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Abstract

Quantum computers are designed to obey quantum mechanical principles, thus it is most

naturally suited to solving the Schrödinger equation – whose evolution operator is unitary. This

guarantees that it evolves from one pure quantum state – a complex unit vector, generally

high dimensional – to another pure quantum state. For other ordinary and partial differen-

tial equations whose evolution operator is not unitary, they can not be directly simulated by

quantum computers, via amplitude embedding, without some modifications. In [27, 34, 37], a

novel technique was introduced, called Schrödingerization, which transforms any linear ordinary

or partial differential equation into a Schrödinger-type equation with unitary evolution, in one

higher dimension, thus making it natural for quantum simulation. This article reviews our re-

cent results on Schrödingerization, and how various problems associated with ODE, PDE and

linear algebra can be formulated into unitary dynamics using this and other dimension-lifting

techniques. Our focus will be on the mathematical formulation, using continuous variables,

which makes it suitable not only for qubit-based general purpose quantum computers, but also

for continuous-variable (or qumodes) based quantum computers running in continuous time,

which can be used to design analog quantum simulators for specific problems. This makes it

more amenable for nearer term quantum devices. Both linear and (some specific) nonlinear

partial differential equations will be studied and we will also pose some open questions.
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1 Introduction

Partial differential equations (PDEs) are at the core of computation for science and engineering.

However, they may suffer from the curse-of-dimensionality when the spatial dimension is too high,

like in quantum dynamics, kinetic and mean-field theory, or when there is uncertainty in the PDE.

Some of these equations may also contain multiple or small spatial and temporal scales. These

present bottlenecks for classical computation. Quantum algorithms, on the other hand, due to its

potential for polynomial or even exponential speedup over its classical counterparts, offers a new

computational paradigm that could potentially overcome some of these classical computational

bottlenecks for certain problems. It has thus attracted lots of interest in recent years.

Quantum computers are designed with quantum mechanical principles in mind, and quantum

algorithms and their corresponding circuits need to be designed following the natural evolution

dictated by quantum mechanics. For pure state quantum evolution without noise, it must follow
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the linear Schrödinger equation

iℏ∂tψ = Hψ, (1.1)

where ψ is the complex-valued wave function, ℏ is the Planck constant, i =
√
−1, H is the quantum

Hamiltonian defined by

H = −ℏ2

2
∆ + V (·), (1.2)

which is a Hermitian operator. The evolution of the Schrödinger equation is given by

|ψ(t)⟩ = e−
i
ℏHt|ψ(0)⟩, (1.3)

where |ψ⟩ is the quantum state of ψ, which is a unit complex vector. Since H is Hermitian, hence

the evolution operator e−
i
ℏHt is unitary. The key for quantum algorithms is that the evolution,

such as quantum gates used to design quantum circuits, must be unitary [44, 51]. Since unitary

operators preserve Euclidean norms of vectors, the evolution maps pure quantum states to pure

quantum states. For most PDEs or dynamical systems (including ordinary differential equations–

ODEs), in particular for dissipative systems, their evolution is not unitary, thus it cannot directly

take advantage of quantum simulation.

Another difficulty in quantum simulation of PDEs is the difficulty in treating nonlinearity in

quantum simulations, since, after all, quantum mechanics – evolving via the linear Schrödinger

equation – is linear!

A novel technique, called Schrödingerization, which transforms any linear dynamical system,

including ODEs and PDEs, to Schrödinger type PDEs, namely with unitary evolution operators, in

one higher dimension, was introduced in [27, 34, 37]. This enables quantum simulation for general

linear ODEs and PDEs, in a simple and generic way. In the next section we summarize this

approach.

2 Schrödingerization

2.1 General linear ODEs and PDEs

A general linear systems ODEs or PDEs for u(t) that is first-order in time t ≥ 0 can be written

as

du

dt
= A(t)u, u(t = 0) = u0 (2.1)

where A(t) is a (possibily time-dependent, or non-autonomous) linear operator for ODEs and a

linear differential operator for PDEs. In general the evolution operator T e
∫ t
0 A(τ)dτ (where T is

the time-ordering operator, needed since in general [A(t),A(t′)] ̸= 0 for t ̸= t′, where [·, ·] is the

commutator [55]) is not unitary thus the system is not directly suitable for quantum simulation.

We first decompose A(t) into an Hermitian part and an anti-Hermitian part:

A(t) = H1(t)− iH2(t), (2.2)

where

H1(t) = (A(t) +A†(t))/2 = H†
1(t), H2(t) = i(A(t)−A†(t))/2 = H†

2(t)
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are both Hermitian and we assumeH1 to be negative semi-definite (so the original system is stable).

The key idea of Schrödingerization is to introduce a real one-dimensional variable ξ > 0 and

define

w(t, ξ) = e−ξu(t). (2.3)

This transformation is called the warped phase transformation. Clearly, w solves the following

PDE:

∂tw = −H1(t)∂ξw − iH2(t)w. (2.4)

Since H1 is negative semi-definite, the solution to (3.11) is a wave that moves from right to

left in the ξ-domain, therefore one does not need a boundary condition at ξ = 0. The equation

is stable and one can truncate the ξ-domain for a sufficiently large ξ and impose a zero incoming

boundary condition there to numerically well approximate the original problem.

One can recover the solution to the original equation for u(t) using

u(t) =

∫ ∞

0
w(t, ξ)dξ or u(t) = eξw(t, ξ) for any ξ > 0. (2.5)

To establish its connection to Schrödinger’s type equation, we extend the domain of ξ to

(−∞,∞), with evenly extended initial condition w(0, ξ) = exp(−|ξ|)u0. Let ŵ = ŵ(t, η) be the

Fourier transform of w in ξ where η ∈ R is the Fourier mode:

ŵ(t, η) =

∫ ∞

−∞
e−iξη w(t, ξ) dξ.

Then ŵ satisfies a system of uncoupled Schrödinger-like equations

i∂tŵ = (ηH1(t) +H2(t))ŵ, (2.6)

one for each η! Clearly ηH1(t)+H2(t) is Hermitian, thus (2.6) is what we call the Schrödingerised

equation for u.

One can now design a quantum algorithm–digital or analog–starting from (2.6).

The initial value of w for ξ < 0 can be chosen to be in Sobolev space Hk, for any k, which

will yield a smooth w so numerical approximation in the ξ-domain can be made to any order

of accuracy [32], giving near optimal complexity (see [2], Section 2.3, about the issue of near

optimality).

Next we give examples of parabolic PDEs that can be Schrödingerized. For more equations,

such as the linear Boltzmann equation, and the Maxwell equation, see [31,34].

For issues regarding to equations with time-dependent coefficients (non-autonomous system),

see section 3.4.

2.2 The heat equation

For the heat equation

∂tu−∇2
xu = 0

the Schrödingeized equation is

i∂tŵ = η∇2
xŵ, (2.7)
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which is exactly the Schrödinger equation, for every Fourier mode η.

For elliptic equations, one can add the time-derivative to make it a parabolic equation and

then evolve it to the steady state. See [21]. Likewise, such a time-marching strategy can be used

to develop quantum algorithms for the preparation of quantum ground states or Gibbs states [37].

2.3 The Black-Scholes equation

The Black-Scholes equation

∂tV + rS ∂SV +
1

2
σ2S2 ∂SSV = rV,

is a PDE that evaluates the price of a financial derivative [17], where r and σ are constants. For a

specific derivative contract, the problem is to determine its present price V (t = 0, S) according to

the terminal price V (t = T, S) of the option [17]. The change of variables S = ex, −∞ < x < ∞
and t→ T − t leads to a forward parabolic equation

∂tV = (r − σ2

2
)∂xV +

σ2

2
∂xxV − rV. (2.8)

By the warped phase transformation W (t, x, p) = e−pV (t, x) with periodic extension of the

initial data, one gets

∂tW = (r − σ2

2
)∂xW + (

σ2

2
∂xx − rI)(−∂pW ).

Similar to the heat equation case, it is straightforward to derive a Hamiltonian system

i∂tŴ (t) = HŴ (t),

H = i (r − σ2

2
)∂x + η (

σ2

2
∂xx − rI).

Here H is a Hermitian operator.

2.4 The Fokker-Planck equation

The Fokker-Planck equation models the time evolution of the probability density function

f(t, x) of particles under the influence of drag and random forces [53]. It takes the form

∂tf = −∇ · (∇V f) + σ∆f, (2.9)

where V (x) is the scalar potential, and σ > 0 is the constant diffusion rate. The first term on

the right-hand side is the drifted term, while the second term is the diffusion generated by the

Brownian motion. The steady state solution of this equation is f = e−V (x)/σ. For convenience, we

assume the periodic boundary conditions with x = (x1, · · · , xd) ∈ [−1, 1]d.

2.4.1 The conservation form

Equation (2.9) can also be written as

∂tf = σ∇ ·
(
e−V/σ∇

(
eV/σf

))
. (2.10)

5



As done for the heat equation, one can introduce the transformation F (t, x, p) = e−pf(t, x)

and extend the initial data to p < 0 to obtain ∂tF = σ∇x ·
(
e−V/σ∇x

(
eV/σ(−∂ξF )

))
F (0, x, p) = e−|p|f(t, x).

Now a Fourier transform on p gives the Schrödingerized form:

i∂tF̂ = ησ∇x ·
(
e−V/σ∇x

(
eV/σF̂

))
. (2.11)

2.4.2 The heat equation form

Using the transformation ψ(t, x) = eV/(2σ)f , one obtains gets the following parabolic equation

[50]

∂tψ = σ∆ψ − U(x)ψ, (2.12)

where

U(x) :=
|∇V (x)|2

4σ
− 1

2
∆V (x).

Since equation (2.12) has the same form of the heat equation, the Fourier transform of the warped

phase transformation Ψ = e−ξψ gives

i∂tΨ̂ = η[σ∆− U(x)]Ψ̂. (2.13)

3 Extensions

3.1 Inhomogeneous systems

Now we consider the inhomogeneous system:

∂tu = A(t)u(t) + b(t), u(0) = u0, (3.1)

where u, b = (b1, · · · , bn)T ∈ Cn, A ∈ Cn×n is a time-dependent matrix.

We first convert the inhomogeneous system to the homogeneous one by introducing Ã ∈ C2n×2n

with Ã =

[
A B

O O

]
with B = diag(b1, · · · , bn) and O is the n × n zero matrix. Then we expend u

to v =

[
u

y

]
, to obtain

∂tv = Ã(t)v(t), v(0) =

[
u0

1

]
, (3.2)

where 1 is the identity vector in which all components are 1.

The problem now is that when one does the decomposition (2.2), the matrix H1 will have

positive eigenvlue [32]. This will induce right moving wave from the ξ < 0 domain to the ξ > 0

domain, which is non-physical and cannot be used when one recovers the original variable from the

Schrödingerized system as in (2.5). The following theorem gives the way to deal with this issue:
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Theorem 3.1. [32] Assume the eigenvalues of H1 are λj(H1), (j = 1, · · · , n), ordered mono-

tonically increasing in j, with some of the eigenvalues positive. Then the solution of (3.1) can be

recovered by

u = eξw(ξ), for any ξ ≥ ξ3, (3.3)

where ξ3 ≥ max{λn(H1)T, 0}, or recovered by using the integration,

u = eξ
3

∫ ∞

ξ3
w(ξ) dξ. (3.4)

The choice of ξ⋄ is to avoid using spurious data from the right-moving waves generated from

domain ξ < 0.

3.2 Boundary value and interface problems

For PDEs with physical or artificial boundary conditions, one can discretize them spatially

first, and then the boundary condition will appear in the inhomogeneous term b in (3.1). Then one

can use the method described in section 3.1.

When modeling physical problems with heterogeneities, for example through different mate-

rials or media, one encounters interface problems where interface conditions need to be imposed.

Examples include Stefan problem for parabolic equations [56] and wave propagations through dif-

ferent media where waves can be transmitted and reflected. Upon proper spatial discretizations of

these PDEs and their interface conditions–in the spirit of immersed interface methods [39,43], the

interface conditions will also appear in the inhomogeneous term b in (3.1). Then one can again use

the method described in section 3.1. See [23,24].

3.3 Iterative solvers in numerical linear algebra

An iterative method in linear algebra (or a discrete linear dynamical system) can be written

as

yk+1 = Gyk + g, k ∈ Z+ ∪ {0}, (3.5)

where yk, g ∈ Rn and G is a n× n matrix. Here k is the iteration step. The iteration converges if

the spectral radius of G, r(G) < 1. (3.5) can be written as a homogeneous system by defining an

augmented vector xk = (yk,1)
T :

xk+1 = Cxk, C =

(
G g

O 1

)
(3.6)

where C is an 2n× 2n matrix and O is the n× n zero matrix. Rewrite this in the form

xk+1 − xk =

(
yk+1 − yk

0

)
= (C − I)xk. (3.7)
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One can convert k into continuous time t ∈ R+ ∪ {0}, so the iterative relation (3.7) is trans-

formed into a corresponding system of linear ODEs

dx

dt
= (C − I)x, x(t = 0) = x0. (3.8)

Note that since r(C) < 1, then C − I has negative eigenvalues. Hence the corresponding ODE

system is contractive; thus the solution will decay to the steady state exponentially in t, which

corresponds exactly to the convergence of the iterative method (3.5).

Now quantum simulation can be done by Schrödingerizing the ODE (3.8), see [30] for more

details.

3.4 Non-autonomous systems

Consider a general linear non-autonomous dynamical system u(t) on a Hilbert space H,

du(t)

dt
= −iH(t)u(t) u(0) = u0, (3.9)

whereH(t) is a linear (for ODEs) or linear differential (for PDEs) operator with time-dependent co-

efficients. Without loss of generality, we assume H is Hermitian: H(t) = H†(t), which describes a

quantum system evolving unitarily under a time-dependent Hamiltonian. Time-dependent Hamil-

tonians appear in many applications including adiabatic quantum computing [1, 3, 4]. For more

general H one can use the Schrödingerisation to transform into the unitary dynamics.

The solution to Eq. (3.9) can be written as

u(t) = Ut,0u0, (3.10)

where

Ut,s = T e−i
∫ t
s H(τ)dτ = lim

N→∞
e−iH(tN )∆t · · · e−iH(t1)∆t

= I +

∞∑
n=1

(−i)n 1

n!

∫ t

s
dt1 · · ·

∫ t

s
dtnT H(t1) · · ·H(tn),

and T is the chronological time-ordering operator. The difficulty in developing a quantum algo-

rithm here is that in generalH(t)I is non-cummutative, namely [H(t),H(t′)] ̸= 0, thus one needs to

evolve in time according to the time-dependent operator T exp(−i
∫ t
0 H(τ)dτ) chronologically [55].

For instance, in quantum simulation, not only are time-ordered oracles necessary, but also at each

time-interval, a different Hamiltonian H(ti), corresponding to different quantum gates, is required.

By introducing a new time variable s, the non-autonomous system can be converted into a new

PDE system defined in one higher dimension, but with time-independent coefficients, so it becomes

an autonomous system. This is realized by the following theorem [9,19,54,57].

Theorem 3.2. For the non-autonomous system in Eq.(3.9), consider the following initial-value

problem of an autonomous PDE

∂w

∂t
+
∂w

∂s
= −iH(s)w

w(0, s) = G(s)u0, s ∈ R.
(3.11)
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The analytical solution to this problem is

w(t, s) = G(s− t)Us,s−ty0, Us,s−t = T e−i
∫ s
s−t H(τ)dτ = T e−i

∫ t
0 H(s−t+τ)dτ . (3.12)

When G(s) = δ(s), one can easily recover u(t) in Eq. (3.9) from w(t, s) using

y(t) =

∫ ∞

−∞
w(t, s) ds. (3.13)

Alternatively, when G(s) = 1, u(t) can be recovered with y(t) = w(t, s = t).

By standard quantization technique (see section 4.1), introducing the operators s → ŝ and

∂/∂s→ ip̂s, then one can evolve the linear autonomous system Eq. (3.11) as

i
d|w⟩
dt

= H|w⟩, H = p̂s ⊗ 1+H(ŝ) = H†, |w⟩(0) =
∫
dsG(s)|s⟩ ⊗ |y0⟩ (3.14)

where the Hamiltonian H is time-independent. This is called the Sambe-Howland’s clock. As stud-

ied in [10], the Sambe-Howland clock can unify existing quantum algorithms for non-autonomous

systems, either recovering the existing algorithms that correspond to different discretizations of

the Sambe-Howland clock, or serving as the starting point to derive new and even more accurate

algorithms.

3.5 Stochastic differential equations

Given a probability space (Ω,F ,P), we first consider the following d-dimensional SDE with

additive Gaussian noise:

dXt = AXt dt+B dWt, 0 ≤ t ≤ T ; X0 = x0. (3.15)

Here, Wt is the d-dimensional standard Brownian motion, A and B are d× d matrices.

We first discretize it by the Euler-Maruyama scheme. Let time step tk = kT/NT with uniform

time increment ∆t = T/NT , and {X̂(tk)}0≤k≤N be the numerical solution to (3.15):

X̂(tk+1) = X̂(tk) +AX̂(tk)∆t+B∆Wk, k = 0, 1, . . . , NT − 1; X̂(t0) = x0, (3.16)

where ∆Wk =Wtk+1
−Wtk is a Gaussian random variable with mean 0 and covariance matrix ∆tI.

Next, we replace the discrete time by a continuous time variable, to turn the evolution into an

ODE equation for each time interval. Namely, for the temporal duration (tk, tk+1), we evolve the

solution through the following non-autonomous ODE with inhomogeneous term:{
d
dtX̃(t) = AX̃(t) + B∆Wk

∆t , tk < t ≤ tk+1, k ≥ 1,

with X̃(tk) calculated in the (k − 1)-th iteration.
(3.17)

Here X(t0) = x0, while ∆Wk = Wtk+1
−Wtk is simulated by sampling independent d-dimensional

normal distribution {ξk : ξk ∼ N(0, I)} :

∆Wk
d
=

√
∆t ξk.

The inhomogeneous term can be handled as described in Section 3.1.

9



Define

H1,k =

(
1
2(A+A†) 1

2B∆Wk/
√
∆t

1
2(∆W

⊤
k /

√
∆t)B† 0

)
,

H2,k =

(
1
2i(A−A†) − i

2B∆Wk/
√
∆t

i
2(∆W

⊤
k /

√
∆t)B† 0

)
.

Then the Schrödingerisation procedure can be applied for each k to get the Schrödingerized system

in the Fourier space (see [33]):

{
i ddtŵ(t, η) = ηH1,kŵ(t, η) +H2,kŵ(t, η), tk < t ≤ tk+1,

ŵ(0, η) = 1
π(1+η2)

X̃(0).
(3.18)

Equation (3.18) is a piecewise constant non-autonamous Schrödinger equation with Hamilto-

nian H̃(t) defined by

H̃(t) =

NT−1∑
k=0

(
ηH1,k −H2,k

)
1(tk,tk+1](t).

The Schrödingerisation procedure can also be applied to linear SDE driven by α-stable Lévy

processes with 1 < α < 2. Consider a d-dimensional linear SDE driven by isotropic α-stable Lévy

processes:

dXt = AXt dt+BdLα
t , X0 = x0, 0 ≤ t ≤ T, (3.19)

where Lα
t is a d-dimensional isotropic α-stable Lévy process with 1 < α < 2 and it satisfies

Lα
t

d
= t

1
αL1. Then we can proceed with the approximate equation{

d
dtX̃(t) = AX̃(t) +

B∆Lα
k

∆t , tk < t ≤ tk+1, k ≥ 1,

with X̃(tk) calculated in the (k − 1)-th iteration.
(3.20)

Here X(t0) = x0, and ∆Lα
k = Lα

tk+1
−Lα

tk

d
= ∆t

1
αL1 are independent with identical stable distribu-

tion. Take random variables ξk
d
= L1. The rest is similar to the Schrödingerization technique for

the additive Gaussian noise case.

Similar treatment can also be applied to multiplicative Gaussian noise. Consider the following

SDE:

dX(t) = AX(t)dt+

m∑
l=1

B(l)X(t)dW
(l)
t , X0 = x0. (3.21)

Here, Wt = (W
(1)
t , · · · ,W (m)

t ) is a m-dimensional standard Brownian motion. {A,B(1), · · · , B(m)}
are d× d matrices.

For tk = kT/NT , we solve the following ODE:
dX̃(t)

dt
= ÃkX̃(t), and tk ≤ t ≤ tk+1; X̃(0) = x0,

Ãk = A− 1

2

m∑
l=1

(B(l))2 +
m∑
l=1

B(l)∆W
(l)
k

∆t
,

(3.22)

where ∆W
(l)
k =W

(l)
tk+1

−W (l)
tk

is a standard scalar Gaussian random variable. The term−1
2

∑m
l=1(B

(l))2

comes from the correction term from the Ito’s formula. Then one can proceed with the Schrödingerization

procedure as in the addition noise case. See [33].
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4 Analog quantum computation

The difficulty in efficiently correcting errors due to noise that is present in currently available

qubit-based quantum computers means that general-purpose digital quantum computers that can

realise large-scale quantum algorithms with realistic applications are not possible in the very near

term. The Schödingerization method, on the other hand, provides a framework that allows one to

also explore analog quantum simulation as another platform to realise quantum algorithms. This

is aimed toward developing quantum simulation devices that solve specific PDEs that could be

realized in the near term. Compared to other quantum PDE solvers, which are usually based on

temporal and/or spatial discretizations, Schrödingerization instead maps a continuous PDEs – via a

continuous transformation – to another continuous PDEs. Thus it can be used to design continuous-

variable, or qumode-based analog quantum simulators, running in continuous time, without the

need of a large number of quantum gates. This can avoid or significantly alleviates the need for

large-scale qubit-based devices for certain problems, as proposed in [27].

A continuous-variable (CV) quantum state, or ’qumode’, is the quantum analogue of a con-

tinuous classical degree of freedom, like position, momentum or energy, before being quantised. It

spans an infinite-dimensional Hilbert space, equipped with observables with a continuous spectrum,

such as the position x̂ and momentum p̂ ↔ −i∂/∂x, which are observables of a quantum particle.

Choosing its eigenbasis as {|x⟩}x∈R, which are the eigenstates of x̂, then a qumode can be expressed

as |u⟩ = (1/∥u∥)
∫
u(x)|x⟩dx, where ∥u∥2 =

∫
|u(x)|2dx is the normalisation constant. A system

of m-qumodes is a tensor product of m qumodes.

However, unlike other continuous-variable quantum algorithms (for example, see [8, 49]), our

analog quantum algorithms keeps time continuous, in addition to continuous-variable quantum

states. The precision also does not depend on the difficulty in creating suitable ancilla states

(for example highly squeezed quantum states), unlike many other continuous-variable quantum

algorithms based on the quantum circuit model [48] as well as the measurement-based quantum

model [47].

4.1 Quantization of PDEs

For analog quantum simulation of PDEs, we quantize the Schrödingerized PDEs with |x⟩ and
|p⟩, which are the eigenvectors of x̂ and p̂ respectively. This yields a quantum Hamiltonian to be

used for physical experiments that correspond to such a Hamiltonian, which can be designed by

employing more traditional techniques in quantum control.

Consider the d-dimensional general parabolic equation:

∂u

∂t
−

d∑
i=1

∂

∂xi

 d∑
j=1

Dij(x1, ..., xd)
∂u

∂xj

 = 0, (4.1)

Dij(x1, ..., xd) > 0, (4.2)

where Dij form the (assumed to be symmtric ) diffusion matrix (Dij = Dji). This equation can be
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transformed into

du

dt
= −Au, A =

d∑
i,j=1

p̂iDij(x̂1, ..., x̂D)p̂j . (4.3)

After the Schrödingerization, we get the following system

i
dŵ

dt
= −(A⊗ η̂)ŵ. (4.4)

Suppose one has a constant diffusion coefficient Dij(x) = aδij ∈ R. The Hamiltonian H in this

case generates an entangling gate, where H = −
∑d

j=1 ap̂
2
j ⊗ η̂. Observe here that H =

∑d
j=1Hj

where [Hi,Hj ] = 0, ∀ i, j = 1, ..., d, thus one can factorize exp(−iHt) = exp(−iH1t)... exp(−iHdt)

where Hj = −ap̂2j ⊗ η̂. Here the most challenging gate requires a pairwise third-order operator of

the form exp(ip̂2⊗ η̂t), where p̂ and η̂ are quadrature operators. While in principle many quantum

systems have these interaction terms, it remains challenging for existing devices.

Next we introduce an approximation of the parabolic equation by hyperbolic systems, which

allows for easier experimental realization on various physical platforms, such as superconductors,

trapped ions or Rydberg atoms, see [26].

4.2 The hyperbolic heat approximation

As an example, we approximate the solution to the d-dimensional heat equation

∂ũ

∂t
=

d∑
j=1

kj
∂2ũ

∂xj
, ũ(0, x) = u(0, x), x = (x1, · · · , xd), (4.5)

using a d-dimensional hyperbolic heat equation. Here we allow d distinct parameters ϵj ≤ 11,

j = 1, · · · , d, which can be chosen to take different values to allow greater flexibility for the the

physical realisation. The system of d+1 hyperbolic heat equations (which is also called the telegraph

equation, or Cattaneo or Goldstein-Taylor model) to be used to approximate (4.5) is [45]:

∂u

∂t
= −

d∑
j=1

1

ϵj

∂vj
∂xj

(4.6)

∂vj
∂t

= − 1

ϵj

∂u

∂xj
− 1

kjϵ2j
vj , j = 1, · · · , d. (4.7)

When ϵj → 0 for all j, the following approximation holds

vj → −kjϵj
∂u

∂xj
, j = 1, · · · , d. (4.8)

Inserting this into Eq. (4.6) allows one to recover the original heat equation (4.5).

Define the hybrid d-qumode and single qudit (d level) quantum state

u(t) =

∫
u(t, x)|x⟩dx, vj(t) =

∫
vj(t, x)|x⟩dx,

|w(t)⟩ = w(t)

∥w(t)∥
, w(t) = |0⟩ ⊗ u(t) +

d∑
j=1

|j⟩ ⊗ vj(t), (4.9)

∥w(t)∥2 = ∥u(t)∥2 +
d∑

j=1

∥vj(t)∥2. (4.10)
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Although the d-level qudit can in principle be rewritten as a system of log d qubits, analog simula-

tion on the qudit system is much more natural for our Hamiltonians since each interaction term is

only between one qudit and one qumode. If instead one uses a system of qubits, then one would

require multi-qubit entanglement, which is more difficult to experimentally realise.

Via ∂/∂xj → ip̂j , one can rewrite Eqs. (4.6) and (4.7) as

dw(t)

dt
= −i((|0⟩⟨1|+ |1⟩⟨0|)⊗ p̂1/ϵ1 + (|0⟩⟨2|+ |2⟩⟨0|)⊗ p̂2/ϵ2

+ · · ·+ (|0⟩⟨d|+ |d⟩⟨0|)⊗ p̂d/ϵd)w(t)

−
(

1

ϵ21k1
|1⟩⟨1|+ · · · 1

ϵ2dkd
|d⟩⟨d|

)
⊗ 1xw(t) = −iAw(t),

A = A1 − iA2

A1 =

d∑
j=1

1

ϵj
(|0⟩⟨j|+ |j⟩⟨0|)⊗ p̂j = A†

1, A2 =

d∑
j=1

1

ϵ2jkj
|j⟩⟨j| ⊗ 1x = A†

2. (4.11)

Here an ancilla qumode is included with the initial state |Ξ⟩, and we act on the total initial state

|w(0)⟩ ⊗ |Ξ⟩.
For simplicity of experiment we can even choose the special initial conditions vj(0, x) = 0.

Note t > ϵ2j log(1/ϵj) for all j, namely, beyond the initial layer, (4.8) is valid. Thus the initial

condition we use to prepare |w(0)⟩ = |0⟩ ⊗ |u(0)⟩ becomes very simple.

Using Schrödingerisation, the Hamiltonian to simulate becomes

H = A2 ⊗ η̂ +A1 ⊗ 1η (4.12)

=

d∑
j=1

1

ϵ2jkj
|j⟩⟨j| ⊗ 1x ⊗ η̂ +

d∑
j=1

1

ϵj
(|0⟩⟨j|+ |j⟩⟨0|)⊗ p̂j ⊗ 1η. (4.13)

This initial state |0⟩ ⊗ |u(t)⟩ ⊗ |Ξ⟩ consists of d + 1 qumodes and a qudit with d levels. For each

interaction term, there is only a pairwise interaction between one qumode and one qudit at a time.

Each interaction is again of the type σ ⊗ p̂, where σ is a Pauli matrix. Specifically, the interaction

terms are of the form of the electric dipole interaction σx ⊗ p̂ and magnetic dipole interaction

σz ⊗ η̂, which can appear for instance in a Jaynes-Cummings-like model. Thus one just needs

pairwise Jaynes-Cummings-like interactions between every two level system |0⟩, |j⟩ and a qumode,

for every j, which is much easier to realize experimentally compared to working directly with the

original heat equation with second order differential operators .

Other parabolic equations such as the Black-Scholes and Fokker-Planck equations can also be

handled similarly. See [26] for more details.

5 Nonlinear PDEs and ODEs

Quantum computers are built using quantum mechanics principle, which is intrinsically linear,

making it difficult to solve nonlinear problems. For nonlinear ODEs and PDEs, there are two ways
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to tackle this difficulty. One is to use linear approximation, by approximating the original nonlinear

problem by linear system. A popular approach is the Carleman approximation [41, 46]. Since it

approximates a nonlinear system by a finite dimensional linear system, its validity is restrictive,

effective only for weak and special (such as quadratic) nonlinearity with strong dissipation. The

other is linear representation, which seeks a higher dimensional representation which is linear, and

the higher dimensional system is equivalent–thus without approximation–to the original problem.

The representative methods for linear representation include the Koopman-von-Neumann method

[13, 40] and the level set method [28, 35]. Comparing with the linear approximation methods,

the linear representation methods introduce no approximation thus are valid for all time and any

nonlinearity for the classes of ODEs and PDEs it solves. However this approach works for limited

classes of PDEs which we will present below.

Next we summarize the level set methods for Hamilton-Jacobi equations and scalar hyperbolic

balance laws. The latter includes nonlinear ODEs.

5.1 The Hamilton-Jacobi equation

Hamilton-Jacobi equations arise, for instance, in geometric optics, the semiclassical limit of

the Schrödinger equation, the level set formulation of front propagation, etc. It has the following

general form

∂tS
[k] +H(∇S[k], x) = 0, t ∈ R+, x ∈ Rd, S[k](t, x) ∈ R, (5.1)

S[k](0, x) = S
[k]
0 (x), k = 1, ...,M, (5.2)

with H being the Hamiltonian. Here we consider the problem of simulating the equation with M

different initial data, each indexed by k. We will show that the computational complexity of the

proposed level set algorithm will be independent of M if the average of the solution for M different

initial data is to be computed.

Two important classical examples of Hamiltonians are

H(x, p) =
p2

2
+ V (x), (5.3)

corresponding to classical Newtonian particles with potential V (x), and

H(x, p) = c(x)|p|, (5.4)

that arises in geometric optics and the level set formulation of front propagation [15, 52], in which

c(x) is the reciprocal of the index of reflection or the speed of a propagating front in the normal

direction.

Define u[k] = ∇S[k] ∈ Rd. Then u[k] solves a hyperbolic system of conservation laws in gradient

form:

∂tu
[k] +∇H(u[k], x) = 0, (5.5)

u[k](0, x) = ∇S[k]
0 (x). (5.6)
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The level set function ϕ
[k]
i (t, x, p) can be defined by

ϕ
[k]
i (t, x, p = u[k](t, x)) = 0, (5.7)

where i = 1, · · · , d and x, p ∈ Rd, k = 1, ...,M . The zero level set of ϕ
[k]
i is the set {(t, x, p)|ϕ[k]i (t, x, p) =

0}.

Since u[k](t, x) solves Eq. (5.5), then one can show that ϕ[k] = (ϕ
[k]
1 , · · · , ϕ

[k]
d ) ∈ Rd solves a

(linear!) Liouville equation [38]

∂tϕ
[k] +∇pH · ∇xϕ

[k] −∇xH · ∇pϕ
[k] = 0. (5.8)

Note that the (bi)-characteristics of the Liouville equation in Eq. (5.8) is the Hamiltonian system

∂x

∂t
= ∇pH,

∂p

∂t
= −∇xH. (5.9)

The initial data can be chosen as

ϕ
[k]
i (0, x, p) = pi − u

[k]
i (0, x), i = 1, · · · , d. (5.10)

Then u[k] can be recovered from the intersection of the zero level sets of ϕi (i = 1, · · · , d), namely

u[k](t, x) = {p(t, x)|ϕ[k]i (t, x, p) = 0, i = 1, · · · , d}. (5.11)

Note that ϕ
[k]
i (t, x, p) = 0 may have multiple (say Jk) roots, denoted by pγ(t, x) (γ = 1, · · · , Jk),

hence the so-called multi-valued solutions will arise [14,22,59], which are denoted by

u[k]γ (t, x) = ∩d
i=1{pγ(t, x)|ϕ

[k]
i (t, x, pγ) = 0}, γ = 1, · · · , Jk. (5.12)

Now a (d + 1)-dimensional nonlinear PDE– the Hamilton-Jacobi equation– has been trans-

formed to a (2d + 1)-dimensional linear PDE –the Liouville equation–without any assumptions

on either the form or extent of the original nonlinearity. Unlike the Carleman approximation ap-

proach [46], no linear approximation is made, nor the form of the nonlinearity (H here) needs to

be assumed. The mapping is exact and works for any H.

Finding the zero level set of ϕ
[k]
i (i = 1, · · · d) is difficult for quantum algorithms. An alternative

method is to solve for ψ, defined by the following problem

∂tψ +∇pH · ∇xψ −∇xH · ∇pψ = 0 (5.13)

with the initial condition

ψ(0, x, p) =
1

M

M∑
k=1

d∏
i=1

δ(pi − u
[k]
i (0, x)). (5.14)

Then it is easy to prove [25]

ψ(t, x, p) =
1

M

M∑
k=1

δ(ϕ[k](t, x, p)) . (5.15)
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An important observation here is that all M distinct initial conditions of u[k] in the original

problem have now been converted into a single initial condition in ψ. Thus cost for the correspond-

ing quantum algorithm is independent of M .

It will be too costly to recover the classical point-wise value of u for all mesh points from the

quantum state of ψ. Often only the physical observables are of interest, which are defined by

⟨G(t, x)⟩ ≡
∫
Rd

G(p)ψ(t, x, p)dp =
1

M

M∑
k=1

∫
Rd

G(p)δ(ϕ[k](t, x, p))dp. (5.16)

This is an ensemble average of solution over theM different initial data, which can be approximated

by numerical quadrature rules [29].

For the Hamiltonian (5.3), the level set equation is the semi-classical limit of the Schrödinger

equation, where the zeroth, first and second moments of ψ, correspond to the semi-classical classical

limit to the position density (which is 1 in this case), current density and kinetic energy [25]. The

total energy E(t, x) can be recovered by combining the second and zeroth moments to choose

G(p) = (1/2)|p|2 + V (x).

5.2 Scalar hyperbolic balance laws and nonlinear ODEs

Nonlinear hyperbolic balance laws arise for instance in gas dynamics, combustion, magnetohy-

drodynamics, shallow water and traffic flows. Here, we focus on scalar equation where u[k](t, x) ∈ R
is a scalar solving an initial value problem of an (d + 1)-dimensional first-order hyperbolic PDE

with a nonlinear source term

∂tu
[k] + F (u[k]) · ∇xu

[k] +Q(x, u[k]) = 0, t ∈ R+, x ∈ Rd, (5.17)

u[k](0, x) = u
[k]
0 (x), k = 1, ...,M. (5.18)

Here the flux F (u[k]) : R → Rd is a vector and Q : Rd+1 → R is the nonlinear source term. This

equation includes any such hyperbolic balance laws in conservative or non-conservative form, and

nonlinear ODE (when F = 0).

Introduce the level set function ϕ(t, x, p) in (d+ 1) + 1 = d+ 2 dimensions, where p ∈ R1. Its

zero level set gives the solution u:

ϕ[k](t, x, p) = 0 at p = u[k](t, x). (5.19)

Then ϕ satisfies [38]

∂tϕ
[k] + F (p) · ∇xϕ

[k] −Q(x, p)∂pϕ
[k] = 0, (5.20)

ϕ[k](0, x, p) = p− u
[k]
0 (x). (5.21)

Like for the Hamilton-Jacobi PDEs, we can similarly define a function ψ by the following problem

∂tψ + F (p) · ∇xψ −Q(x, p)∂pψ = 0, (5.22)

ψ(0, x, p) = 1
M

∑M
k=1 δ(p− u

[k]
0 (x)), (5.23)
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and one has

ψ(t, x, p) =
1

M

M∑
k=1

δ(ϕ[k](t, x, p)). (5.24)

The only difference compared to the Hamilton-Jacobi equation is that now p ∈ R1 instead of being

a d-dimensional vector. This means the observable is now an integral over R:

⟨g(t, x)⟩ =
∫
R
g(p)ψ(t, x, p)dp. (5.25)

It is important to remark that the level set equations for both Hamilton-Jacobi equations and

scalar hyperbolic balance laws give multivalued solutions, not viscosity solutions [12, 42], beyond

the formation of caustics or shocks. It remains open to develop efficient quantum algorithms–with

quantum advantage–that can capture viscosity solutions to these semi-linear PDEs.

6 Final remarks and open problems

In this article, we briefly reviewed the Schrödingerization technique, introduced in [27,34,37],

as a general methodology to develop quantum algorithms for linear partial and ordinary differential

equations. It can also be employed for iterative methods in numerical linear algebra. This article is

not meant to be comprehensive in reviewing all important results in quantum algorithms for PDEs

and ODEs. Rather the focus is on the continuous-variable perspective which sets the foundation

for analog quantum computation [27], and Schrodingerization is a means for allowing this type

of quantum algorithm. This preserves the fully continuous nature of the ODEs and PDEs in

both space and time. Other quantum algorithms for PDEs include, for example, unitarization of

non-unitary dynamics by the Linear Combination of Hamiltonian simulation [5], methods using

quantum linear algebra solvers [18] and using block encoding [6,7,11], which require discretization

of the PDE. We also did not discuss quantum circuit designs using qubit-based algorithms [58],

which can also be constructed starting from Schrödingerized equations, see for example [20, 36].

Although Schrodingerization can also be used on qubit-based quantum computers, we do not review

these results here.

It is also important to point out that here we only focus on preparing quantum states of the

final solution given an initial quantum state embedding the initial conditions of the ODE or PDE.

We did not touch upon the issue of quantum measurements, which extracts classical data from

the quantum state. We also did not discuss the preparation of the initial quantum states. These

conversions between classical data and quantum states can be costly depending on the type of data

and the information one wants to extract. We leave these discussions for future work and focus

here only on the evolution process.

A generic mathematical approach used in our methodology is dimension lifting, also known as

dilation. Through dimension lifting, we transformed nonlinear PDEs and ODEs to linear PDEs,

non-autonomous systems to autonomous systems, and linear PDEs to Schrödinger-type PDEs.

Each of these dimension-lifting technique is different. We can also transform PDEs and ODEs

with random coefficients or inputs to deterministic PDEs with randomness appearing only in the
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initial data [16] and using a quantum version of stochastic galerkin methods [27]. While the curse-

of-dimensionality is a major bottleneck for classical computers, it is not always so for quantum

computers. Thus it is of significant mathematical interest to develop dimension-lifting techniques

which can transform problems that cannot be simulated by quantum computers into ones that

quantum computers can solve.

There remains many challenging open mathematical and algorithmic problems, especially for

nonlinear problems. Here we list a few:

• Nonlinear ODEs. While the level set or Koopman-von Neumann method can transform them

into linear PDEs, the dimension of linear PDEs equals the number of nonlinear ODEs, thus,

the dimension is increased too much and there is no quantum advantage [28]. We need

to develop new efficient quantum algorithms for systems of nonlinear ODEs with quantum

advantage, which is not limited to either short evolution time or small nonlinearities.

• Scalar nonlinear PDEs. For scalar equations such as Hamilton-Jacobi or scalar hyperbolic

balance laws – both are of transport type with first-order derivatives. The level set approach

gives multivalued solutions. We need to develop efficient quantum algorithms for these equa-

tions that can capture the viscosity solutions. For other nonlinear PDEs that are not of

transport type, it remains open to find linear representation methods to make them linear in

higher – but not exponentially higher – dimension, or to find adequate approximations that

work in strongly nonlinear regimes, with quantum advantage.

• Nonlinear systems of PDEs. The level set method does not directly apply here at the contin-

uous level. In principle one can discretize first spatially so they become nonlinear ODEs and

then the level set method can be applied. But like in the case of nonlinear ODEs, one won’t

obtain quantum advantage since the dimension of the resulting linear PDEs is too high [28].
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