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Abstract

In this paper, we propose and study two time-splitting spectral methods for the generalized Zakharov system. These

methods are spectrally accurate in space, second order in time, and unconditionally stable. The unconditional stability of

the methods offers greater numerical efficiency than those given in previous papers, especially in the subsonic regime. Our

numerical experiments confirm the accuracy and stability. In particular, we analyze their behavior in the subsonic re-

gime. The first method, using the exact time integration in phase space for the wave equation for the nondispersive field,

converges uniformly with respect to the sound speed for the dispersive wave field, while the second method, using the

Crank–Nicolson method in the same step, with an initial layer fix by an L-stable time discretization, converges uniformly

with respect to the sound speed for both dispersive and nondispersive fields. Using these new methods we also study the

collision behavior of two solitons, in the subsonic region as well as the transsonic region. We obtain numerical results

which are quantitatively different from those reported in previous papers using lower resolution numerical techniques.

� 2004 Elsevier Inc. All rights reserved.

1. Introduction

This work is aimed at developing efficient numerical schemes for a generalized Zakharov system (ZS) of

plasma physics

iut þ uxx þ 2kjuj2uþ 2nu ¼ 0;
1

c2
ntt � nxx þ lðjuj2Þxx ¼ 0;
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where the complex, dispersive field u is the varying envelope of a highly oscillatory electric field, and the

real, nondispersive field n is the fluctuation of the plasma ion density from its equilibrium state. The pa-

rameters k, c and l are real numbers. This system is a universal model for the study of the interaction
between dispersive and nondispersive waves. When k ¼ 0, l ¼ 1, this system is reduced to the classical ZS

of plasma physics. When the sound speed c ! þ1, the so-called subsonic limit, the ZS becomes the cu-

bically nonlinear (defocusing if kþ l < 0, focusing if kþ l > 0) Schr€odinger equation.
Up to now, many numerical methods have been proposed for the ZS system. For example, Payne et al.

[18] designed a spectral method for a 1D ZS. They used a truncated Fourier expansion in their scheme to

eliminate the aliasing errors. Glassey [11] presented an energy-preserving finite difference scheme for the ZS

in one dimension, and proved its convergence in [12]. In [8,9], Chang et al. presented a conservative dif-

ference scheme for the generalized Zakharov system. This scheme can be implicit or semi-explicit depending
on the choice of a parameter. They also proved the convergence of their method. More recently, Bao et al.

[4] proposed a time-splitting spectral scheme to solve the generalized ZS. Their method was also extended to

the vector ZS for multi-component plasmas [3]. Their time-splitting spectral method is a natural extension

of a time-splitting method previously used for linear and nonlinear Schr€odinger equations (see for example

[16]), which was shown to be particularly effective in the semi-classical regime [1,2].

In this paper, we present time-splitting spectral methods different from that in [3,4]. The main difference

is that in the splitting step for the nondispersive field equation, we perform the time integration either

exactly (hereafter called TSSP1), or via the Crank–Nicolson method based on the first order formulation of
the second order wave equation (TSSP2). These schemes are second order, and unconditionally stable. Most

importantly, in the subsonic regime, when c is large, the TSSP1 converges uniformly with respect to c for the
dispersive wave field, while TSSP2, with an initial layer fix by an L-stable time discretization, converges

uniformly with respect to c for both dispersive and nondispersive fields. The previous time-splitting spectral

methods, developed in [3,4], require both mesh size and time step to be proportional to 1=c.
The organization of this paper is as follows. In Section 2, we present our time-splitting spectral methods

for the generalized ZS. In Section 3, we perform numerical experiments. We analyze the accuracy of our

scheme, both in space and in time. Moreover, we study their performance in the subsonic regime, and
demonstrate both analytically and numerically how a scheme can converge uniformly with respect to c. In
addition, we use the method to study soliton–soliton collisions in various parameter regimes. Of particular

interest is that the obtained critical values for l=k, which distinguish region of different post-collision

behavior of the solution, are different from those previously reported in the literature [14].
2. A time-splitting spectral method

We restrict ourselves to periodic boundary conditions when presenting the spectral methods. This allows

us to use the Fourier spectral method. Of course for other boundary conditions one can always replace the

Fourier method by a different spectral approach such as the Chebychev method [6].

Consider the following initial boundary value problem of the ZS:

iut þ uxx þ 2kjuj2uþ 2nu ¼ 0; x 2 ½�L; L�; tP 0; ð1Þ
1

c2
ntt � nxx þ lðjuj2Þxx ¼ 0; x 2 ½�L; L�; tP 0; ð2Þ

uð�L; tÞ ¼ uðL; tÞ; uxð�L; tÞ ¼ uxðL; tÞ; tP 0; ð3Þ
nð�L; tÞ ¼ nðL; tÞ; nxð�L; tÞ ¼ nxðL; tÞ; tP 0; ð4Þ
uðx; 0Þ ¼ u0ðxÞ; nðx; 0Þ ¼ n0ðxÞ; ntðx; 0Þ ¼ n1ðxÞ; x 2 ½�L; L�; ð5Þ
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where

Z L

�L
n1ðxÞ dx ¼ 0:

From Eqs. (1) and (2), it is easy to verify that

d

dt

Z L

�L
juðx; tÞj2 dx ¼ 0;

d

dt

Z L

�L
nðx; tÞ dx ¼ 0: ð6Þ

Thus we can induce a new unknown function

vðx; tÞ ¼ �
Z x

�L
ntðy; tÞ dy;

which is a periodic function on ½�L; L� introduced for the purpose of deriving discretizations below. The

problem (1)–(5) is then equivalent to the following one:

iut þ uxx þ 2kjuj2uþ 2nu ¼ 0; x 2 ½�L; L�; tP 0;

nt þ vx ¼ 0; x 2 ½�L; L�; tP 0;

1

c2
vt þ ðn� ljuj2Þx ¼ 0; x 2 ½�L; L�; tP 0;

uð�L; tÞ ¼ uðL; tÞ; uxð�L; tÞ ¼ uxðL; tÞ; tP 0;

nð�L; tÞ ¼ nðL; tÞ; nxð�L; tÞ ¼ nxðL; tÞ; tP 0;

vð�L; tÞ ¼ vðL; tÞ; vxð�L; tÞ ¼ vxðL; tÞ; tP 0;

uðx; 0Þ ¼ u0ðxÞ; nðx; 0Þ ¼ n0ðxÞ; vðx; 0Þ ¼ v0ðxÞ :¼ �
Z x

�L
n1ðyÞ dy; x 2 ½�L; L�:

We denote xj ¼ �Lþ jh with h ¼ 2L=M . M , an even number, is the total number of grid points. Besides,

we denote tm ¼ mDt as the time points at which we are going to seek the numerical approximations.

We first illustrate our main idea through a simple (thus first order) splitting. From time tm to tmþ1, we

split the continuous problem into two subproblems. First, we solve the free Schr€odinger equation

iut þ uxx ¼ 0 ð7Þ

with the initial datum uðtmÞ in ½tm; tmþ1�, to obtain u� ¼ uðtmþ1Þ. Then, we solve

iut þ 2kjuj2uþ 2nu ¼ 0; ð8Þ
nt þ vx ¼ 0; ð9Þ
1

c2
vt þ ðn� ljuj2Þx ¼ 0 ð10Þ

with the initial data u�, nðtmÞ and vðtmÞ, again in ½tm; tmþ1� to obtain uðtmþ1Þ, nðtmþ1Þ and vðtmþ1Þ. Note that in

(8), juðx; tÞj2 remains invariant in time

juðx; tÞj2 ¼ juðx; tmÞj2; t 2 ½tm; tmþ1�:
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Thus, the problem (8)–(10) is equivalent to

iut þ 2kjuðx; tmÞj2uþ 2nu ¼ 0; ð11Þ
nt þ vx ¼ 0; ð12Þ
1

c2
vt þ ðn� ljuðx; tmÞj2Þx ¼ 0: ð13Þ

We denote by uj, nj and vj the approximate values of u, n and v at the grid point x ¼ xj, respectively, and define

uðtÞ ¼ ½ujðtÞ�M�1

j¼0 ; nðtÞ ¼ ½njðtÞ�M�1

j¼0 ; vðtÞ ¼ ½vjðtÞ�M�1

j¼0 :

In our method, the spatial derivative is approximated by the Fourier collocation derivative with a smooth

cutoff function rðxÞ, i.e.

Axjx¼xj
� ½DxA�j; DxA ¼ iF�1ðkFðAÞÞ;

k ¼ p
L
~lrð~lhÞ

h iM�1

l¼0
; ~l ¼

l; 06 l < M=2;

l�M ; M=26 l < M :

�

Here Fð�Þ and F�1ð�Þ are the discrete Fourier and inverse Fourier transforms defined by

FðAÞ ¼
XM�1

j¼0

Aje
�2pijl

M

" #M�1

l¼0

; F�1ðÂÞ ¼ 1

M

XM�1

l¼0

Âle
2pijl
M

" #M�1

j¼0

:

We remark that all vectorial operations are performed component by component and have to be under-
stood as limits when the numerator becomes zero. A cut-off function rðxÞ is used to reduce the aliasing error

typically occurring in the long time computation. In the rest of this paper, unless stated otherwise, rðxÞ is set
to be 1, i.e., we approximate the spatial derivative with the standard Fourier collocation derivative (see [6]).

Eq. (7) is now approximated by

iut þD2
xu ¼ 0:

With initial value uðtmÞ ¼ um, this problem can be integrated in time exactly

u� ¼ F�1ðe�ik2DtFðumÞÞ:

Eqs. (12) and (13) are approximated by

nt þDxv ¼ 0;

1

c2
vt þDxðn� lju�j2Þ ¼ 0:

Denote n̂ :¼ FðnÞ and v̂ :¼ FðvÞ. Then this system is equivalent to, in the Fourier space,

n̂t þ ikv̂ ¼ 0; ð14Þ
1

c2
v̂t þ ik½n̂� lFðju�j2Þ� ¼ 0: ð15Þ

We use two different methods to solve this subproblem. The first one, hereafter which will be referred to as

TSSP1, is to solve it analytically on ½tm; tmþ1�, namely,
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n̂ðtÞ ¼ ½n̂m � lFðju�j2Þ� cos ckðt � tmÞ �
i

c
v̂m sin ckðt � tmÞ þ lFðju�j2Þ;

v̂ðtÞ ¼ �ic½n̂m � lFðju�j2Þ� sin ckðt � tmÞ þ v̂m cos ckðt � tmÞ:

Thus then

n̂mþ1 ¼ ½n̂m � lFðju�j2Þ�cv �
i

c
v̂msv þ lFðju�j2Þ;

v̂mþ1 ¼ �ic½n̂m � lFðju�j2Þ�sv þ v̂mcv;

cv ¼ cosðckDtÞ; sv ¼ sinðckDtÞ:

The second one is to use Crank–Nicolson method (will be referred to as TSSP2)

1

Dt
ðn̂mþ1 � n̂mÞ þ ik

2
ðv̂mþ1 þ v̂mÞ ¼ 0;

1

c2Dt
ðv̂mþ1 � v̂mÞ þ ik

2
½n̂mþ1 þ n̂m � 2lFðju�j2Þ� ¼ 0:

The purpose of writing the second order wave equation in n into a first order system is just for the use of the

Crank–Nicolson method. Therefore,

n̂mþ1 ¼ w1½n̂m � lFðju�j2Þ� þ w2v̂
m þ lFðju�j2Þ;

v̂mþ1 ¼ w2c2½n̂m � lFðju�j2Þ� þ w1v̂
m;

w1 ¼
4� k2c2Dt2

4þ k2c2Dt2
; w2 ¼

�4ikDt

4þ k2c2Dt2
:

After that, Eq. (11) can be integrated, giving

umþ1 ¼ u�e2iDtkju
�j2e

2i
R tmþ1

tm
nðsÞ ds

:

For TSSP1, one uses

umþ1 ¼ u�e2ikDtju
�j2e2iF

�1ðT̂Þ;

where

T̂ ¼ ½n̂m � lFðju�j2Þ� sv
ck

þ i

c
v̂m

cv � 1

ck
þ lFðju�j2ÞDt:

For TSSP2, one has

umþ1 � u�e2iDtkju
�j2eiDtðn

mþnmþ1Þ:

Here, the trapezoidal rule is used to approximate the integral.

Clearly, either of these two methods leads to an unconditionally stable scheme and conserves the discrete

l2-norm of u. Besides, it is easy to prove that these methods are time reversible. Furthermore, if a constant is

added to the initial value of the nondispersive field n, all approximations nm are shifted by the same value.

This leads to the occurrence of a phase factor in the approximations um of the dispersive field and thus jumj2
is left unchanged. Thus both our methods are time transverse invariant, due to the exact time integrations

of both splitting steps of the Schr€odinger equation.
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In order to have second order accuracy in time, one can use the Strang splitting instead (see [20]). Fi-

nally, we present the two schemes

1. TSSP1:

cv ¼ cosðckDtÞ; sv ¼ sinðckDtÞ; ð16Þ
u� ¼ F�1ðe�ik2Dt=2FðumÞÞ; ð17Þ

n̂mþ1 ¼ n̂m
h

� lFðju�j2Þ
i
cv �

i

c
v̂msv þ lFðju�j2Þ; ð18Þ

v̂mþ1 ¼ �ic n̂m
h

� lFðju�j2Þ
i
sv þ v̂mcv; ð19Þ

T̂ ¼ ½n̂m � lFðju�j2Þ� sv
ck

þ i

c
v̂m

cv � 1

ck
þ lFðju�j2ÞDt; ð20Þ

u�� ¼ u�e2ikDtju
�j2e2iF

�1ðT̂Þ; ð21Þ
umþ1 ¼ F�1ðe�ik2Dt=2Fðu��ÞÞ; m ¼ 0; 1; 2; . . . ð22Þ

2. TSSP2:

w1 ¼
4� k2c2Dt2

4þ k2c2Dt2
; w2 ¼

�4ikDt

4þ k2c2Dt2
; ð23Þ

u� ¼ F�1ðe�ik2Dt=2FðumÞÞ; ð24Þ
n̂mþ1 ¼ w1½n̂m � lFðju�j2Þ� þ w2v̂

m þ lFðju�j2Þ; ð25Þ
v̂mþ1 ¼ w2c2½n̂m � lFðju�j2Þ� þ w1v̂

m; ð26Þ

u�� ¼ u�e2iDtkju
�j2eiDtðn

mþnmþ1Þ; ð27Þ
umþ1 ¼ F�1ðe�ik2Dt=2Fðu��ÞÞ; m ¼ 0; 1; 2; . . . ð28Þ
Remark 1. The generalization of these schemes to modified forms of the Zakharov system is straightfor-

ward. For example, one can add a damping term in the Schr€odinger equation (see [4]) and a dissipative term

in the wave equation (see [13])

iut þ uxx þ 2kjuj2uþ 2nuþ icu ¼ 0; c > 0;

1

c2
ntt � nxx þ lðjuj2Þxx ¼ mntxx; m > 0:

Remark 2. One can consider the generalized ZS in higher dimensions (Rd)

iut þ Duþ 2kjuj2uþ 2nu ¼ 0;

1

c2
ntt � Dnþ lDðjuj2Þ ¼ 0:

If this problem has a good periodic approximation with period
Qd

j¼1½�Lj; Lj�, and the mean value of ntð�; tÞ
is zero, we introduce

v ¼ ð�DÞ1=2nt:
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Thus then

nt ¼ ð�DÞ1=2v;
vt þ c2ð�DÞ1=2ðn� ljuj2Þ ¼ 0:

Here, the operator ð�DÞ1=2 is understood in the Fourier space.

Remark 3. It is worthwhile to explain how to generalize this scheme to the vector ZS for multi-component

plasmas in three dimensions. The problem reads (see [21])

iEt þ aDEþ ð1� aÞrðr � EÞ � aE
XM
j¼1

nj þ kjEj2E ¼ 0;

1

c2j
nj;tt � Dnj þ ljjEj

2 ¼ 0; j ¼ 1; 2; . . . ;M :

Analogously, from time tm to tmþ1, we split this problem into two subproblems. The first one is

iEt þ aDEþ ð1� aÞrðr � EÞ ¼ 0;

and the second

iEt � aE
XM
j¼1

nj þ kjEj2E ¼ 0;

1

c2j
nj;tt � Dnj þ ljjEj

2 ¼ 0; j ¼ 1; 2; . . . ;M :

The second subproblem is solved just in the same way as mentioned before. The essential difference lies in
how to solve the first subproblem. Again, we approximate the spatial derivative with its corresponding

collocation derivative. In Fourier space, we have

iÊt � anTnÊ� ð1� aÞnnTÊ ¼ 0

with n ¼ ðnx; ny ; nzÞT. Thus

ÊðtÞ ¼ e�iðt�tmÞðanTnIþð1�aÞnnTÞÊðtmÞ ¼
ÊðtmÞ; jnj ¼ 0;

e�iðt�tmÞajnj2 ½Iþ ðe�ið1�aÞðt�tmÞjnj2 � 1Þ nnT

jnj2�ÊðtmÞ; otherwise:

(
ð29Þ

Here, I is the 3� 3 identity matrix.
3. Numerical experiments

It is well known that the generalized ZS has the family of one-soliton solutions (see [14])

u ¼ ½kþ lð1� v2=c2Þ�1��1=2
2ig sechð2gðx� vtÞÞei v

2
x�ðv2

4
�4g2ÞtþU0

� �
; ð30Þ

n ¼ lð1� v2=c2Þ�1juj2; ð31Þ

if the speed v of the soliton satisfies kþ lð1� v2=c2Þ�1
> 0. In this section, we will use these special solu-

tions to test the performance of our scheme.
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3.1. Tests on the accuracy and stability

We first consider the propagation of a single subsonic soliton. As a test of the accuracy of our schemes,
we set the parameters to be k ¼ 0, l ¼ 1, c ¼ 1, g ¼ 0:5, v ¼ 0:5, U0 ¼ 0. At time t ¼ 2, this soliton is

plotted in Fig. 1. The initial data are the exact soliton data at t ¼ 0. We perform the computation on a large

interval ½�128; 128�, i.e. L ¼ 128, thus the periodic boundary conditions do not induce an significant error.

To understand the accuracy of the two methods, two relative errors will be used

�1 ¼
ku� uh;kkl2

kukl2
; �2 ¼

kn� nh;kkl2
knkl2

;

where uh;k and nh;k are the numerical approximation of u and n. We perform our computation on the time

interval ½0; 2�.
Tables 1 and 2 list the space discretization errors at time t ¼ 2 when the time step is chosen sufficiently

small that it does not contribute to the significant part of the error. Tables 3 and 4 list the time discreti-

zation errors at t ¼ 2 when the spatial step size is chosen small enough so it does not affect the error. One

can see that both schemes are indeed of spectral accuracy in space and second-order accuracy in time.

The aliasing instability introduces significant numerical errors in long time. Thus, we have to utilize a

smooth cut-off function (as function was used for the focusing nonlinear Schr€odinger equation in [7] if we

want to do long-time simulations). For example, in Fig. 2, we show the numerical solution for juj2 with

L ¼ 128, k ¼ 0, l ¼ 1, c ¼ 1, g ¼ 0:5, v ¼ 0:5, U0 ¼ 0. We computed with h ¼ 1=8, Dt ¼ 0:05 and

rðxÞ ¼ e�10ðx=LÞ16 . Indeed, the result is satisfactory.

3.2. Computations in the subsonic regime

As stated before, when c ! þ1, the generalized ZS reduces to the nonlinear Schr€odinger equation

iut þ uxx þ 2ðkþ lÞjuj2uþ 2au ¼ 0 ð32Þ

and

nðx; tÞ ¼ ljuðx; tÞj2 þ a;
−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

|u
|2

Fig. 1. juj2-plot of a soliton.



Table 1

TSSP1: �1 and �2 at time t ¼ 2 with Dt ¼ 1=131072

Spatial step size h ¼ 1 h ¼ 1=2 h ¼ 1=4 h ¼ 1=8

�1 0.566E) 1 0.866E) 4 0.115E) 8 0.385E) 10

Order of �1 – 9.35 16.20 4.90

�2 0.611E) 1 0.506E) 3 0.951E) 8 0.583E) 10

Order of �2 – 6.91 15.70 7.35

Table 2

TSSP2: �1 and �2 at time t ¼ 2 with Dt ¼ 1=131072

Spatial step size h ¼ 1 h ¼ 1=2 h ¼ 1=4 h ¼ 1=8

�1 0.425E) 1 0.854E) 4 0.125E) 8 0.417E) 10

Order of �1 – 8.96 16.06 4.90

�2 0.656E) 1 0.703E) 3 0.407E) 7 0.500E) 10

Order of �2 – 6.54 14.08 9.67

Table 3

TSSP1: �1 and �2 at time t ¼ 2 with h ¼ 1=32

Time Step Dt 1/4 1/8 1/16 1/32 1/64 1/128

�1 0.394E) 1 0.977E) 2 0.245E) 2 0.614E) 3 0.154E) 3 0.384E) 4

Order of �1 – 2.01 2.00 2.00 2.00 2.00

�2 0.599E) 1 0.160E) 1 0.408E) 2 0.103E) 2 0.257E) 3 0.642E) 4

Order of �2 – 1.90 1.97 1.99 2.00 2.00

Table 4

TSSP2: �1 and �2 at time t ¼ 2 with h ¼ 1=32

Time Step Dt 1/4 1/8 1/16 1/32 1/64 1/128

�1 0.386E) 1 0.962E) 2 0.242E) 2 0.607E) 3 0.152E) 3 0.379E) 4

Order of �1 – 2.00 1.99 2.00 2.00 2.00

�2 0.543E) 1 0.140E) 1 0.354E) 2 0.887E) 3 0.222E) 3 0.555E) 4

Order of �2 – 1.96 1.98 2.00 2.00 2.00
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where

a ¼ 1

mesðBÞ

Z
B

ðnðx; tÞ � ljuðx; tÞj2Þ dx ¼ 1

mesðBÞ

Z
B

ðn0ðxÞ � lju0ðxÞj2Þ dx:

Here, B is the definition domain. The last equality comes from formula (6). Notice that for the problem

defined on the whole real axis, we have a ¼ 0. This convergence to the nonlinear Schr€odinger equation is

strong in u, but to obtain a strong convergence n ! ljuj2 þ a, one needs to impose the compatibility

condition
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Fig. 2. A soliton moving to the right. Plot of juj2. L ¼ 128, g ¼ 0:5, v ¼ 0:5, k ¼ 0, l ¼ 1. h ¼ 1=8, Dt ¼ 1=20, rðxÞ ¼ e�10ðx=LÞ16 . Left:

solutions without the exponential cutoff. Right: solutions with the exponential cutoff. TSSP1 is used in the computation.
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n0ðxÞ � lju0ðxÞj2 � a ¼ Oð1=cÞ ð33Þ

for the initial data [19]. If this compatibility condition is not met by the initial data, there is an oscillatory

term that needs to be subtracted in order to establish the strong convergence in n, otherwise only weak

convergence in time can be obtained for n [17,21]. This subtle analytical issues concerned with the non-

dispersive field n raise some interesting numerical questions which were not addressed in [3,4] but will be

studied here.

In this subsection we shall study the performance of the two methods in the regime c � 1. In particular,
we are interested in the relative ratio between mesh size/time step over c�1 that can give accurate ap-

proximation. As an example, we choose k ¼ 0, l ¼ 1, L ¼ 128, and the initial data to be one of the fol-

lowing two sets:

1. Data set one:

u0ðxÞ ¼ i sechðxÞei
4
x; n0ðxÞ ¼ sech2ðxÞ; n1ðxÞ ¼ sech2ðxÞ tanhðxÞ:

2. Data set two:

u0ðxÞ ¼ i sechðxÞei
4
x; n0ðxÞ ¼ 0; n1ðxÞ ¼ 0:

Clearly the first set meets the compatibility condition, while the second does not.
Consider the data set one first. In this case, a ¼ 0, and the exact solution of the Schr€odinger equation is

uNLSðx; tÞ ¼ i sechðx� t=2Þeið14xþ15
16
tÞ; nNLSðx; tÞ ¼ sech2ðx� t=2Þ: ð34Þ

First, we use this example to test the convergence rate of generalized ZS to the nonlinear Schr€odinger
equation. We compute the numerical solution of ZS with mesh size h ¼ 1=8 (which turns out to be small

enough since h ¼ 1=16 presents almost the same results when other parameters are fixed) and sufficiently

small (relative to 1=c) time step Dt ¼ 0:0005. Three relative errors will be used
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�3 ¼
kuGZSðtÞ � uNLSðtÞkl2

kuNLSðtÞkl2
; �4 ¼

knGZSðtÞ � juNLSðtÞj2kl2
kjuNLSðtÞj2kl2

; �5 ¼
kjuGZSðtÞj2 � juNLSðtÞj2kl1

kjuNLSðtÞj2kl1
:

Tables 5 and 6 list the results. One can see that the generalized ZS reduces to the nonlinear Schr€odinger
equation with order Oð1=c2Þ strongly for u and n.

Tables 7 and 8 list the relative errors when Dt ¼ 1=c. We see that the numerical solutions of the gen-
eralized ZS still converge to the exact solution of the nonlinear Schr€odinger equation with order Oð1=c2Þ.

The next set of tests will be to choose the time step independent of the sound speed c. Fig. 3 plots the

numerical errors for Dt ¼ 0:01. One can see that, for fixed h and Dt, as c ! 1, TSSP2 gives good con-

vergence for both u and n to the desired subsonic limit, but TSSP1 fails to give convergence of n to ljuj2.
The failure in convergence for n using TSSP1 can be understood as follows. When cDt � 1, both cv and

sv in (16) are oscillatory functions, and hence n̂mþ1 in (18) is oscillatory. Calculating nmþ1 requires a discrete

Fourier transform of the oscillatory function n̂mþ1 which cannot be accurate unless sufficiently small mesh

size is used or cDt ¼ Oð1Þ. As for the convergence of u, note that in (20), T̂ ! lFðju�j2ÞDt strongly as
c ! 1. Applying this limit in (21), one sees that u� in (17) and u�� form exactly the time-splitting spectral

method for the nonlinear Schr€odinger equation (32) (see [2]).

For TSSP2, no oscillatory terms exist in (25), although a different problem will occur when the initial

data does not satisfy the compatibility condition (33), as we will see next.

We now consider the initial data set two, which does not satisfy the compatibility condition (33). In this

case, the subsonic limit solution is

uNLSðx; tÞ ¼ i sechðx� t=2Þeið14xþ15
16
tÞe�

2i
Lt; nNLSðx; tÞ ¼ sech2ðx� t=2Þ � 1

L
:

Table 5

Relative errors between the generalized ZS and the corresponding nonlinear Schr€odinger equation

c ¼ 10 c ¼ 20 c ¼ 40 c ¼ 80 c ¼ 160

�3 0.205E) 1 0.516E) 2 0.130E) 2 0.323E) 3 0.801E) 4

Order of �3 – 1.99 1.99 2.01 2.01

�4 0.451E) 2 0.112E) 2 0.281E) 3 0.701E) 4 0.187E) 4

Order of �4 – 2.01 1.99 2.00 1.91

�5 0.235E) 2 0.576E) 3 0.144E) 3 0.359E) 4 0.888E) 5

Order of �5 – 2.03 2.00 2.00 2.01

The errors are computed at time t ¼ 4 with h ¼ 1=8 and Dt ¼ 0:0005. TSSP1 is used.

Table 6

Relative errors between the generalized ZS and the corresponding nonlinear Schr€odinger equation

c ¼ 10 c ¼ 20 c ¼ 40 c ¼ 80 c ¼ 160

�3 0.204E) 1 0.513E) 2 0.129E) 2 0.323E) 3 0.794E) 4

Order of �3 – 1.99 1.99 1.99 2.03

�4 0.447E) 2 0.112E) 2 0.282E) 3 0.708E) 4 0.182E) 4

Order of �4 – 1.99 1.99 1.99 1.96

�5 0.234E) 2 0.575E) 3 0.145E) 3 0.363E) 4 0.891E) 5

Order of �5 – 2.03 1.99 1.99 2.03

The errors are computed at time t ¼ 4 with h ¼ 1=8 and Dt ¼ 0:0005. TSSP2 is used.



Table 7

Relative errors of the numerical solutions of the generalized ZS by TSSP1

c ¼ 160 c ¼ 320 c ¼ 640 c ¼ 1280 c ¼ 2560

�3 0.477E) 4 0.121E) 4 0.303E) 5 0.756E) 6 0.189E) 6

Order of �3 – 1.98 2.00 2.00 2.00

�4 0.785E) 3 0.997E) 5 0.248E) 5 0.619E) 6 0.155E) 6

Order of �4 – 2.98 2.01 2.00 2.00

�5 0.162E) 4 0.406E) 5 0.102E) 5 0.254E) 6 0.637E) 7

Order of �5 – 2.00 1.99 2.01 2.00

The errors are computed at time t ¼ 4 under h ¼ 1=8 and Dt ¼ 1=c.

Table 8

relative errors of the numerical solutions of the generalized ZS by TSSP2

c ¼ 160 c ¼ 320 c ¼ 640 c ¼ 1280 c ¼ 2560

�3 0.369E) 4 0.921E) 5 0.230E) 5 0.576E) 6 0.144E) 6

Order of �3 – 2.00 2.00 2.00 2.00

�4 0.309E) 4 0.758E) 5 0.181E) 5 0.475E) 6 0.115E) 6

Order of �4 – 2.03 2.07 1.93 2.05

�5 0.782E) 5 0.195E) 5 0.489E) 6 0.122E) 6 0.305E) 7

Order of �5 – 2.00 2.00 2.00 2.00

The errors are computed at time t ¼ 4 under h ¼ 1=8 and Dt ¼ 1=c.
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Fig. 3. Plots of the relative errors as c ! 1. The errors are computed at time t ¼ 4 under h ¼ 1=8. Left: TSSP1. Right: TSSP2.
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Fig. 4 plots the numerical solutions. The left subplot shows the numerical solution of n with a very small

time step Dt ¼ 0:0001 using TSSP1. This solution can be taken as the ‘‘exact’’ solution. The right one shows

the numerical solution of n when TSSP2 is used. The numerical solution n does not converge when c ! 1
while holding Dt fixed.
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The reason why this happens can be explained as the following. When c ! 1, in view of Eq. (23), one

has

w1 ¼
1; k ¼ 0;
�1; otherwise;

�
w2 ¼ 0:

Thus from (25),

n̂mþ1 þ n̂m ¼ 2n̂0; k ¼ 0;
2lFðju�j2Þ; otherwise:

(

That is to say

nmþ1 þ nm ¼ 2lju�j2 þ 2a: ð35Þ

If we apply this to (27) in TTSP2 one can see u� and u�� again form exactly the time-splitting spectral method

for the nonlinear Schr€odinger equation (33) (see [2]). So u will always converge numerically as c ! 1.

However, if nm � ljumj2 � a ¼ Oð1Þ then (35) implies (note that um � u� ¼ OðDtÞ, umþ1 � u� ¼ OðDtÞ),

nmþ1 � ljumþ1j2 � a ¼ Oð1Þ:

Thus, if the the initial data does not satisfy the compatibility condition (33), such an incompatibility will be

preserved at all later time, preventing n from converging to ljuj2 þ a.
Since this error is mainly caused by the initial incompatibility, one can use L-stable ODE solvers [10] to

remove this error. Such phenomenon (initial layer discrepancy) has been studied for hyperbolic systems

with stiff relaxation terms, see [5,15], where L-stable ODE solvers were used to eliminate the error intro-

duced by under-resolution of the initial layer. For the ZS problem, one could either replace the Crank–

Nicolson (which is not L-stable) method by a second order L-stable ODE solver, or more simply, use an L-

stable scheme (such as the backward Euler method) for the first time step. Here we take the second ap-
proach. Since we only use the first-order scheme for one time step, the overall accuracy in time remains

second order. Below for completeness we list the full scheme (called TSSP2-1)
Fig. 4. n-plots: numerical solutions at time t ¼ 1 with h ¼ 1=8 for c ¼ 160. Left: Scheme one with Dt ¼ 0:0001. Right: Scheme two with

Dt ¼ 0:01.
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w�
1 ¼

1

1þ k2c2Dt2
; w�

2 ¼
�ikDt

1þ k2c2Dt2
;

u� ¼ F�1ðe�ik2DtFðu0ÞÞ;
n̂1 ¼ w�

1½n̂0 � lFðju�j2Þ� þ w�
2v̂

0 þ lFðju�j2Þ;
v̂1 ¼ w�

2c
2½n̂0 � lFðju�j2Þ� þ w�

1v̂
0;

u1 ¼ u�e2iDtkju
�j2e2iDtn

1

;

w1 ¼
4� k2c2Dt2

4þ k2c2Dt2
; w2 ¼

�4ikDt

4þ k2c2Dt2
;

u� ¼ F�1ðe�ik2Dt=2FðumÞÞ;
n̂mþ1 ¼ w1½n̂m � lFðju�j2Þ� þ w2v̂

m þ lFðju�j2Þ;
v̂mþ1 ¼ w2c2½n̂m � lFðju�j2Þ� þ w1v̂

m;

u�� ¼ u�e2iDtkju
�j2eiDtðn

mþnmþ1Þ;

umþ1 ¼ F�1ðe�ik2Dt=2Fðu��ÞÞ; m ¼ 1; 2; . . .
Table 9

Relative errors between numerical solution and exact solution for c ¼ 1E10 at time t ¼ 4 when TSSP2-1 is used

Dt ¼ 0:02 Dt ¼ 0:01 Dt ¼ 0:005 Dt ¼ 0:0025

�3 0.122E) 2 0.304E) 3 0.757E) 4 0.189E) 4

Order of �3 – 2.00 2.01 2.00

�4 0.454E) 3 0.114E) 3 0.285E) 4 0.711E) 5

Order of �4 – 1.99 2.00 2.00

We take the solution of nonlinear Schr€odinger equation as the exact solution. The numerical solution is computed with initial data

set two.

Fig. 5. v ¼ 0:5, l=k ¼ 0:02. Left: juj2. Right: n.
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When cDt � 1, the backward Euler step clearly drives n to ljuj2 þ a after the first time step. This pre-

pares the compatible data right into the subsonic limit, and for all later time the solution will remain in the

subsonic limit for n, as can be seen from the above analysis.
Table 9 lists the L2 relative errors with TSSP2-1. The results agree with our analysis.
Fig. 6. v ¼ 0:5, l=k ¼ 0:06. Left: juj2. Right: n.

Fig. 7. v ¼ 0:5, l=k ¼ 0:07. Left: juj2. Right: n.



Fig. 8. v ¼ 0:5, l=k ¼ 0:2. Left: juj2. Right: n.

Table 10

The critical point for different velocity

v 0.1 0.3 0.5 0.7 0.9

l=k 0:0027�1 0:025�1 0:065�1 0:121�1 >1.0E+10

Fig. 9. v ¼ 3:0, l=k ¼ 0:2. Left: juj2. Right: n.
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3.3. Applications to soliton–soliton collisions

In this subsection we use TSSP2 to study the collision of two solitons. For simplicity, we confine our-
selves to symmetric collisions with both zero initial phases, i.e. the two solitons have the same speed and

same amplitude but propagate in the opposite directions. We set g ¼ 0:3 and c ¼ 1 in the following. All

computations are performed with a sufficiently refined mesh h ¼ 1=32 and sufficiently small time step

Dt ¼ 0:001.
• k > 0 and l > 0. The solitons exist in two different regimes: subsonic regime

jvj < c

and transsonic regime

jvj > c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l=k

p
:

Fig. 10. v ¼ 3:0, l=k ¼ 1:45. Left: juj2. Right: n.
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First, we consider the collisions of two solitons with subsonic propagation speeds. As is known, when l=k is
small, the generalized ZS is close to the cubically nonlinear Schr€odinger equation (focusing for k > 0). This

implies that collision between solitons are quite elastic. After collision, two solitons form again and
propagate in their original directions but with slightly smaller speeds (see Fig. 5). At the same time, from

the n-plot, one can see that besides the dispersive wave propagating with the same speed as u, the collision
also results in a pair of nondispersive waves, which travel with larger energy. With the growth of l=k, the
new-formed solitons’ speed becomes smaller (see Fig. 6), and a series of nondispersive waves are emitted

from the collision point successively, traveling with much smaller energy. When l=k becomes even larger,

after a critical value, the collision results in total fusion. Solitons are not generated again after collision. In

addition, the fusion is accompanied with a series of strong emission of nondispersive waves (see Figs. 7 and
Fig. 11. v ¼ 3:0, l=k ¼ 1:75. Left: juj2. Right: n.



Fig. 12. v ¼ 0:5, l=k ¼ �0:8. Left: juj2. Right: n.
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8). Our computation shows that the critical value strongly depends on the soliton speed. We list part of the

numerical results in Table 10. Notice that our numerical values for the critical value are somewhat different

from those given in the paper [14], the later computed by finite difference schemes which are inferior to the

spectral method as studied in [4].
These phenomena in the transsonic case are somewhat different. When l=k is small, the collision seems

to be elastic and the departing speeds of the solitons formed after collision are almost the same as before

collision (see Fig. 9). When l=k becomes larger, a pair of solitons with slower speed shows up (see Fig. 10).

We call them slow solitons. In contrast, we call the solitons with a larger speed fast solitons. With further

growth of l=k, the amplitude of slow solitons is increasing while the amplitude of fast solitons is decreasing.

After a focal point, the amplitudes of slow solitons become larger than the fast ones (see Fig. 11). Besides,

the speeds of slow solitons turn out to be smaller with the growth of l=k. In all the transsonic region, the

radiative losses tend to be more severe with the growth of l=k.
• k < 0, l > 0. In this case, only the subsonic soliton exists in the gap c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l=jkj

p
< jvj < c, provided

l=jkj < 1. We consider the collisions of two solitons with equal initial phases. Our numerical experiments

show that this case is much simpler than that we discussed above. All the collisions seem to be rather

elastic and no significant radiation is observed. See Fig. 12.
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