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MATHEMATICAL ANALYSIS AND NUMERICAL METHODS
FOR MULTISCALE KINETIC EQUATIONS WITH

UNCERTAINTIES

Shi Jin

Abstract
Kinetic modeling and computation face the challenges of multiple scales and un-

certainties. Developing efficient multiscale computational methods, and quantify-
ing uncertainties arising in their collision kernels or scattering coefficients, initial or
boundary data, forcing terms, geometry, etc. have important engineering and indus-
trial applications. In this article we will report our recent progress in the study of
multiscale kinetic equations with uncertainties modelled by random inputs. We first
study the mathematical properties of uncertain kinetic equations, including their reg-
ularity and long-time behavior in the random space, and sensitivity of their solutions
with respect to the input and scaling parameters. Using the hypocoercivity of kinetic
operators, we provide a general framework to study these mathematical properties for
general class of linear and nonlinear kinetic equations in various asymptotic regimes.
We then approximate these equations in random space by the stochastic Galerkin meth-
ods, study the numerical accuracy and long-time behavior of the methods, and further-
more, make the methods “stochastically asymptotic preserving”, in order to handle
the multiple scales efficiently.

1 Introduction

Kinetic equations describe the probability density function of a gas or system comprised
of a large number of particles. In multiscale modeling hierarchy, they serve as the bridge
between atomistic and continuum models. On one hand, since they model the collec-
tive dynamics of particles, thus are more efficient than molecular dynamics; on the other
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hand, they provide more accurate solutions when the macroscopic fluid mechanics laws
of Navier-Stokes and Fourier become inadequate. The most fundamental kinetic equation
is the Boltzmann equation, an integro-differential equation describing particle transport
with binary collisions Chapman and Cowling [1991] and Cercignani [1988]. Now kinetic
theory has seen expanding applications from rarefied gas dynamics Cercignani [2000], ra-
diative transfer Chandrasekhar [1960], medical imaging Arridge [1999], plasma physics
Degond and Deluzet [2017a], to microfabrication technology Markowich, Ringhofer, and
Schmeiser [1990] and Jüngel [2009], biological and even social sciences Naldi, Pareschi,
and Toscani [2010].

There are three main computational challenges in kinetic modeling and simulation: Di-
mension curse, multiple scales, and uncertainty.

A kinetic equation solves the particle density distribution f (t; x; v), which depends on
time t 2 R+, space x 2 Rd , and particle velocity v 2 Rd . Typically, d = 3, therefore
one has to solve a six dimensional differential-integral equation plus time.

Kinetic equations often have multiple scales, characterized by the Knudsen number ",
the ratio of particle mean free path over a typical length scale, which can vary spatially
dramatically. In these problems, multiscale and multi physics modelings are essential. For
example, in the space shuttle reentry problem, along the vehicle trajectory, one encoun-
ters free streaming, rarefied gas (described by the Boltzmann equation), transition to the
macroscopic hydrodynamic (described by the Euler or Navier-Stokes equations) regimes.
In this process the mean free path changes from O(1) meters to O(10�8) meters Rivell
[2006]. In plasma physics, one has to match the plasma and sheath where the quasineutral
(which allows macroscopic modeling) and non-quasineutral (which needs kinetic model-
ing) models need to be coupled Franklin and Ockendon [1970]. These multiscale and
multi-physics problems pose tremendous numerical challenges, with stiff collision terms,
strong (electric or magnetic) fields, fast advection speed, and long-time behavior that re-
quire prohibitively small time step and mesh size in order to obtain reliable computational
results.

Another challenge, which has been ignored in the community, is the issue of uncertain-
ties in kinetic models. In reality, there are many sources of uncertainties that can arise
in these equations, such as collision kernels, scattering coefficients, initial or boundary
data, geometry, source or forcing terms Bird [1994], Berman, Haverkort, and Woerdman
[1986], and Koura and Matsumoto [1991]. Understanding the impact of these uncertain-
ties is crucial to the simulations of the complex kinetic systems in order to validate and
improve these models.

To characterize the uncertainty, we assume that certain quantities depend on a random
vector z 2 Rn in a properly defined probability space (Σ;A;P ), whose event space
is Σ and is equipped with � -algebra A and probability measure P . We also assume
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the components of z are mutually independent random variables with known probabil-
ity !(z) : Iz �! R+, obtained already through some dimension reduction technique,
e.g., Karhunen-Loève (KL) expansion Loève [1977], and do not pursue further the issue
of random input parameterization.

Although uncertainty quantification (UQ) has been a popular field in scientific and en-
gineering computing in the last two decades, UQ for kinetic equations has been largely
an open area until recently. In this article we will present some of our recent results in
UQ for multiscale kinetic equations. We will use hypocoercivity of kinetic operators to
study the regularity and long-time behavior in the random space, as well as sensitivity of
the solutions with respect to the random input parameters. Our results are fairly general,
covering most important linear and nonlinear kinetic equations, including the Boltzmann,
Landau, semi-classical relaxation models, and the Vlasov-Poisson-Fokker-Planck equa-
tions. We then introduce the stochastic Galerkin method for random kinetic equations, and
study their numerical accuracy and long-time behavior, and formulate them as stochastic
asymptotic-preservingmethods for multiscale kinetic equations with uncertainties, which
allows one to solve these problems with all numerical parameters–including the degree
of orthogonal polynomials used in the polynomial chaos expansions–independent of the
Kundsen number.

2 Basic mathematical theory for uncertain kinetic equations

2.1 The linear transport equation with isotropic scattering. We first introduce the
linear transport equation in one dimensional slab geometry:

"@tf + v@xf =
�

"
Lf � "�af + "S; t > 0; x 2 [0; 1]; v 2 [�1; 1]; z 2 Iz ;(2-1)

Lf (t; x; v; z) =
1

2

Z 1

�1

f (t; x; v0; z) dv0
� f (t; x; v; z) ;(2-2)

with the initial condition

(2-3) f (0; x; v; z) = f 0(x; v; z):

This equation arises in neutron transport, radiative transfer, etc. and describes particles
(for example neutrons) transport in a background media (for example nuclei). L is the
collision operator, v = Ω � ex = cos � where � is the angle between the moving direction
and x-axis. �(x; z), �a(x; z) are total and absorption cross-sections respectively. S(x; z)
is the source term. For �(x; z), we assume

(2-4) �(x; z) � �min > 0:
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The equation is scaled in long time with strong scattering.
Denote

(2-5) [�] =
1

2

Z 1

�1

�(v) dv

as the average of a velocity dependent function �.
Define in the Hilbert space L2

�
[�1; 1]; ��1 dv

�
the inner product and norm

(2-6) hf; gi� =

Z 1

�1

f (v)g(v)��1 dv; kf k
2
� = hf; f i� :

The linear operator L satisfies the following coercivity properties Bardos, Santos, and
Sentis [1984]: L is non-positive self-adjoint inL2([�1; 1];��1 dv), i.e., there is a positive
constant sm such that

(2-7) hf;Lf i� � �2smkf k
2
� ; 8f 2 N(L)?;

with N(L) = span f� j � = [�] g the null space of L.
Let � = [f ]. For each fixed z, the classical diffusion limit theory of linear transport

equation Larsen and Keller [1974], Bensoussan, Lions, and Papanicolaou [1979], and
Bardos, Santos, and Sentis [1984] gives that, as " ! 0, � solves the following diffusion
equation:

(2-8) @t� = @x

�
1

3
�(x; z)�1@x�

�
� �a(x; z)� + S(x; z):

To study the regularity and long-time behavior in the random space of the linear trans-
port Equation (2-1)-(2-3), we use the Hilbert space of the random variable

(2-9) H (Iz ; ! dz) =
n
f j Iz ! R+;

Z
Iz

f 2(z)!(z) dz < +1

o
;

equipped with the inner product and norm defined as

(2-10) hf; gi! =

Z
Iz

fg !(z) dz; kf k
2
! = hf; f i! :

We also define the kth order differential operator with respect to z as

(2-11) Dkf (t; x; v; z) := @k
zf (t; x; v; z);

and the Sobolev norm in z as

(2-12) kf (t; x; v; �)k2
H k :=

X
˛�k

kD˛f (t; x; v; �)k2! :
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Finally, we introduce norms in space and velocity as follows,

kf (t; �; �; �)k2Γ :=

Z
Q

kf (t; x; v; �)k2! dx dv; t � 0;(2-13)

kf (t; �; �; �)k2
Γk :=

Z
Q

kf (t; x; v; �)k2
H k dx dv; t � 0;(2-14)

where Q = [0; 1] � [�1; 1] denotes the domain in the phase space. For simplicity of
notations, we will suppress the dependence of t and just use kf kΓ, kf kΓk in the following
results, which were established in Jin, J.-G. Liu, and Ma [n.d.].

Theorem 2.1 (Uniform regularity). If for some integer m � 0,

(2-15) kDk�(z)kL1 � C� ; kDkf0kΓ � C0; k = 0; : : : ; m;

then the solution f to the linear transport Equation (2-1)–(2-3), with �a = S = 0 and
periodic boundary condition in x, satisfies,

(2-16) kDkf kΓ � C; k = 0; � � � ; m; 8t > 0;

where C� , C0 and C are constants independent of ".

The above theorem shows that, under some smoothness assumption on � , the regularity
of the initial data is preserved in time and the Sobolev norm of the solution is bounded
uniformly in ".

Theorem 2.2 ("2-estimate on [f ] � f ). With all the assumptions in Theorem 2.1 and
furthermore, � 2 W k;1 = f� 2 L1([0; 1]�Iz)jD

j� 2 L1([0; 1]�Iz) for all j � kg.
For a given time T > 0, the following regularity result of [f ] � f holds:

(2-17) kDk([f ] � f )k2Γ � e��mint/2"2
kDk([f0] � f0)k

2
Γ + C 0"2

for any t 2 (0; T ] and 0 � k � m;, where C 0 and C are constants independent of ".

The first term on the right hand side of (2-17) is the behavior of the initial layer, which
is damped exponentially in t/"2. After the initial layer, the high order derivatives in z of
the difference between f and its local equilibrium [f ] is of O(").

Such results have been generalized to linear anisotropic collision operators in L. Liu
[n.d.]. For general linear collision operators conserving mass, the hypocoercivity frame-
work of Dolbeault, Mouhot, and Schmeiser [2015] was first used by Li and Wang [2016]
to prove regularity in the random space with sharp constants.



3600 SHI JIN

2.2 General collisional nonlinear kinetic equationswith randomuncertainties. Con-
sider the initial value problem for kinetic equations of the form8<: @tf +

1

"˛
v � rxf =

1

"1+˛
Q(f );

f (0; x; v; z) = fin(x; v; z); x 2 Ω � T d ; v 2 Rd ; z 2 Iz � R:
(2-18)

The operator Q models the collisional interactions of particles, which is either binary or
between particles and a surrounding medium. ˛ = 1 is referred to the incompressible
Navier-Stokes scaling, while ˛ = 0 corresponds to the Euler (or acoustic) scaling. The pe-
riodic boundary conditions for the spatial domain Ω = T d is assumed here for theoretical
purpose. In the sequel L is used for both the linear collision operator and the linearized
collision operator for nonlinear equations. Consider the linearized equation

(2-19) @tg +
1

"˛
v � rxg =

1

"1+˛
L(g);

Since L is not fully dissipative, as summarized in S. Daus, Jüngel, Mouhot, and Zamponi
[2016] and Dolbeault, Mouhot, and Schmeiser [2015], the idea is to use the hypocoercivity
of the linearized kinetic operator

G =
1

"1+˛
L �

1

"˛
T ;

where T = v � rx is the streaming operator, using the dissipative properties of L and the
conservative properties of T . The aim is to find a Lyaponov type functional �[h] which is
equivalent to the square of the norm of a Banach space, for example

H 1
x;v =

8<:f ˇ̌̌
Z
Ω�Rd

X
ji j+jj j�1

jj@xi
@vj

gjj
2
L2

x;v
dxdv < 1

9=; ;
such that

�1 jjgjjH1
x;v

� �[g] � �2 jjgjjH1
x;v
; for g 2 H 1

x;v;

which leads to
d

dt
�[g(t)] � �� jjg(t)jjH1

x;v
; t > 0;

with constants �1, �2, � > 0. Then one concludes the exponential convergence of g in
H 1

x;v . The obvious choice of �[g] = c1 jjgjj2
L2

x;v
+ c2 jjrxgjj2

L2
x;v

+ c3 jjrvgjjL2
x;v

does
not work, since the collision operator is not coercive. The key idea, first seen in Villani
[2009] and implemented in Mouhot and Neumann [2006], is to add the “mixing term”
chrxg; rvgiL2

x;v
to the definition of �[g], that is

d

dt
hrxg; rvgiL2

x;v
= �jjrxgjj

2
L2

x;v
+ 2hrxL(g); rvgiL2

x;v
:
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Mouhot and Neumann [ibid.] discusses the linearized equation @tg + v � rxg = L(g)

and proves that if the linear operatorL satisfies some assumptions, thenL�v�rx generates
a strongly continuous evolution semi-group etG onH s

x;v , which satisfies

(2-20) jjetG(I � ΠG)jjH s
x;v

� C exp[�� t ];

for some explicit constants C; � > 0 depending only on the constants determined by the
equation itself. Here ΠG is the orthogonal projection in L2

v onto the null space of L. This
result shows that apart from 0, the spectrum of G is included in

f� 2 C : Re(�) � ��g:

For nonliner kinetic equations, the main idea is to use the perturbative setting Guo
[2006] and Strain and Guo [2008]. Equations defined in (2-18) admit a unique global
equilibrium in the torus, denoted by M which is independent of t; x. Now consider the
linearization around this equilibrium and perturbation of the solution of the form

(2-21) f = M + "Mh

with M being the global equilibrium (or global) Maxwellian, and M =
p

M. Then h
satisfies

(2-22) @th+
1

"˛
v � rxh =

1

"1+˛
L(h) +

1

"˛
F (h; h):

L is the linearized (around M) collision operator acting on L2
v = ff j

R
Rd f

2 dv < 1g,
with the kernel denoted byN (L) = spanf 1; � � � ;  d g. f i g1�i�d is an orthonormal fam-
ily of polynomials in v corresponding to the manifold of local equilibria for the linearized
kinetic models. The orthogonal projection on N (L) in L2

v is defined by

(2-23) ΠL(h) =

nX
i=1

�Z
Rd

h i dv

�
 i ;

where ΠL is the projection on the ’fluid part’ and I � ΠL is the projection on the kinetic
part, with I the identity operator. The global equilibrium is then

(2-24) M = ΠG(h) =

nX
i=1

�Z
Td �Rd

h i dx dv

�
 i ;

which is independent of x and t and is the orthogonal projection on N (G) = N (L) in
L2

x;v = ff j
R
Ω�Rd f

2 dxdv < 1g.
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Since the linear part 1
"1+˛ L part has one extra factor of 1

"
than the nonlinear part 1

"˛ T ,
one hopes to use the hypocoercivity from the linear part to control the nonlinear part in
order to come up with the desired decay estimate. This is only possible for initial data
close to M, as in (2-21). In addition, one needs some assumptions on these operators,
which can be checked for a number of important collision kernels, such as the Boltzmann,
Landau, and semi-classical relaxation models Briant [2015].

Assumption on the linear operator L. L has the local coercivity property: There
exists � > 0 such that 8 h 2 L2

v ,

(2-25) hL(h); hiL2
v

� �� jjh?
jj
2
Λv
;

where
h? = h � ΠL(h)

stands for the microscopic part of h, which satisfies h? 2 N (L)? in L2
v . Here Λv-norm

is collision operator specific. For the Boltzmann collision operator, it is given in (2-33).
To extend to higher-order Sobolev spaces, let us first introduce some notations of multi-

indices and Sobolev norms. For two multi-indices j and l in Nd , define

@
j

l
= @/@vj @/@xl :

For i 2 f1; � � � ; dg, denote by ci (j ) the value of the i -th coordinate of j and by jj j the
l1 norm of the multi-index, that is, jj j =

Pd
i=1 ci (j ). Define the multi-index ıi0 by:

ci (ıi0) = 1 if i = i0 and 0 otherwise. We use the notation

@˛
zh = @˛h:

Denote jj � jjΛ := jj jj � jjΛv
jjL2

x
. The Sobolev norms onH s

x;v andH s
Λ are defined by

jjhjj
2
H s

x;v
=

X
jj j+jlj�s

jj@
j

l
hjj

2
L2

x;v
; jjhjj

2
H s

Λ
=

X
jj j+jlj�s

jj@
j

l
hjj

2
Λ :

Define the sum of Sobolev norms of the z derivatives by

jjhjj
2
H

s;r
x;v

=
X

jmj�r

jj@mhjj
2
H s

x;v
; jjhjj

2
H

s;r
Λ

=
X

jmj�r

jj@mhjj
2
H s

Λ
; jjhjj

2
H

s;r
x L2

v
=
X

jmj�r

jj@mhjj
2
H s

xL2
v
:

Note that these norms are all functions of z. Define the norms in the (x; v; z) space

jjh(x; v; �)jj2H s
z
=

Z
Iz

jjhjj
2
H s

x;v
�(z) dz ; jjh(x; v; �)jj2H s

x;vH r
z
=

Z
Iz

jjhjjH s;r
x;v
�(z) dz ;
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in addition to the sup norm in z variable,

jjhjjH s
x;vL1

z
= sup

z2Iz

jjhjjH s
x;v
:

Assumptions on the nonlinear term F : F : L2
v �L2

v ! L2
v is a bilinear symmetric

operator such that for all multi-indexes j and l such that jj j + jl j � s, s � 0, m � 0,

ˇ̌̌
h@m@

j

l
F (h; h); f iL2

x;v

ˇ̌̌
�

(
Gs;m

x;v;z(h; h) jjf jjΛ ; if j ¤ 0;

Gs;m
x;z (h; h) jjf jjΛ ; if j = 0:

(2-26)

Sum up m = 0; � � � ; r , then 9 s0 2 N; 8s � s0, there exists a z-independent CF > 0

such that for all z,X
jmj�r

(Gs;m
x;v;z(h; h))

2
� CF jjhjj

2
H

s;r
x;v

jjhjj
2
H

s;r
Λ
;

X
jmj�r

(Gs;m
x;z (h; h))

2
� CF jjhjj

2
H

s;r
x L2

v
jjhjj

2
H

s;r
Λ
:

With uncertainty in the equation, following the deterministic framework inBriant [ibid.],
we define a Lyapunov type functional

jj � jj
2
Hs

"?

=
X

jj j+jlj�s; jj j�1

b
(s)

j;l
jj@

j

l
(I � ΠL) � jj

2
L2

x;v
+
X
jlj�s

˛
(s)

l
jj@0l � jj

2
L2

x;v

+
X

jlj�s; i;ci (l)>0

" a
(s)

i;l
h@

ıi

l�ıi
�; @0l � iL2

x;v
;(2-27)

and the corresponding Sobolev norms

jjhjj
2
Hs;r

"?

=
X

jmj�r

jj@mhjj
2
Hs

"?

; jjhjjHs;r
"?

L1
z

= sup
z2Iz

jjhjjHs;r
"?
:

The following theorem is from L. Liu and Jin [2017]:

Theorem 2.3. For all s � s0, 9 (b
(s)

j;l
); (˛

(s)

l
); (a

(s)

i;l
) > 0 and 0 � "d � 1, such that for

all 0 � " � "d ,
(1) jj � jjHs

"?
∼ jj � jjH s

x;v
;

(2) Assume jjhinjjH s
x;vL1

z
� CI , then if h" is a solution of (2-22) in H s

x;v for all z, we
have

jjh"jjH s;r
x;vL1

z
� CI e

��s t ; jjh"jjH s
x;vH r

z
� CI e

��s t ; for ˛ = 1 ;(2-28)

jjh"jjH s;r
x;vL1

z
� CI e

�"�s t ; jjh"jjH s
x;vH r

z
� CI e

�"�s t ; for ˛ = 0 ;(2-29)

where CI , �s are positive constants independent of ".
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Remark 2.4. Theorem 2.3 provides the regularity of h (thus f ) in the random space,
which preserves the regularity of the initial data in time. Furthermore, it shows that the
uncertainty from the initial datum will eventually diminish and the solution will exponen-
tially decay to the deterministic global equilibrium in the long time, with a decay rate of
O(e�t ) under the incompressible Navier-Stokes scaling and O(e�"t ) under the acoustic
scaling.

2.3 The Boltzmann equation with uncertainties. As an example of the general theory
in subSection 2.2, we consider the Boltzmann equation with uncertain initial data and
uncertain collision kernel:8<: @tf +

1

"˛
v � rxf =

1

"1+˛
Q(f; f );

f (0; x; v; z) = f 0(x; v; z); x 2 Ω � T d ; v 2 Rd ; z 2 Iz :
(2-30)

The collision operator is

Q(f; f ) =

Z
Rd �Sd�1

B(jv � v�j; cos �; z) (f 0f 0
� � ff�) dv� d�:

We adopt notations f 0 = f (v0), f� = f (v�) and f 0
� = f (v0

�), where

v0 = (v + v�)/2 + (jv � v�j/2)�; v0
� = (v + v�)/2 � (jv � v�j/2)�

are the post-collisional velocities of particles with pre-collisional velocities v and v�. � 2

[0; � ] is the deviation angle between v0�v0
� and v�v�. The global equilibrium distribution

is given by the Maxwellian distribution

(2-31) M(�1; u1; T1) =
�1

(2�T1)N/2
exp

�
�

ju1 � vj2

2T1

�
;

where �1, u1, T1 are the density, mean velocity and temperature of the gas

�1 =

Z
Ω�Rd

f (v) dxdv; u1 =
1

�1

Z
Ω�Rd

vf (v) dxdv;

T1 =
1

N�1

Z
Ω�Rd

ju1 � vj
2 f (v) dxdv;

which are all determined by the initial datum due to the conservation properties. We will
consider hard potentials with B satisfying Grad’s angular cutoff, that is,

B(jv � v�j; cos �; z) = �(jv � v�j) b(cos �; z); �(�) = C� �
 ; with  2 [0; 1];

8� 2 [�1; 1]; jb(�; z)j � Cb; j@�b(�; z)j � Cb; j@k
zb(�; z)j � C �

b ; 8 0 � k � r :

(2-32)
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where b is non-negative and not identically equal to 0. Recall that h solves (2-22), with
the linearized collision operator given by

L(h) =M�1 [Q(Mh;M) + Q(M;Mh)] ;

while the bilinear part is given by

F (h; h) = 2M�1Q(Mh;Mh) =

Z
Rd �Sd�1

�(jv�v�j) b(cos �; z)M� (h
0
�h

0
� h�h) dv�d� :

The the coercivity norm used in (2-25) is

(2-33) jjhjjΛ = jjh(1 + jvj)/2
jjL2 :

The coercivity argument of L is proved in Mouhot [2006]:

(2-34) � hh; L(h)iL2
v

� � jjh?
jjΛ2

v
:

Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with
hard potentials have been obtained in Mouhot and Baranger [2005] and extended to esti-
mates given in Mouhot [2006]. Proofs of L satisfying Equation (2-25) and F satisfying
(2-26), even for random collision kernel satisfying conditions given in (2-32), were given
in L. Liu and Jin [2017]. Thus Theorem 2.3 holds for the Boltzmann equation with ran-
dom initial data and collision kernel. Similar results can be extended to Landau equation
and semi-classical relaxation model, see L. Liu and Jin [ibid.].

2.4 The Vlasov-Poisson-Fokker-Planck system. One kinetic equation which does not
fit the collisional framework presented in subSection 2.2 is the Vlasov-Poisson-Fokker-
Planck (VPFP) system that arises in the kinetic modeling of the Brownian motion of a
large system of particles in a surrounding bath Chandrasekhar [1943]. One application of
such system is the electrostatic plasma, in which one considers the interactions between
the electrons and a surrounding bath via the Coulomb force. With the electrical potential
�(t; x; z), the equations read

(2-35)

(
@tf + 1

ı
@xf �

1
"
@x�@vf = 1

ı"
F f;

�@xx� = � � 1; t > 0; x 2 Ω � R; v 2 R; z 2 Iz ;

with initial condition

(2-36) f (0; x; v; z) = f 0(x; v; z):
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Here, F is the Fokker-Planck operator describing the Brownian motion of the particles,

F f = @v

�
Mrv

�
f

M

��
;(2-37)

where M is the global equilibrium or global Maxwellian,

M =
1

(2�)
d
2

e�
jvj2

2 :(2-38)

ı is the reciprocal of the scaled thermal velocity, " represents the scaled thermal mean free
path. There are two different regimes for this system. One is the high field regime, where
ı = 1. As " ! 0, f goes to the local Maxwellian Ml =

1

(2�)
d
2

e�
jv�rx �j2

2 , and the VPFP

system converges to a hyperbolic limit Arnold, Carrillo, Gamba, and C.-W. Shu [2001],
Goudon, Nieto, Poupaud, and Soler [2005], and Nieto, Poupaud, and Soler [2001]:

(2-39)

(
@t� + rx � (�rx�) = 0;

�∆x� = � � 1:

Another regime is the parabolic regime, where ı = ". When " ! 0, f goes to the global
Maxwellian M, and the VPFP system converges to a parabolic limit Poupaud and Soler
[2000]:

(2-40)

(
@t� � rx � (rx� � �rx�) = 0;

�∆x� = � � 1:

Define the L2 space in the measure of

d� = d�(x; v; z) = !(z) dx dv dz:(2-41)

With this measure, one has the corresponding Hilbert space with the following inner prod-
uct and norms:

< f; g >=

Z
Ω

Z
R

Z
Iz

fg d�(x; v; z); or; < �; j >=

Z
Ω

Z
Iz

�j d�(x; z);

(2-42)

with norm
kf k

2 =< f; f > :

In order to get the convergence rate of the solution to the global equilibrium, define

h =
f � M
p

M
; � =

Z
R
h
p
M dv; u =

Z
R
h v

p
M dv;(2-43)
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where h is the (microscopic) fluctuation around the equilibrium, � is the (macroscopic)
density fluctuation, and u is the (macroscopic) velocity fluctuation. Then the microscopic
quantity h satisfies,

"ı@th+ ˇv@xh � ı@x�@vh+ ı
v

2
@x�h+ ıv

p
M@x� = LF h;(2-44)

@2x� = ��;(2-45)

while the macroscopic quantities � and u satisfy

ı@t� + @xu = 0;(2-46)

"ı@tu+ "@x� + "

Z
v2

p
M (1 � Π)@xhdv + ı@x�� + u+ ı@x� = 0 ;(2-47)

where LF is the so-called linearized Fokker-Planck operator,

(2-48) LF h =
1

p
M

F
�
M +

p
Mh

�
=

1
p

M
@v

�
M@v

�
h

p
M

��
:

Introduce projection operator

(2-49) Πh = �
p

M + vu
p

M:

Furthermore, we also define the following norms and energies,

khk
2
L2(v) =

Z
R
h2 dv; kf k

2
H m =

mX
l=0

k@l
zf k

2;

Em
h = khk

2
H m + k@xhk

2
H m�1 ; Em

� = k@x�k
2
H m + k@2x�k

2
H m�1 :

Weneed the following hypocoercivity properties proved inDuan, Fornasier, and Toscani
[2010]:

Proposition 2.5. For LF defined in (2-48),

(a) �hLF h; hi = �hL(1 � Π)h; (1 � Π)hi + kuk2;

(b) �hLF (1 � Π)h; (1 � Π)hi = k@v(1 � Π)hk2 + 1
4
kv(1 � Π)hk2 �

1
2
k(1 � Π)hk2;

(c) �hLF (1 � Π)h; (1 � Π)hi � k(1 � Π)hk2;

(d) There exists a constant �0 > 0, such that the following hypocoercivity holds,

(2-50) � hLF h; hi � 0k(1 � Π)hk
2
v + kuk

2;

and the largest �0 = 1
7
in one dimension.



3608 SHI JIN

The following results were obtained in Jin and Y. Zhu [n.d.].

Theorem 2.6. For the high field regime (ı = 1), if

(2-51) Em
h (0) +

1

"2
Em

� (0) �
C0

"
;

then,
(2-52)

Em
h (t) �

3

�0
e� t

"2

�
Em

h (0) +
1

"2
Em

� (0)

�
; Em

� (t) �
3

�0
e�t

�
"2Em

h (0) +Em
� (0)

�
;

For the parabolic regime (ı = "), if

(2-53) Em
h (0) +

1

"2
Em

� (0) �
C0

"2
;

then,
(2-54)

Em
h (t) �

3

�0
e� t

"

�
Em

h (0) +
1

"2
Em

� (0)

�
; Em

� (t) �
3

�0
e�t

�
"2Em

h (0) +Em
� (0)

�
:

Here C0 = 2�0/(32BC
2
1

p
")2; B = 48

p
m
�

m
[m/2]

�
is a constant only depending on m,

[m/2] is the smallest integer larger or equal to m
2
, and C1 is the Sobolev constant in one

dimension, and m � 1.

These results show that the solution will converge to the global Maxwellian M. Since
M is independent of z, one sees that the impact of the randomness dies out exponentially in
time, in both asymptotic regimes. One should also note the small initial data requirement:
Em

� = O(") for ı = 1.
The above theorem also leads to the following regularity result for the solution to VPFP

system:

Theorem 2.7. Under the same condition given in Theorem 2.6, for x 2 [0; l ], one has

kf (t)k2H m
z

�
3

�0
Em(0) + 2l2;(2-55)

where Em(0) = Em
h
(0) + 1

"2
Em

� .

This Theorem shows that the regularity of the initial data in the random space is pre-
served in time. Furthermore, the bound of the Sobolev norm of the solution is independent
of the small parameter ".
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3 Stochastic Galerkin methods for random kinetic equations

In order to quantify the uncertainty of kinetic equation we will use polynomial chaos
expansion based stochastic Galerkin (SG)methodGhanem and Spanos [1991] andXiu and
Karniadakis [2002]. As is well known, the SG methods can achieve spectral accuracy if
the solution has the regularity. This makes it very efficient if the dimension of the random
space is not too high, compared with the classical Monte-Carlo method.

Due to its Galerkin formulation, mathematical analysis of the SG methods can be con-
ducted more conveniently. Indeed many of the analytical methods well-established in
kinetic theory can be easily adopted or extended to study the SG system of the random
kinetic equations. For example, the study of regularity, and hypocoercivity based sen-
sitivity analysis, as presented in Section 2, can been used to analyze the SG methods.
Furthermore, for multiscale kinetic equations, the SG methods allow one to extend the de-
terministic Asymptotic-preserving framework–a popular computational paradigm for mul-
tiscale kinetic and hyperbolic problems–to the random problem naturally. Finally, kinetic
equations often contain small parameters such as the mean free path/time which asymptoti-
cally lead to macroscopic hyperbolic/diffusion equations. We are interested in developing
the stochastic analogue of the asymptotic-preserving (AP) scheme, a scheme designed to
capture the asymptotic limit at the discrete level. The SG method yields systems of de-
terministic equations that resemble the deterministic kinetic equations, although in vector
forms. Thus it allows one to easily use the deterministic AP framework for the random
problems, and allowing minimum “intrusion” to the legacy deterministic codes.

3.1 The generalized polynomial chaos expansion based SG methods. In the gener-
alized polynomial chaos (gPC) expansion, one approximates the solution of a stochastic
problem via an orthogonal polynomial series by seeking an expansion in the following
form:

f (t; x; v; z) �

KMX
jkj=0

fk(t; x; v)Φk(z) := f K(t; x; v; z);(3-1)

where k = (k1; : : : ; kn) is a multi-index with jkj = k1 + � � � + kn. fΦk(z)g are from P n
K ,

the set of all n-variate polynomials of degree up toM and satisfy

< Φk;Φj >!=

Z
Iz

Φk(z)Φj(z)!(z) dz = ıkj; 0 � jkj; jjj � K:

Here ıkj is the Kronecker delta function. The orthogonality with respect to !(z), the prob-
ability density function of z, then defines the orthogonal polynomials. For example, the
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Gaussian distribution defines the Hermite polynomials; the uniform distribution defines
the Legendre polynomials, etc.

Now inserting (3-1) into a general kinetic equation(
@tf + v � rxf � rx� � rvf = Q(f ); t > 0; x 2 Ω; v 2 Rd ; z 2 Iz ;

f (0; x; v) = f 0(x; v); x 2 Ω; v 2 Rd ; z 2 Iz :
(3-2)

Upon a standard Galerkin projection, one obtains for each 0 � jkj � M ,8̂̂<̂
:̂
@tfk + v � rxfk �

KX
jjj=0

rx�kj � rvfj = Qk(f
K); t > 0; x 2 Ω; v 2 Rd ;

fk(0; x; v) = f 0
k (x; v); x 2 Ω; v 2 Rd ;

(3-3)

with

Qk(f
K) :=

Z
Iz

Q(f K)(t; x; v; z)Φk(z)!(z) dz; �kj :=

Z
Iz

�(t; x; z)Φk(z)Φj(z)!(z) dz;

f 0
k :=

Z
Iz

f 0(x; v; z)Φk(z)!(z) dz:

We also assume that the potential �(t; x; z) is given a priori for simplicity (the case that it
is coupled to a Poisson equation can be treated similarly).

Therefore, one has a system of deterministic equations to solve and the unknowns are
gPC coefficients fk, which are independent of z. Mostly importantly, the resulting SG
system is just a vector analogue of its deterministic counterpart, thus allowing straightfor-
ward extension of the existing deterministic kinetic solvers. Once the coefficients fk are
obtained through some numerical procedure, the statistical information such as the mean,
covariance, standard deviation of the true solution f can be approximated as

E[f ] � f0; Var[f ] �

KX
jkj=1

f 2
k ; Cov[f ] �

KX
jij;jjj=1

fifj:

3.2 Hypocoercivity estimate of the SG system. The hypocoercivity theoy presented
in Section 2.2 can be used to study the properties of the SG methods. Here we take � = 0.
Assume the random collision kernel has the assumptions given by (2-32). Consider the
perturbative form

(3-4) fk = M + "Mhk ;
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where hk is the coefficient of the following gPC expansion

h(t; x; v; z) �

MX
jkj=0

hk(t; x; v)Φk(z) := hK(t; x; v; z) :

Inserting ansatz (3-4) into (3-3) and conducting a standardGalerkin projection, one obtains
the gPC-SG system for hk:8<: @thk +

1

"
v � rxhk =

1

"2
Lk(h

K) +
1

"
Fk(h

K ; hK);

hk(0; x; v) = h0k(x; v); x 2 Ω � T d ; v 2 Rd ;
(3-5)

for each 1 � jkj � K, with a periodic boundary condition and the initial data given by

h0k :=

Z
Iz

h0(x; v; z) k(z)�(z)dz:

For the Boltzmann equation, the collision parts are given by

Lk(h
K) = L+

k (h
K) =

KX
jij=1

Z
Rd �Sd�1

eSki �(jv � v�j) (hi(v
0)M (v0

�) + hi(v
0
�)M (v0))M (v�) dv�d�

�M (v)

KX
jij=1

Z
Rd �Sd�1

eSki �(jv � v�j) hi(v�)M (v�) dv�d� �

KX
jij=1

�kihi ;

Fk(h
K ; hK)(t; x; v) =

KX
jij;jjj=1

Z
Rd �Sd�1

Skij �(jv � v�j)M (v�) (hi(v
0)hj(v

0
�) � hi(v)hj(v�)) dv�d�;

with

eSki :=

Z
Iz

b(cos �; z) k(z) i(z)�(z)dz; �ki :=

Z
Rd �Sd�1

eSki �(jv � v�j)M(v�) dv�d�;

and Skij :=

Z
Iz

b(cos �; z) k(z) i(z) j(z)�(z)dz:

For technical reasons, we assume z 2 Iz is one dimensional and Iz has finite support
jzj � Cz (which is the case, for example, for the uniform and Beta distribution). In L. Liu
and Jin [2017] the following results are given:

Theorem 3.1. Assume the collision kernel B satisfies (2-32) and is linear in z, with the
form of

(3-6) b(cos �; z) = b0(cos �) + b1(cos �)z ;
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with j@zbj �= O("). We also assume the technical condition

(3-7) jj kjjL1 � Ckp; 8 k;

with a parameter p > 0. Let q > p + 2, define the energy EK by

(3-8) EK(t) = EK
s;q(t) =

KX
k=1

jjkqhkjj
2
H s

x;v
;

with the initial data satisfying EK(0) � �. Then for all s � s0, 0 � "d � 1, such that for
0 � " � "d , if hK is a gPC solution of (3-5) inH s

x;v , we have the following:
(i) Under the incompressible Navier-Stokes scaling (˛ = 1),

EK(t) � � e�� t :

(ii) Under the acoustic scaling (˛ = 0)„

EK(t) � � e�"� t ;

where �, � are all positive constants that only depend on s and q, independent of K and
z.

Remark 3.2. The choice of energy EK in (3-8) enables one to obtain the desired energy
estimates with initial data independent of K R. Shu and Jin [2017].

From here, one also concludes that, jjhK
jjH s

x;vL1
z

also decays exponentially in time,
with the same rate as EK(t), namely

(3-9) jjhK
jjH s

x;vL1
z

� � e�� t

in the incompressible Navier-Stokes scaling, and

jjhK
jjH s

x;vL1
z

� � e�" � t

in the acoustic scaling.
For other kinetic models like the Landau equation, the proof is similar and we omit it

here.
L. Liu and Jin [2017] also gives the following error estimates on the SG method for the

uncertain Boltzmann equations.

Theorem 3.3. Suppose the assumptions on the collision kernel and basis functions in
Theorem 3.1 are satisfied, and the initial data are the same in those in Theorem 2.3, then
(i) Under the incompressible Navier-Stokes scaling,

(3-10) jjh � hK
jjH s

z
� Ce

e��t

Kr
;
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(ii) Under the acoustic scaling,

(3-11) jjh � hK
jjH s

z
� Ce

e�"�t

Kr
;

with the constants Ce; � > 0 independent of K and ".

The above results not only give the regularity of the SG solutions, which are the same
as the initial data, but also show that the numerical fluctuation hK converges with spectral
accuracy to h, and the numerical error will also decay exponentially in time in the random
space.

For more general solution (not the perturbative one given by (2-21) to the uncertain
Boltzmann equation, one cannot obtain similar estimates. Specifically, for ˛ = 1, as
" ! 0, the moments of f is governed by the compressible Euler equations whose solution
may develop shocks, thus the Sobolev norms used in this paper are not adequate. For
" = O(1), Hu and Jin [2016] proved that, in the space homogeneous case, the regularity
of the initial data in the random space is preserved in time. They also introduced a fast
algorithm to compute the collision operator Qk. When the random variable is in higher
dimension, sparse grids can be used, see R. Shu, Hu, and Jin [2017].

4 Stochastic asymptotic-preserving (sAP) schemes for multiscale
random kinetic equations

When " is small, numerically solving the kinetic equations is challenging since time and
spatial discretizations need to resolve ". Asymptotic-preserving (AP) schemes are those
thatmimic the asymptotic transitions from kinetic equations to their hydrodynamic/diffusion
limits in the discrete setting Jin [1999, 2012]. The AP strategy has been proved to be a
powerful and robust technique to address multiscale problems in many kinetic problems.
The main advantage of AP schemes is that they are very efficient even when " is small,
since they do not need to resolve the small scales numerically, and yet can still capture
the macroscopic behavior governed by the limiting macroscopic equations. Indeed, it was
proved, in the case of linear transport with a diffusive scaling, an AP scheme converges
uniformly with respect to the scaling parameter Golse, Jin, and Levermore [1999]. This is
expected to be true for all AP schemes Jin [2012], although specific proofs are needed for
specific problems. AP schemes avoid the difficulty of coupling a microscopic solver with
a macroscopic one, as the micro solver automatically becomes a macro solver as " ! 0.
Interested readers may also consult earlier reviews in this subject Jin [2012], Degond and
Deluzet [2017b], and Hu, Jin, and Li [2017].

Here we are interested in the scenario when the uncertainty (random inputs) and small
scaling both present in a kinetic equation. Since the SG method makes the random kinetic
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equations into deterministic systems which are vector analogue of the original scalar de-
terministic kinetic equations, one can naturally utilize the deterministic AP machinery to
solve the SG system to achieve the desired AP goals. To this aim, the notion of stochastic
asymptotic preserving (sAP) was introduced in Jin, Xiu, and X. Zhu [2015]. A scheme is
sAP if an SG method for the random kinetic equation becomes an SG approximation for
the limiting macroscopic, random (hydrodynamic or diffusion) equation as " ! 0, with
highest gPC degree, mesh size and time step all held fixed. Such schemes guarantee that
even for " ! 0, all numerical parameters, including the number of gPC modes, can be
chosen only for accuracy requirement and independent of ".

Next we use the linear transport Equation (2-1) as an example to derive an sAP scheme.
It has the merit that rigorous convergence and sAP theory can be established, see Jin, J.-G.
Liu, and Ma [n.d.].

4.1 An sAP-SG method for the linear transport equation. We assume the complete
orthogonal polynomial basis in the Hilbert space H (Iz ;!(z) dz) corresponding to the
weight !(z) is f�i (z); i = 0; 1; � � � ; g, where �i (z) is a polynomial of degree i and satis-
fies the orthonormal condition:

h�i ; �j i! =

Z
�i (z)�j (z)!(z) dz = ıij :

Here �0(z) = 1, and ıij is the Kronecker delta function. Since the solution f (t; �; �; �) is
defined in L2

�
[0; 1] � [�1; 1] � Iz ; d�), one has the gPC expansion

f (t; x; v; z) =

1X
i=0

fi (t; x; v)�i (z); f̂ =
�
fi

�1
i=0

:=
�
f̄ ; f̂1

�
:

The mean and variance of f can be obtained from the expansion coefficients as

f̄ = E(f ) =

Z
Iz

f!(z) dz = f0; var (f ) = jf̂1j
2 :

Denote the SG solution by

(4-1) f K =

KX
i=0

fi �i ; f̂ K =
�
fi

�M
i=0

:=
�
f̄ ; f̂ K

1

�
;

from which one can extract the mean and variance of f K from the expansion coefficients
as

E(f K) = f̄ ; var (f K) = jf̂ K
1 j

2
� var (f ) :
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Furthermore, we define

�ij =
˝
�i ; ��j

˛
!
; Σ =

�
�ij

�
M+1;M+1

; �a
ij =

˝
�i ; �

a�j

˛
!
; Σa =

�
�a

ij

�
M+1;M+1

;

for 0 � i; j � M . Let Id be the (M+1)�(M+1) identity matrix. Σ;Σa are symmetric
positive-definite matrices satisfying (Xiu [2010])

Σ � �min Id :

If one applies the gPC ansatz (4-1) into the transport Equation (2-1), and conduct the
Galerkin projection, one obtains

(4-2) "@t f̂ + v@x f̂ = �
1

"
(I � [�])Σf̂ � "Σaf̂ � Ŝ ;

where Ŝ is defined similarly as (4-1).
We now use the micro-macro decomposition (Lemou and Mieussens [2008]):

(4-3) f̂ (t; x; v; z) = �̂(t; x; z) + "ĝ(t; x; v; z);

where �̂ = [f̂ ] and [ĝ] = 0, in (4-2) to get

@t �̂ + @x [vĝ] = �Σa�̂ + Ŝ ;(4-4a)

@t ĝ +
1

"
(I � [:])(v@x ĝ) = �

1

"2
Σĝ � Σaĝ �

1

"2
v@x �̂;(4-4b)

with initial data

�̂(0; x; z) = �̂0(x; z); ĝ(0; x; v; z) = ĝ0(x; v; z) :

It is easy to see that system (4-4) formally has the diffusion limit as " ! 0:

(4-5) @t �̂ = @x(K@x �̂) � Σa�̂ + Ŝ ;

where

(4-6) K =
1

3
Σ�1 :

This is the sG approximation to the random diffusion Equation (2-8). Thus the gPC ap-
proximation is sAP in the sense of Jin, Xiu, and X. Zhu [2015].

Let f be the solution to the linear transport Equation (2-1)–(2-2). Use the K-th order
projection operator PM : PKf =

PK
i=0 fi�i (z), the error arisen from the gPC-sG can

be split into two parts rK and eK ,

(4-7) f � f K = f � PKf + PKf � f K := rK + eK ;
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where rK = f � PKf is the projection error, and eK = PKMf � f K is the SG error.
Here we summarize the results of Jin, J.-G. Liu, and Ma [n.d.].

Lemma 4.1 (Projection error). Under all the assumption in Theorem 2.1 and Theo-
rem 2.2, we have for t 2 (0; T ] and any integer k = 0; : : : ; m,

(4-8) krKkΓ �
C1

Kk
:

Moreover,

(4-9)
 [rK ] � rK


Γ

�
C2

Kk
";

where C1 and C2 are independent of ".

Lemma 4.2 (SG error). Under all the assumptions in Theorem 2.1 and Theorem 2.2, we
have for t 2 (0; T ] and any integer k = 0; : : : ; m,

(4-10) keM kΓ �
C (T )

M k
;

where C (T ) is a constant independent of ".

Combining the above lemmas gives the uniform (in ") convergence theorem:

Theorem 4.3. If for some integer m � 0,

(4-11) k�(z)kH k � C� ; kDkf0kΓ � C0; kDk(@xf0)kΓ � Cx ; k = 0; : : : ; m;

then the error of the sG method is

(4-12) kf � f K
kΓ �

C (T )

Kk
;

where C (T ) is a constant independent of ".

Theorem 4.3 gives a uniformly in " spectral convergence rate, thus one can choose
K independent of ", a very strong sAP property. Such a result is also obtained with the
anisotropic scattering case, for the linear semiconductor Boltzmann equation (Jin and L.
Liu [2017] and L. Liu [n.d.]).

4.2 A full discretization. By using the SG formulation, one obtains a vector version
of the original deterministic transport equation. This enables one to use the determinis-
tic AP methodology. Here, we adopt the micro-macro decomposition based AP scheme
developed in Lemou and Mieussens [2008] for the gPC-sG system (4-4).
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We take a uniform grid xi = ih; i = 0; 1; � � �N , where h = 1/N is the grid size, and
time steps tn = n∆t . �n

i is the approximation of � at the grid point (xi ; t
n) while gn+1

i+
1
2

is defined at a staggered grid xi+1/2 = (i + 1/2)h, i = 0; � � �N � 1.
The fully discrete scheme for the gPC system (4-4) is

�̂n+1
i � �̂n

i

∆t
+

264v ĝ
n+1

i+
1
2

� ĝn+1

i�
1
2

∆x

375 = �Σa
i �̂

n+1
i + Ŝi ;(4-13a)

ĝn+1

i+
1
2
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� ĝn

i�
1
2

) + v�(ĝn
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It has the formal diffusion limit when " ! 0 given by

(4-14)
�̂n+1

i � �̂n
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i �̂
n+1
i + Ŝi ;

where K = 1
3
Σ�1. This is the fully discrete sG scheme for (4-5). Thus the fully discrete

scheme is sAP.
One important property for an AP scheme is to have a stability condition independent

of ", so one can take ∆t � O("). The next theorem from Jin, J.-G. Liu, and Ma [n.d.]
answers this question.

Theorem 4.4. Assume �a = S = 0. If ∆t satisfies the following CFL condition

(4-15) ∆t �
�min

3
∆x2 +

2"

3
∆x;

then the sequences �̂n and ĝn defined by scheme (4-13) satisfy the energy estimate
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for every n, and hence the scheme (4-13) is stable.

Since the right hand side of (4-15) has a lower bound when " ! 0 (and the lower bound
being that of a stability condition of the discrete diffusion Equation (4-14)), the scheme is
asymptotically stable and∆t remains finite even if " ! 0.
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A discontinuous Galerkin method based sAP scheme for the same problem was devel-
oped in Chen, L. Liu, and Mu [2017], where uniform stability and rigirous sAP property
were also proven.

sAP schemes were also developed recently for other multiscale kinetic equations, for
example the radiative heat transfer equations Jin and Lu [2017], and the disperse two-phase
kinetic-fluid model Jin and R. Shu [2017].

4.3 Numerical examples. Wenow show one example from Jin, J.-G. Liu, andMa [n.d.]
to illustrate the sAP properties of the scheme. The random variable z is one-dimensional
and obeys uniform distribution.

Consider the linear transport Equation (2-1) with �a = S = 0 and random coefficient
�(z) = 2 + z; subject to zero initial condition f (0; x; v; z) = 0 and boundary condition

f (t; 0; v; z) = 1; v � 0; f (t; 1; v; z) = 0; v � 0:

When " ! 0, the limiting random diffusion equation is

(4-16) @t� =
1

3�(z)
@xx� ;

with initial and boundary conditions:

�(0; x; z) = 0; �(t; 0; z) = 1; �(t; 1; z) = 0:

The analytical solution for (4-16) with the given initial and boundary conditions is

(4-17) �(t; x; z) = 1 � erf

 
x/

s
4

3�(z)
t

!
:

When " is small, we use this as the reference solution, as it is accurate with an error of
O("2). For other implementation details, see Jin, J.-G. Liu, and Ma [ibid.].

In Figure 1, we plot the errors in mean and standard deviation of the SG numerical
solutions at t = 0:01 with different gPC orders M . Three sets of results are included:
solutions with∆x = 0:04 (squares),∆x = 0:02 (circles),∆x = 0:01 (stars). We always
use ∆t = 0:0002/3. One observes that the errors become smaller with finer mesh. One
can see that the solutions decay rapidly inM and then saturate where spatial discretization
error dominates. It is then obvious that the errors due to gPC expansion can be neglected
at orderM = 4 even for " = 10�8. From this simple example, we can see that using the
properly designed sAP scheme, the time, spatial, and random domain discretizations can
be chosen independently of the small parameter ".
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Figure 1: Errors of the mean (solid line) and standard deviation (dash line) of �
with respect to the gPC orderM at " = 10�8: ∆x = 0:04 (squares), ∆x = 0:02

(circles),∆x = 0:01 (stars). ∆t = 0:0002/3.

In Figure 2, we examine the difference between the solution at t = 0:01 obtained by
the 4th-order gPC method with ∆x = 0:01, ∆t = ∆x2/12 and the limiting analytical
solution (4-17). As expected, we observe the differences become smaller as " is smaller
in a quadratic fashion, before the numerical errors become dominant. This shows the sAP
scheme works uniformly for different ".

5 Conclusion and open problems

In this article we have presented some of our recent development of uncertainty quan-
tification (UQ) for multiscale kinetic equations. The uncertainties for such equations typ-
ically come from collision/scattering kernels, boundary data, initial data, forcing terms,
among others. Using hypocoercivity theory of kinetic operators, we proved the regularity,
sensitivity, and long-time behavior in the random space in a general framework, and then
adopted the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method to
handle the random inputs which can be proved spectrally accurate, under some regularity
assumption on the initial data and ramdom coefficients. When one needs to compute multi-
ple scales, the SG method is constructed to possess the stochastic Asymptotic-Preserving
(sAP) property, which allows all numerical parameters, including the gPC order, to be
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Figure 2: Differences in the mean (solid line) and standard deviation (dash line) of �
with respect to "2, between the limiting analytical solution (4-17) and the 4th-order
gPC solution with ∆x = 0:04 (squares), ∆x = 0:02 (circles) and ∆x = 0:01

(stars).
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chosen independently of the small parameter, hence is highly efficient when the scaling
parameter, the Knudsen number, becomes small.

UQ for kinetic equations is a fairly recent research field, and many interesting problems
remain open. We list a few such problems here:

• Whole space problem. Our hypocoercivity theory is developed for periodic spatial
domain, which gives exponential decay towards the deterministic globalMaxwellian.
For the whole space problem, one cannot use the same abstract framework presented
in subSection 2.2. For deterministic problems one can obtain only algebraic decay
Duan and Strain [2011], Guo [2004], and Strain [2012]. It will be interesting to
establish a corresponding theory for the uncertain Boltzmann equation.

• Boundary value problems. The uncertainty could also arise from boundary data.
For the Maxwellian boundary condition, one can use the SG framework Hu and Jin
[2016]. However, for small ", the sensitivity analysis for random boundary input
remain unexplored, even for the linear transport equation in the diffusive regime.

• Landau damping. While one can use hypocoercivity for collisonal operator or Fokker-
Planck operator, for Vlasov type equation (such as the Vlasov-Poisson equations)
from collisionless plasma, the system does not have any dissipation, yet one still
observes the asymptotica decay of a perturbation around a stationary homogeneous
solution and the vanishing of electric field, a phenomenon called the Landau damp-
ing Landau [1946]. It will be interesting to invest the impact of uncertainty on
Landau damping, although a rigorous nonlinear mathematical theory is very chal-
lenging Mouhot and Villani [2011].

• High dimensional random space. When the dimension of the random parameter z
is moderate, sparse grids have been introduced R. Shu, Hu, and Jin [2017] and Hu,
Jin, and R. Shu [n.d.] using wavelet approximations. Since wavelet basis does not
have high order accuracy, it remains to construct sparse grids with high (or spectral)
order of accuracy in the random space. When the random dimension is much higher,
new methods need to be introduced to reduce the dimension.

• Study of sampling based methods such as collocation and multi-level Monte-Carlo
methods. In practice, sampling based non-intrusivemethods are attractive since they
are based on the deterministic, or legacy codes. So far there has been no analysis
done for the stochastic collocationmethods for random kinetic equations. Moreover,
multi-level Monte-Carlo method could significantly reduce the cost of sampling
based methods Giles [2015]. Its application to kinetic equations with uncertainty
remains to be investigated.
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Despite at its infancy, due to the good regularity and asymptotic behavior in the random
space for kinetic equations with uncertain random inputs, the UQ for kinetic equations is a
promising research direction that calls for more development in their mathematical theory,
efficient numerical methods, and applications. Moreover, since the random parameters in
uncertain kinetic equations share some properties of the velocity variable for a kinetic
equation, the ideas from kinetic theory can be very useful for UQ Cho, Venturi, and Kar-
niadakis [2016], and vice versa, thus the marrige of the two fields can be very fruitful.
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