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Abstract

We develop computational methods for high frequency solutions of general symmetric hyperbolic systems
with eigenvalue degeneracies (multiple eigenvalues with constant multiplicities) in the dispersion matrices
that correspond to polarized waves. Physical examples of such systems include the three dimensional
elastic waves and Maxwell equations. The computational methods are based on solving a coupled system
of inhomogeneous Liouville equations which is the high frequency limit of the underlying hyperbolic
systems by using the Wigner transform [15]. We first extend the level set methods developed in [6]
for the homogeneous Liouville equation to the coupled inhomogeneous system, and find an efficient
simplification in one space dimension for the Eulerian formulation which reduces the computational cost
of two-dimesnional phase space Liouville equations into that of two one-dimensional equations. For the
Lagrangian formulation, we introduce a geometric method which allows a significant simplification in the
numerical evaluation of the energy density and flux. Numerical examples are presented in both one and
two space dimensions to demonstrate the validity of the methods in the high frequency regime.

1 Introduction

We will study the general symmetric hyperbolic system of the form1

�
A(x)∂uε

∂t +D
j ∂uε
∂xj

= 0

uε(x, 0) = u0(x)eiS0(x)/ε,
(1.1)

where u ∈ Cn
, x ∈ Rd, A(x) is a n× n symmetric positive definite matrix, and the D

j are n× n symmetric
constant matrices. Many physical systems such as Maxwell’s equations, the elastic wave equations and the
acoustic equations all may be put into the symmetric hyperbolic form with the correct choices of A(x) and
D

j . Here we are interested in high frequency solutions, where the high frequency is introduced by the wave
length ε in the initial data in (1.1). In many physical applications ε is very small compared to the scale of
the computational domain, and the numerical meshes and time steps need to resolve this small scale, thus
computing the high frequency solutions, in particular in high dimensions, is prohibitively expensive.

One efficient way to deal with high frequency wave problems is to solve the limiting equation by finding
the asymptotic equation when ε → 0. The Wigner transform, introduced in [23], is a powerful mathematical
tool to study this limit [3], since it is valid global in time, even beyond caustic formation. The limiting
equation is the Liouville equation which does not depend on ε, permitting large time steps and mesh sizes.
However, it encounters two major difficulties. First, the Liouville equation is defined in the phase space,
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thus doubling the computational dimension. Second, for the WKB kind of initial data given in (1.1), the
solution is a superposition of Dirac Delta functions [5, 16] which are difficult to resolve numerically with a
high order accuracy. The first difficulty can be dealt with by local level set methods [11, 12] in the Eulerian
formulation, or using Lagrangian formulation which is just the particle method. The second difficulty, the
numerical resolution of Delta function, was elegantly handled by a singularity decomposition method, first
introduced in [7] for the semiclassical limit of the Schrödinger equation, and then extended to symmetric
hyperbolic systems in [6]. The method is based on the observation that the solution to the linear Liouville
equation of the form of the Delta functions can be decomposed into two solutions of the Liouville equations
which are both bounded, one, roughly speaking, corresponding to strength (or amplitude of the wave) while
the other one the kernel of the Delta function. The final solution is the combination of these two quantities
involving the Delta function, but the Delta function needs to be computed only at the final output time, not
during the time evolution! This significantly enhances the numerical resolution of the singular solutions to
the Liouville equation. See [2, 8] for reviews of computational high frequency waves or semiclassical limit of
quantum waves.

In this paper, we extend the singular decomposition method of [7, 6] to (1.1). Different from the problem
studied in [6], here the dispersion matrix will have multiple eigenvalues while in [6] only simple eigenvalues
are allowed. By assuming constant multiplicities of the multiple eigenvalues, the high frequency limit of
(1.1), using the Wigner transform, becomes coupled systems of inhomogeneous Liouville equations (while in
[6] they are decoupled homogeneous Liouville equations for different eigenvalues) [15]. The inhomogeneities
arise due to the degeneracy of the eigenvalues, which describe the cross-polarization effects. We first show
that the singular decomposition method developed in [7, 6] still applies here except that one needs to
solve inhomogeneous Liouville system. We also found an efficient simplification in one space dimension for
the Eulerian formulation which reduces the computational cost of two-dimensional phase space Liouville
equations into that of two one-dimensional equations. For the Lagrangian formulation, we introduce a
geometric method which allows a significant simplification in the numerical evaluation of the energy density
and flux.

While the polarization effects usually appear in three dimensional space for elastic waves and electro-
magnetic waves, our method, developed for one and two dimensional hyperbolic systems, is the first of its
kind to deal with polarized waves thus provides a foundation for three dimensional simulation which will be
developed in the near future. Furthermore, similar effects also appear in molecular dynamics with quantum
transitions [18] and mixing of Bloch bands in solid state physics [17] where the multiplicity is a variable thus
more elaborate numerical methods along the line of this paper are desirable.

This paper is organized as follows. In Section 2, we will introduce and then use the Wigner transform
to obtain, in the limit that ε → 0, a coupled system of Liouville equations which govern the evolution of
this high frequency limit, as shown in [15]. In Section 3 we will prove the singularity decomposition result.
In Section 4 we will discuss simplifications which occur in the one space dimension case. In Section 5 we
will discuss d-dimensional implementation of our method in the Eulerian and Lagrangian frames as well as
introduce a geometric reduction of computational complexity for the evaluation of energy and energy flux in
the Lagrangian framework. In Section 6 we will show some illustrative numerical examples in one and two
dimensions. Finally, Section 7 will contain our conclusions.

2 The Wigner Transform of Hyperbolic Systems

This section is based primarily on the derivation which appears in [15].
The energy density and d components of flux for a solution of (1.1) are given by

E(t, x) =
1

2
�A(x)uε(t,x),uε(t,x)� (2.1)

Fi(t,x) =
1

2
�D

iuε(t,x),uε(t,x)� (2.2)

respectively where �·, ·� is the standard Euclidian inner product on Cn. By taking an inner product of (1.1)
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with uε(t,x) one gets the energy conservation law

∂E

∂t
+∇ · F = 0. (2.3)

Integration of (2.3) shows conservation of total energy:

d

dt

ˆ
E(t,x)dx = 0. (2.4)

Next define the scaled Wigner transform

W
ε(t,x,k)dk =

�
1

2π

�d ˆ
e
ik·yuε(t,x− εy/2)u∗

ε(t,x+ εy/2)dy (2.5)

where u∗ = uT is the conjugate transpose of u. The matrix W (t,x,k) is Hermitian but only becomes
positive definite in the limit as ε → 0 [15]. It has the useful property that

ˆ
W

ε(t,x,k)dk = uε(t,x)u
∗
ε(t,x). (2.6)

The energy density and flux may be recovered from W (t,x,k) via

E(t,x) =
1

2

ˆ
Tr(A(x)W ε(t,x,k))dk, (2.7)

Fj(t,x) =
1

2

ˆ
Tr(Dj

W
ε(t,x,k))dk. (2.8)

Introduce a natural inner product for the system (1.1) as

�u,v�A = �Au,v� (2.9)

and note that with this definition the energy (2.1) may be written as E = 1
2 �u,u�A. Define the dispersion matrix

as the sum
L(x,k) = A

−1(x)kiD
i (2.10)

and note that L(x,k) is self-adjoint with respect to (2.9):

�Lu,v�A = �u, Lv�A. (2.11)

Therefore, all eigenvalues ωτ of L(x,k) are real and the corresponding eigenvectors bτ can be chosen to be
orthogonal with respect to �·, ·�A:

L(x,k)bτ (x,k) = ωτ (x,k)bτ (x,k), �bτ
,bβ�A = δτβ . (2.12)

We assume that the eigenvalues have constant multiplicity independent of x,k. This assumption is valid
for all three physical examples studied in [15] (namley, Maxwell’s equations, elastic equations and acoustic
equations), as well as for the few examples introduced studied in this paper in Section 6.

In general the eigenvalues of L(x,k) are multiple eigenvalues so let ωτ (x,k) be an eigenvalue of multiplicity
r and let the corresponding eigenvectors bτ,i, i = 1, ..., r be orthonormal with respect to �·, ·�A. Define the
n× n matrices

B
τ,ij = bτ,ibτ,j∗

, (2.13)

with i, j = 1, ..., r. In the limit that ε → 0, the Wigner matrix W
ε(t,x,k) is approximated by W

(0)(t,x,k)
which may be written as

W
(0)(t,x,k) =

�

τ,i,j

w
τ
ij(t,x,k)B

τ,ij(x,k). (2.14)

We define the r × r coherence matrices as

W
τ (t,x,k) =

�
w

τ
ij(t,x,k)

�
r×r

. (2.15)
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Note that the multiplicity r of the eigenvalues ωτ depends on τ but this is not indicated explicitly. The
entries of the coherence matrix W

τ
ij can be recovered via

W
τ
ij(t,x,k) = ��W

(0)(t,x,k), Bτ,ij(x,k)�� (2.16)

where ��X,Y �� = Tr(AX
∗
AY ) is a matrix inner product. From here we can deduce that each of the coherence

matrices (2.16) satisfies the coupled system of Liouville equations

∂tW
τ +∇kωτ ·∇xW

τ
−∇xωτ ·∇kW

τ = N
τ
W

τ
−W

τ
N

τ (2.17)

where the skew-symmetric coupling matrix N
τ (x,k) is given by

N
τ
mn(x,k) =

�
bτ,n

, D
i ∂b

τ,m

∂xi

�
−

∂ωτ

∂xi

�
bτ,n

,
∂bτ,m

∂ki

�

A

−
1

2

∂
2
ωτ

∂xi∂ki

δnm. (2.18)

In the sense of distributions, the weak limit of W ε(0,x,k) as ε → 0 gives the initial condition

W
(0)(0,x,k) = u0(x)u

∗
0(x)δ(k−∇S0(x)). (2.19)

Using (2.16) this implies that

W
τ
ij(0,x,k) = Tr(Au0u

∗
0AB

τ,ij)δ(k−∇S0(x)). (2.20)

In summary, W τ is computed via (2.17) with initial condition given by (2.20). Next W
(0) follows from W

τ

via (2.14) from which one may compute the approximate energy density and flux using

E
(0)(t,x) =

1

2

ˆ
Tr(A(x)W (0)(t,x,k))dk, (2.21)

F
(0)
j (t,x) =

1

2

ˆ
Tr(Dj

W
(0)(t,x,k))dk (2.22)

respectively. In the next section we show how to solve (2.17) with singular initial conditions of the form
(2.20).

3 A Singularity Decomposition Method

From the previous section we wish to solve the Liouville equation (2.17) together with the initial condition
(2.20). Since accuracy is reduced when an initial condition containing a delta function is evolved numerically,
it is desirable to decompose the original Liouville equation into two separate equations which have bounded
initial conditions [6, 7]. To this end we have the following theorem.

Theorem 3.1. Define the Liouville operator

L = ∂t +∇kωτ ·∇x −∇xωτ ·∇k (3.1)

and the coupling matrix N
τ as in (2.18). Then the solution W

τ (t,x,k) to the system
�
LW τ = N

τ
W

τ −W
τ
N

τ

W
τ (0,x,k) = U

τ
0 (x,k)δ(g

τ
0 (x,k))

(3.2)

for a smooth function gτ
0 (x,k) may be written as U

τ (t,x,k)δ(gτ (t,x,k)) where the matrix function U
τ and

vector function gτ are governed by �
LUτ = N

τ
U

τ − U
τ
N

τ

U
τ (0,x,k) = U

τ
0 (x,k)

(3.3)

and �
Lgτ = 0

gτ (0,x,k) = gτ
0 (x,k)

(3.4)

respectively.
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Proof. (We drop the τ superscript notation for the duration of the proof) We begin by defining the weak
equivalent to �

LW = NW −WN

W (0,x,k) = W0(x,k)
(3.5)

as requiring that for any d× d matrix φ(t,x,k) where φi,j ∈ C
∞
0 (R+ × Rn × Rn), the following holds

ˆ
R2n

Tr(W0φ|t=0)dxdk−

ˆ ∞

0

ˆ
R2n

Tr(WLφ)dxdkdt =

ˆ ∞

0

ˆ
R2n

Tr((NW −WN)φ)dxdkdt. (3.6)

Note that we use the trace of the matrix product here to represent
�

i,j φj,iWi,j for ease of notation. Simple
integration by parts shows that for smooth W , (3.5) and (3.6) are equivalent. Define the Hamiltonian flow
Ht(x0,k0) which evolves any point (x0,k0) in phase space forward to time t according the Hamiltonian
system �

d
dtx(t) = ∇kωτ
d
dtk(t) = −∇xωτ

. (3.7)

We change coordinates to (t,x0,k0) defined by (t,x,k) = (t,Ht(x0,k0)). Since the determinant of the
Jacobian of this transform is 1 we rewrite (3.6) as
ˆ
R2n

Tr(W0φ|t=0)dx0dk0 −

ˆ ∞

0

ˆ
R2n

Tr(W
d

dt
φ)dx0dk0dt =

ˆ ∞

0

ˆ
R2n

Tr((NW −WN)φ)dx0dk0dt (3.8)

where we have taken advantage of the fact that Lφ(t,x,k) = d
dtφ(t,Ht(x0,k0)). Note that in this paper d

dt
always represents the full derivative in time and that one also has

LU(t,x,k) =
d

dt
U(t,Ht(x0,k0)) = N(Ht(x0,k0))U(t,Ht(x0,k0))− U(t,Ht(x0,k0))N(Ht(x0,k0)) (3.9)

and
Lg(t,x,k) =

d

dt
g(t,Ht(x0,k0)) = 0. (3.10)

Substituting the anzats U(t,x,k)δ(g(t,x,k)) into the left hand side of (3.8) we obtain
ˆ
R2n

Tr (U0(x0,k0)δ(g0(x0,k0))φ|t=0) dx0dk0−

ˆ ∞

0

ˆ
R2n

Tr
�
U(t,Ht(x0,k0))δ(g(t,Ht(x0,k0)))

d

dt
φ

�
dx0dk0dt.

(3.11)
Noting first that (3.10) implies g(t,Ht(x0,k0)) = g(0,x0,k0), observe that the above space integrals are
weighted surface integrals in 2d-dimensional phase space over a d-dimensional sub-manifold defined by the
zero set of g(0,x0,k0) and that the weight given in terms of the inverse volume of ∇g(0,x0,k0). Denoting
this zero-set manifold as S, (3.11) may be written as

ˆ
S

Tr(Uφ|t=0)
1

vol(∇g)
dσ −

ˆ ∞

0

ˆ
S

Tr(U
d

dt
φ)

1

vol(∇g)
dσdt (3.12)

Where
vol(∇g) =

�
det(G) (3.13)

and G is the Gramian matrix defined as Gi,j = ∇gi · ∇gj with the gradients taken over the 2n space
coordinates. (3.12) is an application of the smooth Coarea formula and vol(g(0,x0,k0)) is non-zero because
the initial conditions given to g. Further note that vol(g(0,x0,k0)) is independent of time as is the surface
S over which the integrals are performed. Also since S is fixed in time, d

dtφ is still the full derivative in time.
Thus integrate by parts in time so that (3.12) becomes

ˆ ∞

0

ˆ
S

Tr
��

d

dt
U

�
φ

�
1

vol(∇g)
dσdt. (3.14)
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Then using (3.9),
ˆ ∞

0

ˆ
S

Tr
��

d

dt
U

�
φ

�
1

vol(∇g)
dσdt =

ˆ ∞

0

ˆ
S

Tr((NU − UN)φ)
1

vol(∇g)
dσdt. (3.15)

Finally,
ˆ ∞

0

ˆ
S

Tr((NU − UN)φ)
1

vol(∇g)
dσdt =

ˆ ∞

0

ˆ
R2n

Tr((NUδ(g)− Uδ(g)N)φ)dx0dk0dt

=

ˆ ∞

0

ˆ
R2n

Tr((NW −WN)φ)dx0dk0dt

(3.16)

and this completes the proof.

Remark. In our application of Theorem 3.1 to (2.17) and (2.19), the initial amplitude U
τ
0 (x,k) for U is

independent of k though the proof above does not require this to be the case. Also, when the eigenvalues of
the dispersion matrix (2.10) are simple, the coupling matrix (2.18) is zero and the Theorem 3.1 reduces to
ones proven in [6, 7] for homogeneous Liouville equations. For now, ∇S0(x) is assumed to be differentiable.
A discussion of some cases where ∇S0(x) is discontinuous may be found in [6, 7].

Using Theorem 3.1, the computation of delta functions during time evolution is avoided and delta func-
tions only appear in post processing steps when one wishes to evaluate energy density (2.21) and flux (2.22)
(see Remark 3.2). In particular, our method uses the decomposition in Theorem 3.1 to replace solving

�
∂tW

τ +∇kωτ ·∇xW
τ −∇xωτ ·∇kW

τ = N
τ
W

τ −W
τ
N

τ

W
τ
ij(0,x,k) = Tr(Au0u∗

0AB
τ,ij)δ(k−∇S0(x))

(3.17)

with instead solving both �
LUτ = N

τ
U

τ − U
τ
N

τ

U
τ (0,x,k)ij = Tr(Au0u∗

0AB
τ,ij)

(3.18)

and �
Lgτ = 0

gτ (0,x,k) = k−∇S0(x).
(3.19)

Next one obtains W
τ (t,x,k) using

W
τ (t,x,k) = U

τ (t,x,k)δ(gτ (t,x,k)), (3.20)

obtains W
(0)(t,x,k) using (2.14) and then finally obtains energy density and flux using (2.21) and (2.22)

respectively. A method which solves the Liouville equations (3.18) and (3.19) directly is called Eulerian
whereas a method which solves them along their respective characteristics is Lagrangian. Which approach is
preferable, Eulerian or Lagrangian, depends greatly on the individual problem and in the following sections
we discuss both.
Remark 3.2. Although we will not use them here, discussions of other techniques for evaluating delta function
integrals may be found in the pair of papers [6, 7] as well as the sequence of papers [19, 20, 21, 22].

4 The Eulerian Formulation

4.1 d Dimensions

The Eulerian formulation of our method starts by solving (3.18) and (3.19) in 2d dimensions. For a given ωτ

we denote the solutions to (3.18) and (3.19) by U
τ (t,x,k) and gτ (t,x,k) respectively. Once these solutions

are obtained, we recover W
τ (t,x,k) via (3.20) and W

(0)(t,x,k) via (2.14). After this, energy density and
flux follow from (2.21) and (2.22) respectively which requires detecting the zero set of gτ . At the initial
time, the zero set of gτ is given by the initial condition in (3.19) and so for each x there is exactly one k
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Figure 4.1: In reference to evaluating (5.10) and (5.11), if x = a then sa = 3 and if x = b then sb = 5 (note
that τ notation has been dropped for simplicity). In reference to evaluating (5.20) and (5.21), the simplices
here are simply the x intervals delineated by the dots along the curve g(T, x, k) = 0. If x = a then x falls
into 3 distinct intervals and if x = b then x falls into 5 distinct intervals. x = c is an example of a point
where g(T, x, k) has a caustic.

where gτ = 0. We call gτ is single valued when this property holds. At some later time, it may be the
case that for some x there are multiple k where gτ = 0 and we call gτ multiple valued in this case [5, 16]
(see Figure 4.1 for an example of a multiple valued solution). A point (x,k) where gτ (t,x,k) = 0 and
vol (∇kgτ (t,x,k)) = 0 is called a caustic and at these points, the energy density (2.21) and flux (2.22) are
not well defined (the point x = c in Figure 4.1 is an example of such a point). Away from caustics, however,
if we define K

τ (t,x) = {k : gτ (t,x,k) = 0} then the energy density and flux may be evaluated at final time
t = T as

E
(0)(T,x) =

�

τ




�

k∈Kτ (T,x)

1

2
Tr

�
A(x)

Ũ
τ (T,x,k)

vol [∇kgτ (T,x,k)]

�

 (4.1)

and

F
(0)
j (T,x) =

�

τ




�

k∈Kτ (T,x)

1

2
Tr

�
D

j Ũ
τ (T,x,k)

vol [∇kgτ (T,x,k)]

�

 (4.2)

respectively where
Ũ

τ (t,x,k) ≡
�

ij

U
τ
ij(t,x,k)B

τ,ij(x,k) (4.3)

is a partially summed version of (2.14).
K

τ could be approximated numerically in many ways one of which is the following. Define the fixed
square grid in the phase variables by kz = hz where zi ∈ Z and h > 0 is the step size. Then for a given x
and gτ (t,x,k), define the sets Si with i = 1, ..., d by

Si = {kz : gτi (t,x,kz)g
τ
i (t,x,kz+ei) < 0} (4.4)

where ei is i
th unit vector in Rd. Then for sufficiently small h, we have

K
τ (t,x) ≈ ∩

d
i=1Si. (4.5)
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Alternately, one could evaluate (2.21) and (2.22) by introducing numerical delta function in (3.20) as is in
[6, 7]. This alternate approach avoids the need to find K

τ (t,x) = {k : gτ (t,x,k) = 0} explicitly but may
introduce more error depending on the numerical delta function used.

To reduce the computational cost of solving the Liouville equations on 2d dimensions, one may take
advantage of optimized techniques for solving Liouville equations found in, for example, [1, 6, 7, 9, 11, 12].
In particular, the local level set approach allows for computation only around the zero set of gτ (t,x,k) [11].
Beyond this, in one dimension the computations on two-dimensional phase space can be reduced to just one
dimension as seen in Section 4.2.

4.2 One Dimension

In one dimension, x,k and gτ are all scalars so will be denoted x, k and g
τ respectively. Since in one

dimension k appears as a scalar multiple in the dispersion matrix L given by (2.10), the eigenvalues of L will
always be of the form ω

τ (x, k) = kλ
τ (x) and the corresponding eigenvectors bτ will always be k independent.

Consequently, the coupling matrix N
τ given in (2.18) is also k independent. Finally, from (2.20) it follows

that the initial conditions of (3.18) are k independent so that (3.18) reduces to
�
[∂t + λ(x)∂x]Uτ = N

τ
U

τ − U
τ
N

τ

U
τ (0, x) = Aτ (x).

(4.6)

For g
τ of (3.4) we have the following simple Theorem:

Theorem 4.1. The solution to
�
[∂t + λ(x)∂x − kλ

�(x)∂k]gτ = 0

g
τ (x, k, 0) = k − ∂xS0(x)

(4.7)

may be written as g
τ (t, x, k) = kΓ1(t, x) + Γ0(t, x) with Γ0 and Γ1 governed by

�
[∂t + λ(x)∂x]Γ0 = 0

Γ0(x, 0) = −∂xS0(x)
(4.8)

and �
[∂t + λ(x)∂x − λ

�(x)]Γ1 = 0

Γ1(x, 0) = 1
(4.9)

respectively.

Proof. The proof is a simple substitution of the assumed form for g
τ into (4.7).

Already, the computation has been reduced from one on two-dimensional phase space to one dimension but
further simplification comes in the post processing steps for finding energy density or flux by noting that

ˆ
R
δ(gτ (x, k, t))dk =

ˆ
R
δ(kΓ1(x, t) + Γ0(x, t))dk =

1

|Γ1(x, t)|
(4.10)

so that Γ0 needs not be computed. Also note that the function S0(x) is no longer used in the computation.
This suggests that in 1D at least, the high frequency limit (ε → 0) of the energy density and flux is
independent of S0(x). But higher moments of W τ clearly depend on S0(x).

In summary, in one dimension, the equations (3.18) and (3.19) reduce to (4.6) and (4.7) respectively. Then
(4.7) may be solved by instead solving both (4.8) and (4.9) and then using g

τ (t, x, k) = kΓ1(t, x) + Γ0(t, x).
Thus all computations to acquire U

τ (t, x, k) and g
τ (t, x, k) are performed in one dimension.

Remark. The existence of an extension of the decomposition in Theorem 4.1 to higher dimensional space
remains an open question.
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5 The Lagrangian Formulation

For the Lagrangian formulation, we solve (3.18) and (3.19) by the method of characteristics. Since Theorem
3.1 implies that the only values of gτ (t,x,k) and ∂kig

τ (t,x,k) needed for computing energy density and
flux are those along the zero level set of gτ (t,x,k), we present two possible methods both of which reduce
a computation on 2d-dimensional phase space to d dimensions. Then we discuss the numerical treatment of
caustics using the Lagrangian approach.

5.1 The Method of Characteristics

For a given eigenvalue ωτ the Hamiltonian system defining the bicharacteristics of the Liouville equations
(2.17) is (3.7) with initial conditions given by

(x(0),k(0)) = (x0,∇xS0(x0)). (5.1)

Note that even though the trajectory of x(t) and k(t) depends on the eigenvalue ω
τ , we don’t indicate this

explicitly. From (3.18), Uτ along the characteristics is governed by

d

dt
U

τ (t,x(t),k(t)) = N
τ (t)Uτ

− U
τ
N

τ (t) (5.2)

with the initial conditions

U
τ
0 (0,x(0),k(0))ij = Tr[A(x(0))u0(x(0))u

∗
0(x(0))A(x(0))Bτ,ij(x(0),k(0))] (5.3)

and where N
τ (t) = N

τ (x(t),k(t)) is the coupling matrix given by (2.18). From (3.19), gτ along the
bicharacteristics is governed by �

d
dtg

τ (t,x(t),k(t)) = 0

gτ (0,x(0),k(0)) = 0.
(5.4)

For evaluation of the energy density and flux, as shown in (4.1) and (4.2), we also need approximations
to ∂kig

τ at points along the zero set of gτ at the final time. To obtain these, start from (3.19) and take
gradients with respect to x and separately k to derive, for each component g

τ
i ,

�
L(∇xg

τ
i ) = −(∇xkωτ )(∇xg

τ
i ) + (∇xxωτ )(∇kg

τ
i )

L(∇kg
τ
i ) = (∇kxωτ )(∇kg

τ
i )− (∇kkωτ )(∇xg

τ
i )

(5.5)

where L is given by (3.1). Then along the characteristics, the above becomes
�

d
dt (∇xg

τ
i ) = −(∇xkωτ )(∇xg

τ
i ) + (∇xxωτ )(∇kg

τ
i )

d
dt (∇kg

τ
i ) = (∇kxωτ )(∇kg

τ
i )− (∇kkωτ )(∇xg

τ
i ),

(5.6)

with initial conditions given by
�
∇xg

τ
i (0,x(0),k(0)) = −∂xi∇xS0(x)

∇kg
τ
i (0,x(0),k(0)) = ei

(5.7)

where ei is the i
th unit vector in Rd. Note that even though we only desire ∇kg

τ
i , the fact that (5.6) are

coupled requires one to solve for ∇xg
τ
i as well. Now, by solving (3.7), (5.2), and (5.6) for points along the

zero set of gτ , one can define the phase space energy density and phase space flux corresponding to eigenvalue
ωτ at x(t) as

E
τ (t,x(t),k(t)) =

1

2
Tr

�
A(x(t))

Ũ
τ (t,x(t),k(t))

vol [∇kgτ (t,x(t),k(t))]

�
(5.8)

and
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F
τ
j (t,x(t),k(t)) =

1

2
Tr

�
D

j Ũ
τ (t,x(t),k(t))

vol [∇kgτ (t,x(t),k(t))]

�
(5.9)

respectively with Ũ
τ defined by (4.3). Note that with the initial condition (5.1), the final point (x(t),k(t)) is

different for each ωτ so that summing (5.8) and (5.9) over τ is not straight forward as it was in the Eulerian
case and may be done analytically via the following construction.

For a given point x, define (xτ
s (t),k

τ
s (t)) with s = 1, ..., sτx for some positive integer s

τ
x as all points with

the following properties:

1. The evolution of (xτ
s (t),k

τ
s (t)) is governed by (3.7) with eigenvalue ωτ

2. kτ
s (0) = ∇S0(xτ

s (0))

3. At final time T , xτ
s (T ) = x

Note that sτx denotes the number of branches in the context of multiple valued solutions so that sτx = 1 before
caustic formation and s

τ
x ≥ 0 after caustic formation (see Figure 4.1 for an illustration in one dimension).

Now the energy density and flux at time T may be expressed in terms of phase space energy density and
phase space flux ((5.17) and (5.18) respectively) as

E
(0)(T,x) =

�

τ

sτx�

s=1

E
τ (T,x,kτ

s (T )) (5.10)

and

F
(0)
j (T,x) =

�

τ

sτx�

s=1

F
τ
j (T,x,k

τ
s (T )) (5.11)

respectively. Finding all the points (xτ
s (t),k

τ
s (t)) which satisfy the above three conditions is not necessarily

easy. Because of this, in Section 5.3 we will introduce a more practical method to obtain energy density and
flux from these so called phase space energy density and phase space flux before and after gτ forms caustics.

Even though we only need to solve (3.7), (5.2) and (5.6) for points on the zero set of gτ , the addition
of the 2d2 coupled ordinary differential equations (ODE) in (5.6) is a significant increase in computation
since this system must be computed along each characteristic curve. For example, Maxwell’s equations has
two twice degenerate eigenvalues [15] so that for one of these eigenvalues, Uτ is a 2 × 2 matrix function.
Thus (5.2) represents 4 coupled ODE and since Maxwell’s equations are in 3 dimensions, (5.4) represents
3 homogeneous ODE making a total of 7 ODE so far. However, (5.6) represents 18 coupled ODE in this
case which brings the total from 7 ODE to 25 ODE more than tripling the time of computation! To avoid
solving this considerable increase in ODE, we present a geometric method next which avoids these 2d2 ODE
completely.

5.2 A Geometric Method

Here we present a method that entirely avoids solving any ODE beyond (3.7) and (5.2). In particular, we will
show that one may use the solution to (3.7) and (5.2) to solve for the vol [∇kgτ (t,x(t),k(t))] term needed
for evaluating both (5.8) and (5.9).

Just as in Section 3.1, define the Hamiltonian flow Ht(x0,k0) which evolves any point in (x0,k0) phase
space forward to time t according the Hamiltonian system (3.7). Also define the pair of coordinates related
by (t,x,k) = (t,Ht(x0,k0)) the determinant of the Jacobian of the transform (t,x0,k0) �→ (t,x,k) is 1.
If one parameterizes the zero set of gτ so that gτ (0,x0(s),k0(s)) = 0, then gτ (t,Ht(x0(s),k0(s))) = 0
parameterizes the zero set for all time. At a fixed time t, denote the Jacobian for the transform Ht as DHt.
Then

∇s

�
x
k

�
= (DHt)∇s

�
x0

k0

�
(5.12)
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and �
[∇x0g

τ (0,x0,k0)]
T

[∇k0g
τ (0,x0,k0)]

T

�
= (DHt)

T

�
[∇xgτ (t,x,k)]T

[∇kgτ (t,x,k)]T

�
. (5.13)

Note that each column vector in ∇s

�
x
k

�
is perpendicular to each column vector in

�
[∇xgτ (t,x,k)]T

[∇kgτ (t,x,k)]T

�

and that each column vector in ∇s

�
x0

k0

�
is perpendicular to each column vector in

�
[∇x0g

τ (0,x0,k0)]
T

[∇k0g
τ (0,x0,k0)]

T

�
.

We seek to establish useful relationships between the vectors appearing in (5.12) and (5.13) and to this end
we prove a few linear algebra results which appear in the Appendix. In light of these results, we note that
these sets of vectors seen in (5.12) and (5.13) match the statement of Theorem 8.2 with α = 2d and β = d

(see the Appendix). Since det(DHt) = 1, we conclude that

vol
�
∇s

�
x
k

��
vol

�
[∇x0g

τ (0,x0,k0)]
T

[∇k0g
τ (0,x0,k0)]

T

�
= vol

�
∇s

�
x0

k0

��
vol

�
[∇xgτ (t,x,k)]T

[∇kgτ (t,x,k)]T

�
. (5.14)

Then Corollary 8.3 (see the Appendix) establishes that

vol (∇sx) vol (∇k0g
τ (0,x0,k0)) = vol (∇sx0) vol (∇kg

τ (t,x,k)) . (5.15)

Now every term in (5.15) except the term vol (∇kgτ (t,x,k)) may be computed exactly or approximately by
simply solving (3.7) on a grid of points so that we obtain an approximation to vol (∇kgτ (t,x,k)) without
evolving ∇kgτ (t,x,k) by the ODE system (5.6)!

We start our computation with the initial grid given by xz(0) = {hz : z1, z2, ..., zd ∈ [−N, ..., N ]} so that
the corresponding points for k are given by kz(0) = ∇S0(xz). For each eigenvalue ωτ define the evolution
of the grid points according to (3.7) to a time t as xτ

z(t) and kτ
z(t). Next solve for U

τ (t,xτ
z(t),k

τ
z(t)) using

using the ODE (5.2). Then by using the initial conditions for gτ given in (3.19), (5.15) may be written as

vol (∇sx)× 1 = 1× vol (∇kg
τ (t,x,k)) (5.16)

so that for each eigenvalue ωτ , the phase space energy density and phase space flux on the grid xτ
z(t) may

be written as

Eτ (t,xτ
z(t),k

τ
z(t)) =

1

2
Tr

�
A(xτ

z(t))
Ũ

τ (t,xτ
z(t),k

τ
z(t))

vol [∇kgτ (t,xτ
z(t),k

τ
z(t))]

�

=
1

2
Tr

�
A(xτ

z(t))
Ũ

τ (t,xτ
z(t),k

τ
z(t))

vol [∇sxτ
z(t)]

� (5.17)

and

Fτ
j (t,x

τ
z(t),k

τ
z(t)) =

1

2
Tr

�
D

j Ũ
τ (t,xτ

z(t),k
τ
z(t))

vol [∇kgτ (t,xτ
z(t),k

τ
z(t))]

�

=
1

2
Tr

�
D

j Ũ
τ (t,xτ

z(t),k
τ
z(t))

vol [∇sxτ
z(t)]

� (5.18)

where Ũ
τ is defined by (4.3) and ∇sxτ

z(t) here may be approximated as the d× d matrix given by

1

2hd

�
xτ
(z1+1,z2,...,zd)

(t)− xτ
(z1−1,z2,...,zd)

(t) · · · xτ
(z1,z2,...,zd+1)(t)− xτ

(z1,z2,...,zd−1)(t)
�
. (5.19)

In summary, for a given eigenvalue ωτ and by use of Theorem 8.2, ∂kig
τ (t,x(t),k(t)) may be approximated

by simply solving the characteristic equations (3.7) on an initial grid xz. But this must be done anyway
to solve U

τ (t,x(t),k(t)), thus the approximation to ∂kig
τ (t,x(t),k(t)) is obtained for free and without

additional computation. Again, in Section 5.3 we will show how to obtain energy density and flux from these
so called phase space energy density and phase space flux before and after gτ forms caustics.
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Remark. We observe that some elements of this geometric method relate to those presented in [10] which
rely on the property of conservation of “charge”, but the equations studied therein are homogeneous scalar
Liouville equations whereas here we have introduced a method for coupled systems of inhomogeneous Liou-
ville equations of the form (3.2) in which “charge” is not conserved. Thus this method is more general than
that in [10].

5.3 Summing Before or After Caustic Formation

We now show how to obtain energy density (2.21) and flux (2.22) from the phase space energy density and
phase space flux defined by (5.17) and (5.18) respectively before or after the formation of caustics.

As in Section 5.2, define an initial mesh xz(0) = {hz : z1, z2, ..., zd ∈ [−N, ..., N ]} so that the correspond-
ing points for k are given by kz(0) = ∇S0(xz). For each eigenvalue ωτ define the evolution of the grid points
according to (3.7) to a time t as xτ

z(t) and kτ
z(t). Then solving for phase space energy density and flux for

the eigenvalue ωτ is given by (5.17) and (5.18). The grid at the final time T given by xτ
z(T ) and kτ

z(T ) is
different in general for each τ . Also for each τ , the phase space energy density and flux at final time T give
by (5.17) and (5.18) are possibly multiple valued. Thus to evaluate the energy density and flux at any x,
first one must fix τ and sum (5.17) and (5.18) over all of branches and second one must sum all these results
over τ . A systematic way to compute this summation is described next.

Define a triangulation of the initial grid xτ
z(0) as Tτ (0) where each member of Tτ (0) is a simplex of

dimension d denoted by its d+ 1 vertices which are members of xτ
z(0). Then denote by Tτ (t) the collection

of simplices who have the corresponding vertices in xτ
z(t). Note that for t > 0, Tτ (t) may not be a proper

triangulation since its simplices may overlap one another (see Figure 4.1 for a one dimensional illustration
and Figure 5.1 for a two dimensional illustration). Further note that such an overlap occurs exactly when
gτ becomes multiple valued. If a point x falls inside of a simplex S ∈ Tτ (t) then since the solution to (5.17)
and (5.18) has been computed at the vertices of S, denote the linear interpolation of phase space energy
density and phase space flux onto the point x relative to the vertices of S as LI[Eτ (t,xτ

z(t),k
τ
z(t)),S,x] and

LI[Fτ
j (t,x

τ
z(t),k

τ
z(t)),S,x] respectively. Then finally one obtains the energy density and flux at the point

x by

E
(0)(T,x) =

�

τ




�

{S∈Tτ (t):x∈S}

LI[Eτ (T,xτ
z(T ),k

τ
z(T )),S,x]



 (5.20)

and

F
(0)
j (T,x) =

�

τ




�

{S∈Tτ (t):x∈S}

LI[Fτ
j (T,x

τ
z(T ),k

τ
z(T )),S,x]



 (5.21)

respectively.
Remark. This triangulation method has been implemented in our numerical examples and some additional
details about this approach can be found in [10].

6 Numerical Results

The following few examples show the effectiveness of the Eulerian and Lagrangian formulations in one and
two dimensions and are based on two model problems shown below.

6.1 One-Dimensional Model Problem

The following model system is one of the most simple one-dimensional systems which has repeated eigenvalues
of the dispersion matrix as well as a nontrivial coupling matrix.

In reference to (1.1) define D
1 = I and A(x) where

A
−1 = RMR

T (6.1)

with
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Figure 5.1: The left plot shows a triangulation on an initial grid of 5 points at t = 0. The right plot shows
the data set at a later time T > 0. At the initial time, the three triangles do not overlap whereas at the later
time, the solution has become multiple valued and the triangles do overlap (in particular, T2 lies completely
inside of T1). To evaluate the energy density, for example, at the point ♦ at time T , observe that the ♦

lies in triangle T1 only. Thus use the energy density at the vertices of T1 to interpolate the value at ♦. To
evaluate the energy density, at the point � at time T , however, observe that the � lies in triangles T1, T2
and T3. Thus one must use the energy density at the vertices of each triangle to interpolate the value at �

three times (once for each triangle) and then sum the results together as indicated by (5.20).

M =




a b b

b a b

b b a



 (6.2)

and

R =




cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 (6.3)

where we assume that 0 < b < a and that a, b, θ are arbitrary function of x. The eigenvalues and eigenvectors
of the dispersion matrix L orthonormal with respect to �·, ·�A are






ω1 = k(a− b) b1,1 =
√
a− bRv1,1

b1,2 =
√
a− bRv1,2

ω2 = k(a+ 2b) b2 =
√
a+ 2bRv2

(6.4)

where 




v1,1 = 1√
2
(1, 0,−1)

v1,2 = 1√
6
(1,−2, 1)

v2 = 1√
3
(1, 1, 1).

(6.5)

The coupling matrix for ω1 is

N
1 =

�
0 (a−b)θ�

√
3

−
(a−b)θ�

√
3

0

�
. (6.6)
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Figure 6.1: (Example 1) Energy density and energy flux of the one-dimensional model problem comparing
the full solution to our new method’s solution in the high frequency limit.

Example 1

In this example we demonstrate the convergence of the full solution of (1.1) to the solution obtained via our
new method in the high frequency limit (ε → 0). We take the following parameters

• θ(x) = 10 sin(2πx)

• a = 2, b = 1

• domain: x ∈ [−.5, .5]

• boundary conditions: periodic in x and not needed in k

• Initial conditions u0(x) = (e−40 tan(πx)2
, 0, 0), S0(x) = x, ε = 1/(40π) and ε = 1/(100π)

• Final time: tf = .05

Remark. Boundary conditions are not needed in k because of the reduction of dimension we derived in
Section 4.
The full solution on the original system was computed using the Lax-Wendroff scheme and the solution from
our new method was computed in the Eulerian frame using the simplifications outlined in Sections 3 and 4.
The results are shown in Figure 6.1 where the Lax-Wendroff solution is seen to be converging to our new
method’s solution as ε decreases.

Example 2

Next we show an example where a, b are no longer constants and take the following parameters:

• θ(x) = sin(2πx)

• a = 2(.5 + .4 sin(4πx)), b = (.5 + .4 sin(4πx))

• domain: x ∈ [−.5, .5]

• boundary conditions: periodic in x and not needed in k

• Initial conditions u0(x) = (e−40 tan(πx)2
, 0, 0), S0(x) = x, � = 1/(40π)
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Figure 6.2: (Example 2) Energy density of the one-dimensional model problem with non-constant a and b

functions.

• Final time: tf = .05

The full solution on the original system was computed using the Lax-Wendroff scheme while our new method’s
solution was computed in the Eulerian frame using the simplifications outlined in Section 3. The results
(which show as good agreement) are shown in Figure 6.2.
Remark. We also computed Example 1 and 2 with the Lagrangian formulation of our method using the
interpolation described in Section 5.3 and we obtained similar results.

6.2 Two-Dimensional Model Problem

The following model system is a two-dimensional analogue of Maxwell’s equations which are shown in [15].
In reference to (1.1) define

A =





1/a 0 0 0
0 1/a 0 0
0 0 1/b 0
0 0 0 1/b



 , D
1 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



 , D
2 =





0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



 (6.7)

where a, b > 0 are arbitrary functions of x. The dispersion matrix is

L(x,k) =





0 0 ak1 ak2

0 0 −ak2 ak1

bk1 −bk2 0 0
bk2 bk1 0 0



 (6.8)

The eigenvalues and eigenvectors of the dispersion matrix orthonormal with respect to �·, ·�A are





ω1 = −
√
ab

�
k
2
1 + k

2
2 b1,1 =

�
−
�

a
2

k2√
k2
1+k2

2

,−
�

a
2

k1√
k2
1+k2

2

, 0,
�

b
2

�

b1,2 =

�
−
�

a
2

k1√
k2
1+k2

2

,
�

a
2

k2√
k2
1+k2

2

,

�
b
2 , 0

�

ω2 =
√
ab

�
k
2
1 + k

2
2 b2,1 =

��
a
2

k2√
k2
1+k2

2

,
�

a
2

k1√
k2
1+k2

2

, 0,
�

b
2

�

b2,2 =

��
a
2

k1√
k2
1+k2

2

,−
�

a
2

k2√
k2
1+k2

2

,

�
b
2 , 0

�

(6.9)
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The coupling matrix for ω1 is

N
1 =




0 1

2

�
b
a

1√
k2
1+k2

2

(ax1k2 − ax2k1)

−
1
2

�
b
a

1√
k2
1+k2

2

(ax1k2 − ax2k1) 0



 (6.10)

and N
2 = −N

1.
Remark. When k = 0 in the one and two-dimensional model problems, the multiplicity of the eigenvalues
changes; This violates the assumption we made when we developed our new method. This issue is resolved
by the fact that in solving via our new method, g(t,x,k) given by (3.19) is initialized with zero set away
from the origin so conservation of energy of Hamiltonian flows guarantees that this zero set stays away from
the origin for all time. Thus even though the origin may be part of the computational domains of (3.18) and
(3.19), it will not be used for evaluating the physical observables via (2.7) and (2.8). [6] also discusses this
issue in further detail.

Example 3

In this example, we show a solution to the two-dimensional model problem computed with the Lagrangian
formulation of our new method outlined in Section 5. Since our new method is tailored to compute multiple
valued observables, we choose an example where the solution to (3.4) becomes multiple valued; something
that never happens in one dimension. We take the following parameters:

• a(x1, x2) = .5 + .4 cos(4πx1) sin(4π(x2)), b(x1, x2) = 1

• domain: (x1, x2) ∈ [−.5, .5]× [−.5, .5]

• boundary conditions: periodic in x1 and x2.

• Initial conditions u0(x1, x2) = (e−5(tan(πx1)
2+tan(π(x2+.05))2)

, 0, 0, 0), S0(x1, x2) = x1 + x2

• Final time: tf = .08, .16, .24, .32

The result is shown in Figure 6.3 where we have chosen to plot the energy density. The two components of
the flux for the final time t = .32 are shown in Figure 6.4. A three-dimensional projection of the zero set of
g1 corresponding to ω1 at the final time is shown in Figure 6.5, as well as a contour plot of the same surface.
The contour plot shows the multiple valued regions in the x space which correspond to the caustics appearing
in Figure 6.3. A reference solution with ε = 1/(80π) was computed and found to have a good agreement
with our method until time neared the caustic formation time t = .24 which is what we expect. Computing
a reference solution with a standard finite difference method for ε = 1/(80π) after caustic formation was not
computationally feasible due to heavy diffusion of these methods for this example. Thus we computed, for
sake of comparison, the exact solution for t = .32 and ε = 1/(80π) using a Gaussian beam type method which
we will introduce in a forthcoming paper. The result may be seen in Figure 6.6 where one sees interference
fringes appearing in the multiple valued region of the solution. As ε shrinks, the interference fringes in this
region is expected to limit weakly to the solution shown in Figure 6.3.
Remark. Gaussian beam methods have been developed to solve linear PDEs with high frequency solutions
(such as the Schrödinger equation and the wave equation) by deconstructing an initial condition into localized
“Gaussian beam” solutions which follow the characteristic curves of the PDE as they evolve in time. At the
final time, the Gaussian beam solutions are summed up to reconstruct the final solution [4, 13, 14]. Some
advantages of this method, when it can be applied, are that it preserves phase information and maintains good
accuracy near regions where caustics have appeared in the high frequency limit. Gaussian beam methods,
however, cost more than the geometric optics based methods such as the one studied in this paper since they
need a mesh of size O(

√
ε) while the mesh size for the latter is independent of ε. Although we have found

that Gaussian beams are applicable to symmetric hyperbolic systems with polarized waves, the particulars
of this method are non-trivial and will be discussed fully in a forthcoming paper. For recent work regarding
Gaussian beams applied to the Schrödinger equation, see [8].
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Figure 6.3: (Example 3) Energy density plotted at different times. Caustics form around t = .24.

17



−0.2 −0.1 0 0.1 0.2 0.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x
1

x 2
Flux t=.32 (x

1
 Component)

 

 

−1

−0.5

0

0.5

1

1.5

2

−0.2 −0.1 0 0.1 0.2 0.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x
1

x 2

Flux t=.32 (x
2
 Component)

 

 

−1

−0.5

0

0.5

1

1.5

2

Figure 6.4: (Example 3) The two components of energy flux at time t = .32.

Figure 6.5: (Example 3) Zero set projection of the g1 function corresponding to ω1. On the left, the multiple
valued surface is projected into three dimensions by plotting x1, x2 versus k1. On the right, the same surface
is represented as a contour plot with axis limits set equal to those in Figure 6.3 and Figure 6.4 for comparison.
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Figure 6.6: (Example 3) Energy density at t = .32 with ε = 1/(80π) computed with Gaussian beams.

7 Conclusion

We have extended the singularity decomposition idea in [6] to the case of high frequency solutions of symmet-
ric hyperbolic systems with repeated eigenvalues of the dispersion matrix in both Eulerian and Lagrangian
frameworks. Such problems arise in many physically important problems such as Maxwell’s equations and
the elastic wave equations. Furthermore we introduce a highly efficient Lagrangian method with a geometric
reduction of computational complexity to the numerical evaluation of the energy and energy flux. Numerical
examples in both one and two space dimensions are given to show the validity of the new computational
methods.

8 Appendix: A Few Linear Algebra Identities

Lemma 8.1. Suppose M is an α× α matrix with det(M) �= 0. Write M and M
−1 in block form as

M =

�
A B

C D

�
and M

−1 =

�
Ã B̃

C̃ D̃

�
(8.1)

where A and Ã are β × β matrices for some β < α. Then

det(A) = det(M) det(D̃). (8.2)

Proof. Examine the two cases:
Case: Assume that det(A) = 0. Then there exists va �= 0 where Ava = 0 so take

�
A B

C D

��
va

0

�
=

�
0

Cva

�
(8.3)

where Cva �= 0 since det(M) �= 0. Then by definition
�

Ã B̃

C̃ D̃

��
0

Cva

�
=

�
B̃Cva

D̃Cva

�
=

�
va

0

�
(8.4)

which implies that det(D̃) = 0 since Cva �= 0. Thus (8.2) holds in this case.
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Case: Assume that det(A) �= 0. Then note first that

det

�
A B

C D

�
= det

��
A 0
C I

��
I A

−1
B

0 D − CA
−1

B

��
= det(A) det(D − CA

−1
B) = det(M) (8.5)

where we point out for the sake of the following steps that (8.5) implies det(D − CA
−1

B) �= 0. Then, from
the block matrix inversion formula:

�
A B

C D

��
−A

−1
B(D − CA

−1
B)−1

(D − CA
−1

B)−1

�
=

�
0
I

�
. (8.6)

In particular D̃ = (D − CA
−1

B)−1 so that

det(M) det(D̃) = det(M) det((D − CA
−1

B)−1) =
det(M)

det(D − CA−1B)
= det(A). (8.7)

Thus (8.2) again holds.

Theorem 8.2. Given β,α ∈ N with β < α, let {v1, ...,vβ ,vβ+1, ...,vα} and {w1, ...,wβ ,wβ+1, ...,wα} be
sets of linearly independent vectors in Rα where

wi ·wj = 0 for all i ∈ {1, ...,β}, j ∈ {β + 1, ...,α} . (8.8)

Let M be an α× α matrix with det(M) �= 0 and where

vi = Mwi for all i ∈ {1, ...,β} (8.9)

and
wj = M

Tvj for all j ∈ {β + 1, ...,α}. (8.10)

Then
vol(v1, ...,vβ)vol(wβ+1, ...,wα) = |det(M)| vol(vβ+1, ...,vα)vol(w1, ...,wβ) (8.11)

Proof. Because of (8.8), without loss of generality we may choose an orthonormal basis wherein

(w1, ...,wβ) =

�
W1

0

�

α×β

and (wβ+1, ...,wα) =

�
0
W4

�

α×(α−β)

. (8.12)

where W1 is a β × β matrix and W4 is an (α − β) × (α − β) matrix. The matrices M and M
−1 may be

written in bock form as
M =

�
A B

C D

�
and M

−1 =

�
Ã B̃

C̃ D̃

�
(8.13)

where A and Ã are β × β matrices. Then from the definitions,

(v1, ...,vβ) =

�
AW1

CW1

�
and (vβ+1, ...,vα) =

�
C̃

T
W4

D̃
T
W4

�
. (8.14)

Next note that
M

T
M =

�
A

T
A+ C

T
C A

T
B + C

T
D

B
T
A+D

T
C B

T
B +D

T
D

�
(8.15)

and
M

−1
�
M

−1
�
T =

�
ÃÃ

T + B̃B̃
T

ÃC̃
T + B̃D̃

T

C̃Ã
T + D̃B̃

T
C̃C̃

T + D̃D̃
T

�
(8.16)

so that since det(MT
M) = det(M)2 Lemma 8.1 gives that

det(AT
A+ C

T
C) = det(M)2 det(C̃C̃

T + D̃D̃
T ). (8.17)
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Then

vol(v1, ...,vβ)vol(wβ+1, ...,wα) = vol
�

AW1

CW1

�
vol

�
0
W4

�

=
�
det(WT

1 ATAW1 +W
T
1 CTCW1) |det(W4)|

=
�
det(ATA+ CTC) |det(W1)| |det(W4)|

= |det(M)|
�
det(C̃C̃T + D̃D̃T ) |det(W1)| |det(W4)|

= |det(M)|
�
det(WT

4 C̃C̃TW4 +W
T
4 D̃D̃TW4) |det(W1)|

= |det(M)| vol
�

C̃
T
W4

D̃
T
W4

�
vol

�
W1

0

�

= |det(M)| vol(vβ+1, ...,vα)vol(w1, ...,wβ)

(8.18)

which proves the result.

Corollary 8.3. Let wi and vi be the vectors given in Theorem 8.2. Written in block form they become

(w1, ...,wβ) =

�
W1

W2

�

α×β

, (wβ+1, ...,wα) =

�
W3

W4

�

α×(α−β)
(8.19)

and
(v1, ...,vβ) =

�
V1

V2

�

α×β

, (vβ+1, ...,vα) =

�
V3

V4

�

α×(α−β)

, (8.20)

where W1 and V1 are both β × β matrices while W4 and V4 are both (α− β)× (α− β). Then

vol(V1)vol(W4) = |det(M)| vol(V4)vol(W1). (8.21)

Proof. By orthogonality
W

T
1 W3 +W

T
2 W4 = 0. (8.22)

If vol(W1) = vol(W4) = 0, (8.21) holds trivially. Thus assume vol(W1) �= 0 so that

vol(W4)vol
�

W1

W2

�
= |det(W4)|

�
det(WT

1 W1 +W
T
2 W2)

= |det(W4)| |det(W1)|
�

det(I + (W−1
1 )TWT

2 W2W
−1
1 )

= |det(W4)| |det(W1)|
�

det(I +W2W
−1
1 (W−1

1 )TWT
2 )

= |det(W1)|
�
det(WT

4 W4 +W
T
4 W2W

−1
1 (W−1

1 )TWT
2 W4)

= |det(W1)|
�
det(WT

4 W4 +W
T
3 W1W

−1
1 (W−1

1 )TWT
1 W3)

= |det(W1)|
�
det(WT

4 W4 +W
T
3 W3)

= vol(W1)vol
�

W3

W4

�

(8.23)

where the third line of (8.23) follows from Sylvester’s determinant theorem and the fifth line follows from

(8.22). Note that linear independence implies that vol
�

W1

W2

�
�= 0 and vol

�
W3

W4

�
�= 0 so that (8.23)

gives vol(W4) �= 0. Since similar steps give the same result as (8.23) in the case where vol(W4) �= 0, one gets
that vol(W1) �= 0 iff vol(W4) �= 0. By first noting that

vi · vj = 0 for all i ∈ {1, ...,β}, j ∈ {β + 1, ...,α} (8.24)

is also guaranteed by the statement of Theorem 8.2, an equivalent result to (8.23) then holds for the vi

vectors so that in summary

vol(W4)vol
�

W1

W2

�
= vol(W1)vol

�
W3

W4

�
and vol(V4)vol

�
V1

V2

�
= vol(V1)vol

�
V3

V4

�
. (8.25)
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Finally, from Theorem 8.2

vol
�

V1

V2

�
vol

�
W3

W4

�
= |det(M)| vol

�
V3

V4

�
vol

�
W1

W2

�
. (8.26)

Multiplying both sides of (8.26) by vol(V1)vol(W4) and using (8.25) gives

vol(V1)vol(W4)vol
�

V1

V2

�
vol

�
W3

W4

�
= |det(M)| vol(V4)vol(W1)vol

�
V1

V2

�
vol

�
W3

W4

�
(8.27)

which after cancelation gives (8.21).
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