∂ν

(
(E − E∞) e−φ

∞
)
, ∂νh

〉
︸ ︷︷ ︸

IV

−
〈
v
√
M∂ν∂x

(
(E − E∞) e−φ

∞
)
, ∂ν∂xh

〉
︸ ︷︷ ︸

V

. (A.28)

If one multiplies
√
M and v

√
M to (2.13), and integrates it over v, then one gets

ε∂tσ + ∂xu = 0

ε∂tu+ ∂xσ +

∫
v2
√
M(1−Π)∂xhdv +

1

ε
u = −Eσ − (E − E∞) e−φ

∞
.

(A.29)

(A.30)

Then if one takes ∂ν to (A.30), and multiplies ∂ν∂xσ, then integrates it over x, v, one has

∂t

(
ε 〈∂νu, ∂ν∂xσ〉+

1

2
‖∂νσ‖2

)
+

1

2
‖∂ν∂xσ‖2

≤‖∂ν∂xu‖2 +
1

2
‖(1−Π)∂νh‖2V,ω − 〈∂

ν(Eσ), ∂ν∂xσ〉 −
〈
∂ν
(

(E − E∞) e−φ
∞
)
, ∂ν∂xσ

〉
︸ ︷︷ ︸

V I

.

(A.31)

By comparing (A.28) and (A.31) with (A.8) and (A.9), we actually only need to bound terms

IV, V, V I. Similar to (A.13), one has the following estimates for Gνi ,

∂tG
ν
i +

λθi
ε
‖(1−Π)∂νh‖2V,ω +

Cs
4ε
‖∂νσ‖2V

≤ 3

4ε
‖(1−Π)∂νh‖2V,ω +

[
θi (I + II)− 1

2ε
III

]
+

[
θi (IV + V )− 1

2ε
V I

]
. (A.32)
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First notice, for i = 0, 1,〈
v
√
M∂ν∂ix

(
(E − E∞) e−φ

∞
)
, ∂ν∂ixσ

√
M
〉

=

(∫
vM dv

)〈
∂ν∂ix

(
(E − E∞) e−φ

∞
)
, ∂ν∂ixσ

〉
= 0. (A.33)

So one can break

∂ν∂ixh = (1−Π)∂ν∂ixh+ ∂ν∂ixσ
√
M

in (IV + V ), therefore

IV + V =
∑
i=0,1

〈
v
√
M∂ν∂ix

(
(E − E∞) e−φ

∞
)
, (1−Π)∂ν∂ixh

〉
≤ ε

2CE

∥∥∥∂ν ((E − E∞) e−φ
∞
)∥∥∥2

V
+
CE
2ε
‖(1−Π)∂νh‖2V , (A.34)

For the term V I, one can bound it by

V I ≤ 1

CE

∥∥∥∂ν ((E − E∞) e−φ
∞
)∥∥∥2

+
CE
4
‖∂ν∂xσ‖2 . (A.35)

For |ν| = 0, plug (A.34) and (A.35) into (A.32), and based on the estimates (A.19) we have

already got in Appendices A, one has

∂tG
0
i +

λθi
ε
‖(1−Π)h‖2V,ω +

Cs
4ε
‖σ‖2V

≤ 3

4ε
‖(1−Π)h‖2V,ω + CE

((
εθi
2

+
3

8ε

)
‖σ‖2V +

2θi
ε
‖(1−Π)h‖2V,ω

)
+

εθi
2CE

∥∥∥(E − E∞) e−φ
∞
∥∥∥2

V
+

1

2εCE

∥∥∥(E − E∞) e−φ
∞
∥∥∥2

, (A.36)

which implies,

∂tG
0
i + C0

h ‖(1−Π)h‖2V,ω + C0
σ ‖σ‖

2
V ≤

1

εCE

∥∥∥(E − E∞) e−φ
∞
∥∥∥2

V
, (A.37)

where

C0
h =

λθi
ε
− 3

4ε
− 2CEθi

ε
, C0

σ ≤
Cs
4ε
− CE

(
εθi
2

+
5

8ε

)
. (A.38)

Since CE ≤ λCs
8 ≤ λ

16 , so λ − 2CE ≥ 7
8λ, which implies (λ− CE) θiε ≥ 1 for both i = 1, 2.

Therefore C0
h ≥ 1

4ε . Since Cs
4 −

3CE
8 ≥ 11

64Cs, and εCEθi ≤ εCs
7 for both i = 1, 2, therefore

C0
σ ≥ 11Cs

64ε −
εCs
14 ≥

Cs
10ε . Hence plug back C0

h, C
0
σ ≥ Cs

10ε to (A.37), one has,

∂tG
0
i +

η

ε
‖h‖2V,ω ≤

1

εCE

∥∥∥(E − E∞) e−φ
∞
∥∥∥2

V
, for η =

Cs
10
. (A.39)

For |ν| > 0, plug (A.34) and (A.35) into (A.32), and based on the estimates (A.24), one has

∂tG
ν
i +

λθi
ε
‖(1−Π)∂νh‖2V,ω +

Cs
4ε
‖∂νσ‖2V

≤ 3

4ε
‖(1−Π)∂νh‖2V,ω + CE

((
εθi
2

+
5

8ε

)
‖∂νσ‖2V +

2θi
ε
‖(1−Π)∂νh‖2V,ω

)
+

1

εCE

∥∥∥∂ν ((E − E∞) e−φ
∞
)∥∥∥2

V
+

2

λε

∑
νj 6=0

ν2
jCj

∥∥∂ν−ejh∥∥2

V
, (A.40)
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which implies

∂tG
ν
i + Cνh ‖(1−Π)∂νh‖2V,ω + Cνσ ‖∂νσ‖

2
V

≤ 2

λε

∑
νj 6=0

ν2
jCj

∥∥∂ν−ejh∥∥2

V
+

1

εCE

∥∥∥∂ν ((E − E∞) e−φ
∞
)∥∥∥2

V
, (A.41)

for the same Cνh , C
ν
h defined in (A.38). This completes the proof.
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