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Abstract

We present a two-dimensional time-dependent semiclassical transport model for
mixed state scattering with thin quantum films. The stationary Schrödinger equa-
tion is solved in the quantum barrier to obtain the scattering coefficients used to
supply the interface condition that connects two classical domains. The solution
in the classical regions is solved using a particle method and interface condition
combined with the Hamiltonian-preserving scheme. The overall cost is roughly the
same as solving a classical barrier. We construct a numerical method based on this
semiclassical approach and validate the model using two numerical examples.

Key words: multiscale method, semiclassical limit, Liouville equation, quantum
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1 Introduction

In [11,20], we developed a semiclassical model for one-dimensional thin quan-
tum barriers for mixed-state dynamics. In the present work we extend the
results from the first paper to higher dimensions, discuss the numerical im-
plementation of the model, and demonstrate convergence to the semiclassical
limit. Simulation of particles interacting with quantum structures is difficult
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when the system is largely classical with localized quantum features since
resolution of the smaller scale is typically required to ensure consistency of
the solution. This is because changes in the potential at the quantum scale
are manifested as discontinuities on the classical scale. So, even when one is
only interested in the macroscopic behavior, one may be forced to resolve the
quantum dynamics. Of course, computational difficulties are compounded in
higher dimensions.

A primary motivation is modeling electron transport in plasmas or semicon-
ductors across nanostructures, where the quantum phenomena in localized re-
gions cannot be ignored. While quantum mechanics certainly applies in the en-
tire domain, it is computationally more efficient to take a multiscale approach
using classical mechanics away from the quantum interface via a domain de-
composition technique. Ben Abdallah, Gamba and Degond introduced such a
model in [3–5], in which an interface condition coupled the classical and the
quantum regions. This work is an expansion of our previous one-dimensional
model, which itself is an extension of the Hamiltonian-preserving finite-volume
method introduced by Jin and Wen [12–14], for solving the multi-dimensional
Liouville equation with a classical discontinuous potential. The principal idea
is to build an interface condition that properly incorporates partial transmis-
sion and reflection information at the barrier into the numerical flux. Whereas
in one-dimensional case, for which we developed the finite-volume numerical
scheme, in higher dimensions it is advantageous to use a mesh-free particle
method to mollify the so-called curse of dimensionality.

The quantum barrier that separates the two classical regions differs from a
classical barrier in that a quantum wave can tunnel through, be partially
transmitted and reflected by, and resonate inside of a barrier. Our idea is to
solve the Schrödinger equation insider the quantum barrier to generate scat-
tering coefficients and then use that information in the interface condition to
solve the classical Liouville equation through the barrier. When the quantum
barrier is thin (on the order of a de Broglie wavelength), solving the stationary
Schrödinger equation suffices. So, the first step is merely preprocessing. Once
the scattering coefficients are generated, a particle method based on classical
mechanics may be used. Hence, the approach, which efficiently handles a thin
quantum barrier, has a computational cost similar to a classical simulation in
the entire device.

The interested reader is encouraged to see [11,20] and references therein for
a more complete discussion of the background of the semiclassical limit and
von Neumann equation.
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2 Particle behavior at a quantum barrier

To model quantum dynamics, we consider a top-down multiscale approach
by considering the quantum effects as local corrections to the global classical
particle dynamics. In order to isolate and simplify the problem, we make the
following assumptions/limitations:

(1) The effective width of a barrier is O(ε). On the classical scale, this means
that we may approximate the barrier as having zero width; on the quan-
tum scale, this means that we may typify it as a single scattering center
and we may neglect particle dwell time in the quantum region in the
semiclassical limit.

(2) The distance between neighboring barriers is O(1) and hence each barrier
may be considered independently.

(3) The change in the potential ∇V (x) is O(1) except at quantum barriers.
(4) The coherence time is sufficiently short and therefore we may neglect

interference away from the barrier.

We begin with the classical Hamiltonian system

d

dt
x = ∇pH(x,p),

d

dt
p = −∇xH(x,p). (1)

where the Hamiltonian H(x,p) = 1
2
m−1|p|2 +V (x) gives the total energy and

x ∈ R
d denotes the position, p ∈ R

d denotes the momentum, and m is the
effective mass. Let a bicharacteristic of the function H(x,p) be the integral
curve ϕ(t) = (x(t),p(t)). Note that ϕ(t) may not be defined for all time t ∈ R.
When H(ϕ(t)) is differentiable,

d

dt
H(ϕ(t)) =

d

dt
x · ∇xH +

d

dt
p · ∇pH = 0 (2)

from which it follows that the Hamiltonian is constant along any bicharacter-
istic ϕ(t), i.e.,

H(ϕ(t)) = 1
2
m−1|p|2 + V (x) = const. (3)

Condition (2) may be interpreted as the strong form of the conservation of en-
ergy, while condition (3) may be interpreted as the weak form. If the potential
V (x) is discontinuous or not defined in some region Q ∈ R

d, the Hamiltonian
system fails to have a global solution.

By the Liouville condition, the probability distribution f(x,p, t) of a particle
is merely advected along the bicharacteristics. Hence from (2), the Liouville
equation is

d

dt
f(x,p, t) =

∂

∂t
f(x,p, t) + m−1p · ∇xf(x,p, t)−∇xV (x) · ∇pf(x,p, t) = 0.
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The key idea behind Hamiltonian preserving schemes [12–14] is to (a) solve
the Liouville equation locally; (b) use the weak form of the conservation of
energy to connect the local solutions together; and (c) incorporate a physi-
cally relevant interface condition to choose the correct solution. Let L be the
locally defined set of bicharacteristics of the function H(x,p). By requiring
the Hamiltonian to be constant along trajectories, we create an equivalence
class of bicharacteristics [ϕ] = { ϕ∗ ∈ L | H(ϕ∗) = H(ϕ) }.

In two dimensions there are a continuum of momenta p(θ) = (p cos θ, p sin θ)
associated with a Hamiltonian H(x,p) = E for fixed position x. Along a
local bicharacteristic the momentum of a particle is uniquely determined by
continuity of the potential. But across a quantum barrier, where potential
is discontinuous and the gradient of the potential is classically undefined, the
continuation of the momenta is not unique. In order to match bicharacteristics,
we use information at the quantum scale to construct an interface condition.

Generating a global bicharacteristic is a matter of connecting equivalent bichar-
acteristics at the barriers. Consider the incident and scattered trajectory lim-
its, (xin,pin) and (xout,pout), on a barrier. From equation (3) the magnitude
of the momenta for reflected particles is unchanged

|pout| = |pin| (4a)

while the magnitude for the transmitted particles is

|pout| = |pin|
√

1 + 2m[V (xin) − V (xout)]/|pin|2 (4b)

unless |pin|2 < 2m[V (xout)− V (xin)], for which the transmitted momentum is
imaginary and the particle is reflected. In order to resolve the nonuniqueness,
we require an additional interface condition which we derive from the Schrö-
dinger equation across the interface. By interpreting a wave function as a
statistical ensemble of a large number of particles [19], we have the interface
condition

f(xin, |pin|, θin) =
∫ π/2

−π/2
R(θout; |pin|, θin)f(xout, |pout|, θout) dθout + (5)

∫ π/2

−π/2
T (θout; |pin|, θin)f(xout, |qout|, θout) dθout.

Here, R(θout; |pin|, θin) is the probability of a particle with momentum |pin|
incident at angle θin being reflected at a reflection angle θout; T (θout; |pin|, θin)
is the probability of a particle incident with momentum |pin| at incident angle
θin being transmitted at a refraction angle θout; and |q|2 = |p|2 − 2m∆V .
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By considering the time-reversibility of the scattering process, we may formu-
late an alternative but equally valid interface condition

f(xout, |pout|, θout) =
∫ π/2

−π/2
R(θin; |pout|, θout)f(xin, |pin|, θin) dθin + (6)

∫ π/2

−π/2
T (θin; |pout|, θout)f(xin, |qin|, θin) dθin

To differentiate between the two interface conditions, we will refer to (6) as
a pull interface condition and (5) as a push interface condition. The choice
between the two equivalent interface conditions is an issue of implementation.
An Eulerian method, such as the finite-volume method developed in [11],
combines information by pulling information from the appropriate bicharac-
teristics upwind of the barrier. A Lagrangian method, such as the particle
method, pushes the information to the appropriate bicharacteristics located
downwind of the barrier.

We assume that the probability of a particle being absorbed by the barrier is
zero and hence

∫ π/2

−π/2

∫ π/2

−π/2
T (ϕ; |p|, θ) + R(ϕ; |p|, θ) dϕ dθ = 1

for all |p|.

Every interaction with a barrier potentially introduces a reflected and trans-
mitted solution resulting in an additional bicharacteristic. We may enumerate
the solutions and define a bicharacteristic solution to the Liouville equation
as

fk(x,p, t) =
∫

f(x′,p′, 0)ϕk(x,p, t;x′,p′) dx′ dp′

where
ϕk(x,p, t;x′,p′) = δ(x(t) − x′)δ(p(t) − p′)

is the kth global bicharacteristic for H(x′,p′). By linearity of the Liouville
equation we may consider the general solution as the superposition of the
bicharacteristic solutions

f(x,p, t) =
∑

k

sk(H(x,p))fk(x,p, t). (7)

where sk(H(x,p)) is product of reflection and transmission probabilities along
the kth bicharacteristic.

Where the potential is discontinuous, one may treat the gradient of the po-
tential as an impulse force. However, the direction of such a force may not
be well-defined at the classical scale. If the potential is discontinuous both in
the direction normal to the barrier and also along the length of the barrier,
we must use the solution at the quantum scale to determine the appropriate
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scattering angles. We shall refine this idea when we discuss the quantum scale
solution in Section 3.1. If the semiclassical potential V (x, y) is discontinuous
in the direction normal to the quantum barrier curve ΓQ but is continuous
along the length of ΓQ, we take the impulse force normal to the barrier curve.
In this case, one has as a consequence of conservation of the Hamiltonian that
the change in momentum for a reflected particle is

∆p = −2(pin · n̂)n̂ (8)

where n̂ is the unit normal to the barrier. For a transmitted particle, the
change in momentum is

∆p = (
√

|pin · n̂|2 + 2m∆V − pin · n̂)n̂. (9)

One may relate the angle of refraction to the angle of incidence (defined with
respect to the unit normal) by using the conservation of the Hamiltonian to
derive an expression analogous to Snell’s law of geometric optics

sin θ2 = sin θ1/
√

1 + 2m(V1 − V2)/|p|2

where θ1 is the angle of incidence, θ2 is the angle of refraction, V1 is the
potential on the incident side and V2 is the potential on the scattered side.
From this expression, one may note that when the angle of incidence is greater
(shallower) than a critical angle

θ1 > θc ≡ cos−1
(

√

2m(V2 − V1)/|p|2
)

(10)

the particle is totally reflected by the barrier.

In the following sections, we present the particle method which solves the
semiclassical Liouville equation. The algorithm consists of an initialization
routine and a Liouville solver. During initialization, we determine transmission
and reflection coefficients as a function of the incident momentum along the
interface from both sides. To do this, we compute the solution to the time-
independent Schrödinger equation. For the semiclassical model, we consider
the quantum barrier as a curve ΓQ separating two classical regions C1 and C2.
Because the potential may change along the length of the curve, we compute
the transmission and reflection coefficients locally at each point along the
curve. Consider a point x0 ∈ ΓQ and define the local coordinates (x, y) where
the x-direction is normal to ΓQ and the y-direction is parallel to ΓQ at x0. By
assumption, the width of the quantum barrier is O(ε) in the x-direction and
the length of the quantum barrier is O(1) in the y-direction. Formally, we will
associate the semiclassical quantum barrier ΓQ with a region Q bordered by
the classical regions C1 and C2. By assumption the gradient of the potential
V (x, y) in classical regions is O(1).
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Consider the two-dimensional time-independent Schrödinger equation

− ε2

2m

(

∂2

∂x2
+

∂2

∂y2

)

ψε(x, y) + V ε(x, y)ψε(x, y) = Eψε(x, y). (11)

By rescaling x and y by ε (x̃ = εx and ỹ = εy), the Schrödinger equation (11)
may locally be expressed as

− 1

2m

(

∂2

∂x̃2
+

∂2

∂ỹ2

)

ψ(x̃, ỹ) + V (x̃, ỹ)ψ(x̃, ỹ) = Eψ(x̃, ỹ). (12)

In the limit as ε → 0, we may regard C1 and C2 as the semi-infinite regions
C1 = { (x, y) | x < x1 } and C2 = { (x, y) | x > x2 } separated by an
infinite strip Q = { (x, y) | x1 ≤ x ≤ x2 } for some x1 and x2. We solve the
time-independent Schrödinger equation over Q using information in C1 and
C2 to generate transmission and reflection coefficients. We are interested in
computing the transmission and reflection coefficients locally, so variations in
the potential that are on the classical O(1) length scale in the y-direction may
be neglected at the quantum O(ε) length scale. Hence, we define

V (x, y) =















V1, (x, y) ∈ C1

VQ(x, y), (x, y) ∈ Q
V2, (x, y) ∈ C2

(13)

where V1 and V2 are constants.

3 Implementation in two dimensions

Multiple dimensions present several challenges to computing both the quan-
tum von Neumann equation and the semiclassical limit. Such obstacles are
the primary motivation for the development of a computationally efficient
and tractable semiclassical model. The von Neumann model for d-dimensional
dynamics requires a 2d-dimensional density matrix. Whereas one may need
15MB of computer memory to compute one-dimensional dynamics for the
von Neumann equation over a unit interval with the ε = 500−1 using a direct
method, one would need 15TB of computer memory to compute the equivalent
two-dimensional dynamics using the same method. Aside from memory, a two-
dimensional solution needs a million times as many floating point operations
as the equivalent one-dimensional solution. While an indirect method of solu-
tion mitigates the memory concern by solving a large number of d-dimensional
Schrödinger equations independently, such an approach is impractical for gen-
eral initial distributions.
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The so-called curse of dimensionality also afflicts the numerical solution to the
semiclassical model. One could solve most one-dimensional problems with a
typical computer using a dense, concurrent finite volume approach. In higher
dimensions, such an approach in general is simply not effective. Consider
the solution to a two-dimensional problem, which requires four dimensions
in phase space. Even a rather coarse mesh using an array of 1004 floating-
point numbers requires 380MB of memory. Since we also require an additional
swap array, we find that 1004 is a practical limit for brute calculation. Because
a problem often requires at least 100 grid-points over a unit interval to resolve
details, the finite-volume method developed in [11] is ineffective for general
multi-dimensional semiclassical problems. A sparse matrix algorithm may al-
leviate some of the difficulty [10]; however, such an approach is viable only
when the density information is sufficiently local (such as a front), which is
typically an exception for von Neumann solutions. In addition, sparse matri-
ces introduce numerical record-keeping issues further reducing the numerical
efficiency of the approach.

It is because of the above reasons that we consider a mesh-free, particle method
as an effective alternative. For non-interacting particles, the bicharacteristic
solutions may be computed independently thereby eliminating the memory
constraints. While a finite-volume approach requires a concurrent solution us-
ing a dense array, a particle method algorithm may be easily adapted for
parallel computation on a distributed computer cluster reducing the simula-
tion run time. Furthermore, because other related physical models, such as for
plasmas, often rely on particle methods for simulation it is quite natural to
use such an approach for thin quantum barriers.

While mitigating one set of challenges, the particle method introduces an-
other set. Since the bicharacteristics are used to track information directly,
divergence of the bicharacteristics is problematic for all but trivial examples.
Because of this one must periodically reconstruct the data. Furthermore, re-
construction of the data is difficult in regions where the particles are sparse
and smoothing techniques may required to mollify the numerical solution.

The focus of the remainder of this section is to develop an efficient numerical
discretization of the semiclassical model. Although we limit the discussion
to two-dimensional physical space, the extension to three dimensions follows
using a similar treatment. In two-dimensional space, we consider the quantum
barrier as a smooth one-dimensional curve ΓQ separating two classical regions
C1 and C2. In addition to changing across the width of the barrier, the potential
may also change along the length of the barrier at either the classical O(1)
length scale or a quantum O(ε) length scale. Hence, in the semiclassical limit
not only is the potential discontinuous at the barrier in a direction normal to
the barrier curve, but the potential may also be discontinuous along the barrier
curve. We prescribe an interface condition to match local solutions in order
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to construct the global bicharacteristic solution. The interface condition for
two-dimensional dynamics, potentially joins a continuum of bicharacteristics
computed using the time-independent Schrödinger equation.

3.1 Routine initialization

We now discuss the quantum transmitting boundary method [4,17] as a means
of determining the reflection and transmission coefficients of the thin two-
dimensional quantum barrier. The quantum transmitting boundary method is
used to solve the time-independent Schrödinger equation in a region with open
boundary conditions. By using continuity of the solution and its derivative at
the boundaries of an open quantum system in conjunction with a solution with
undetermined coefficients in the exterior region, one formulates a boundary
value problem for the interior region. The unknown coefficients are eliminated
from the problem by combining the Dirichlet boundary conditions with the
Neumann boundary conditions to get mixed boundary conditions. Once the
solution in the interior is known, it may be used on boundaries to recover the
unknown coefficients.

We adapt the approach proposed by Lent and Kirkner [17]. Consider the
solution to the local time-independent Schrödinger equation (12). Here, and
in the sequel, the tildes on x and y are dropped in order to simplify notation.
Without loss of generality, we take the potential in region C1 to be zero (V1 ≡
0). In this case, the Hamiltonian E = p2

1/2m = p2
2/2m + V2 where p1 is the

magnitude of the momentum of a particle in region C1 and p2 is the magnitude
of the momentum of a particle in region C2.

The solution to the local Schrödinger equation (12) may be written as the
piecewise function

ψ(x, y) =















ψ1(x, y), (x, y) ∈ C1

ψQ(x, y), (x, y) ∈ Q
ψ2(x, y), (x, y) ∈ C2

for which the components ψ1(x, y), ψQ(x, y) and ψ2(x, y) are related by appro-
priate matching conditions. In regions C1 and C2, where the potential V (x, y)
is constant, the Schrödinger equation simplifies to the Helmholtz equations

−∆ψj(x, y) = p2
jψj(x, y), j = 1, 2 (14)

which have the general solutions

ψj(x, y) =
∫ π

−π
aj(θ)e

ipj ·(x cos θ+y sin θ) dθ, j = 1, 2. (15)
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The current density is defined as J(x, y) = m−1Im
(

ψ(x, y)∇ψ(x, y)
)

where m

is the effective mass. For a directional component of the wavefunction ψ(x, y)
is given by

aj(θ)e
ipj ·(x cos θ+y sin θ), j = 1, 2,

the directional contribution to average current density along the y-axis is

Jj(x, y, θ) = |aj(θ)|2pj(cos θ, sin θ) j = 1, 2. (16)

So, the magnitude of the particle flux through a point in region C1 at an angle
θ is p1|a1(θ)|2 and the magnitude of the particle flux through a point in region
C2 at an angle θ is p2|a2(θ)|2.

Consider particle initially in region C1 that strikes the barrier from the left
with momentum, p1 at an angle of incidence θin. The particle scatters with
momentum p1 into region C1 if reflected and momentum p2 into region C2 if
transmitted. In this case, the solutions to equations (14) are

ψ1(x, y) = eip1((x−x1) cos θin+y sin θin) +
∫ π/2

−π/2
r(θ)e−ip1((x−x1) cos θ+y sin θ) dθ (17a)

ψ2(x, y) =
∫ π/2

−π/2
t(θ)eip2((x−x2) cos θ+y sin θ) dθ. (17b)

where r(θ) and t(θ) are some yet unknown scattering distributions. The proba-
bility that a particle is scattered at some angle equals the ratio of the scattered
current density to the incident current density. From conservation of momen-
tum,

p1(cos θin, sin θin) =
∫ π/2

−π/2
|r(θ)|2p1(cos θ, sin θ) dθ+

∫ π/2

−π/2
|t(θ)|2p2(cos θ, sin θ) dθ.

Hence, the reflection and transmission probability distributions over the sector
(θ − 1

2
dθ, θ + 1

2
dθ) for incident (p1, θin) are

dR(θ) = |r(θ)|2 cos θ

cos θin

dθ and dT (θ) = |t(θ)|2 p2 cos θ

p1 cos θin

dθ. (18)

While the form of the solutions (17) is convenient for discussing scattering
solutions, it is inconvenient for actually determining them since the unknows
r(θ) and t(θ) are coupled through the integrals. The Schrödinger solution in
region Q is a boundary value problem with boundaries parallel to the y-axis.
By expressing the solutions (17) in terms of the y-components of the momenta,
we may rewrite them in the equivalent forms

ψ1(x, y) = eiη1(ξin)(x−x1)eiξiny +
∫ ∞

−∞
s1(ξ)e

−iη1(ξ)(x−x1)e−iξy dξ, (19a)
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with ξ = p1 sin θ and

ψ2(x, y) =
∫ ∞

−∞
s2(ξ)e

iη2(ξ)(x−x2)eiξy dξ, (19b)

with ξ = p2 sin θ. The x-components of the momenta are

η1(ξ) =
√

p2
1 − ξ2 and η2(ξ) =

√

p2
2 − ξ2;

the complex scattering coefficients are

s1(ξ) =







r(θ)p1/ cos θ, if |ξ| ≤ p1

0, otherwise
and s2(ξ) =







t(θ)p2/ cos θ, if |ξ| ≤ p2

0, otherwise;

(20)
and y-component of momentum of the incident particle is ξin = p1 sin θin. Note
that r(θ) = s1(ξ)η1(ξ) and t(θ) = s2(ξ)η2(ξ) for η1(ξ) and η2(ξ) real.

Let

ψ̂j(x, ξ) =
∫ ∞

−∞
ψj(x, y)e−iξy dy, for j = 1,Q, 2

be the Fourier transforms of the wavefunctions ψ1, ψQ, ψ2 in the three regions
in the y direction. The Fourier transform Schrödinger equation (12) is

− ∂2

∂x2
ψ̂Q(x, ξ) + η2

1(ξ)ψ̂Q(x, ξ) + 2m
∫ ∞

−∞
(VQ(x, y) − E)ψ(x, y)e−iξy dy = 0.

(21)
By taking the Fourier transform of the solutions (19) with respect to y we
have

ψ̂1(x, ξ) = δ(ξ − ξin)e
iη1(ξ)(x−x1) + s1(−ξ)e−iη1(ξ)(x−x1) (22a)

ψ̂2(x, ξ) = s2(ξ)e
iη2(ξ)(x−x2). (22b)

By requiring that the solution ψ(x, y) and its first derivatives be continuous,
we have the matching conditions at x = x1 and x = x2

ψ̂j(xj, ξ) = ψ̂Q(xj, ξ) and
∂

∂x
ψ̂j(xj, ξ) =

∂

∂x
ψ̂Q(xj, ξ) (23a)

for j = 1, 2. Applying these matching conditions to equations (22) we have

ψ̂Q(x1, ξ) = δ(ξ − ξin) + s1(−ξ), ψ̂Q(x2, ξ) = s2(ξ), (24a)

∂

∂x
ψ̂Q(x1, ξ) = iη1(ξ)δ(ξ − ξin) − iη1(ξ)s1(−ξ),

∂

∂x
ψ̂Q(x2, ξ) = iη2(ξ)s2(ξ).

(24b)
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Eliminating the unknowns s1(ξ) and s2(ξ) gives the boundary conditions

iη1(ξ)ψ̂Q +
∂

∂x
ψ̂Q = 2iη1(ξ)δ(ξ − ξin) at x = x1, (25a)

iη2(ξ)ψ̂Q − ∂

∂x
ψ̂Q = 0 at x = x2. (25b)

To recover the scattering distribution, we must solve equation (21) with the
mixed boundary conditions (25). From equations (20) and (24), it follows that

r(θ; p, θin) = ψ̂Q(x1, p sin θ) − δ(θ − θin) and t(θ; p, θin) = ψ̂Q(x2, p2(p) sin θ).

The boundary value problem (21) with (25) is numerically a difficult problem
to solve. The problem can be simplified for several important and physically
relevant barriers, notably when the potential is constant along the barrier
or the potential is a sine function along the width. We will examine these
potentials to verify the model in Section 4. We are currently researching a
numerical tractable method for general barriers.

If the potential VQ(x, y) is constant along the y-direction, i.e., VQ(x, y) ≡
VQ(x), then equation (21) simplifies to the separable equation

− ∂2

∂x2
ψ̂Q + η2

1(ξ)ψ̂Q + 2mVQ(x)ψ̂Q = 0. (26)

Since Ex ≡ η2(ξ)/2m is simply the contribution of the x-component of the
momentum to the kinetic energy, we have the one-dimensional Schrödinger
equation

− 1

2m

∂2

∂x2
ψ̂Q + VQ(x)ψ̂Q = Exψ̂Q (27)

with boundary conditions (25). One may also solve the boundary value prob-
lem (27) by using the transfer matrix method [11,15,7]. Since the solution is
constant in the y-direction, the semiclassical impulse force is normal to the
barrier curve.

3.2 A particle method for the semiclassical Liouville equation

Following initialization, we solve the Liouville equation using the particle
method by sampling a sufficiently large number of particles from an initial
distribution, solving Hamilton’s equations over a given time interval, and then
fitting the data to an appropriate mesh. By linearity of the Liouville equation,
the particle method may be implemented for each particle independently, per-
mitting us to speed up computation by using a parallel computer cluster.
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Formally, a particle is defined as the approximation to a Dirac measure using
some type of cutoff function [21]. The particle method consists of first approx-
imating the initial conditions f0(x) =

∫

f0(x)δ(x − x′)δ(p − p′) dx′ dp′ by a
linear combination of Dirac measures fh

0 =
∑N

j=1 wjδ(x−xj)δ(p−pj) for some
set {xj,pj, wj} with position (xj,pj) ∈ R

d × R
d and weight wj ≥ 0 where N

is the sample size. The set {xj,pj, wj} may be chosen by either a Monte Carlo
method or a deterministic method. In a Monte Carlo method, one samples
(xj,pj) randomly from a distribution and sets wj = N−1

∫

f0(x,p) dx dp. In a
deterministic approach, one assigns rj based on a uniform or nonuniform mesh
and sets wj =

∫

Cj
f0(x,p) dx dp for a cell Cj ∈ R

d×R
d. A problem is solved by

considering the time evolution of these particles with the appropriate weights.
To solve the Liouville equation, where δ(x(t)−x′)δ(p(t)−p′) defines a single
bicharacteristic for the Hamiltonian H(x,p), we solve the Hamiltonian system
of equations (1) for each particle sampled from f0(x,p).

A particle is sampled from the initial distribution either deterministically or
with Monte Carlo sampling. Monte Carlo sampling is important in higher di-
mensions because it mollifies the curse of dimensionality which afflicts deter-
ministic sampling, restricting it to a rather coarse mesh in higher dimensions.
On the other hand, Monte Carlo sampling is inefficient for nonstandard dis-
tributions and the solution is noisy even with a substantial sample size. For
deterministic sampling, we associate a weight

wn =
∫

Cn

f(x,p) dx dp (28)

to the particle (x0,p0, 0) over a cell Cn. For Monte Carlo sampling, we asso-
ciate a uniform weight wn to normalize over the sample.

At each time step we use a second-order symplectic solver [8] to compute
(xn+1,pn+1, tn+1) with tn = n∆t. We estimate the updated position of the
particle

x∗ = xn + ∆tpn − 1
2
(∆t)2∇V (xn) (29a)

p∗ = pn − 1
2
∆t (∇V (xn) + ∇V (x∗)) . (29b)

If x∗ is in the same region as xn, i.e., if the particle has not crossed the barrier
ΓQ during the time interval [tn, tn+1], we set (xn+1,pn+1) = (x∗,p∗). If x∗ is
in a different region from xn, then we approximate the time tn + ∆t∗ of the
barrier crossing

∆t∗ =

∣

∣

∣

∣

∣

d(xn)

d(x∗) + d(xn)

∣

∣

∣

∣

∣

∆t (30)

where d(x) is the distance to the barrier. The time, position and momentum
of intersection with the barrier are estimated by the solver (29) using ∆t∗

The push interface condition (5) is used to connect the appropriate bichar-

13



0

1

2

3

4

5

6

7

8

1

2

31

2

3

Fig. 1. Trajectories and the associated binary tree for a circular potential. By con-
sidering the solution in terms of a binary tree, one may construct a deterministic
solution.

acteristics at the barrier. Since the bicharacteristics are not unique, either a
Monte Carlo approach or a deterministic branching method are used to se-
lect a bicharacteristic using conditional probabilities based on the incident
momentum. In the Monte Carlo method, the scattering angle (reflection or
transmission) is chosen by randomly sampling from the distribution of scat-
tering directions. Once an outgoing bicharacteristic is chosen, we compute the
position (xn+1,pn+1) of the particle at time tn+1 by using the solver (29) with
the remaining time step given by ∆t − ∆t∗ with ∆t∗ defined by (30).

The unit normal vector to ΓQ at x∗ may be calculated either analytically or
approximated by using n̂ = ∇d(x∗)/|∇d(x∗)| where the signed-distance d(x∗)
is interpolated linearly. The component of the momentum normal to ΓQ at x∗

is p⊥ = (p · n̂)n̂ When the potential V (x, y) is continuous along the length of
the barrier curve, there are only two branches—one transmitted branch and
one reflected branch. In this case, the change to the particle momentum is

∆p = p⊥
(

−1 +
√

1 + 2m∆V/|p⊥|2
)

for transmission,

∆p = −2p⊥ for reflection.

If there are only two branches, it is convenient to use a deterministic branching
algorithm by continuing the solution along both transmitted and reflected
bicharacteristics. See Figure 1. To each branch we associate a conditional
scattering (transmission and reflection) probability. We track along a branch
using the solver (29) until we reach a new node. The particle information
(x,p, t) is saved at the node and we take the reflection branch. We continue in
such a manner—taking the reflection branch at each new node—until the end
of the simulation time. The probability that a particle follows the kth forward
global bicharacteristic is the product of the conditional probabilities sk,j for
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each node. Therefore, from equation (7) the contribution is

wn,k = wn

Nk
∏

j=1

sk,j. (31)

We back up to the most recent node that has an unexplored transmission
branch. The particle information (x,p, t) is set to information previously
stored at that specific node. We then take the transmission branch, continu-
ing as above until the end of the simulation. Once all transmission branches
have already been explored, i.e., once we have backed up to zeroth node, we
have found all the forward bicharacteristics for the particle initially at (x0,p0).
While the deterministic method requires insignificantly more computer mem-
ory than a Monte Carlo approach, it may require substantially larger operation
counts if there are several branches to be explored. The Monte Carlo approach
itself requires several iterations for convergence. Therefore, barrier geometry
is an important consideration in the decision of which method to use.

The solution ρ(x, t) =
∫∫ ∞

−∞ f(x,p, t) dp is reconstructed by interpolating over
a uniform mesh using a smoothing kernel such as a bicubic spline. Let ∆x
and ∆y denote the mesh spacing and let the nearest mesh point to (x, y) be
(xi, yj) for some (i, j). Let r = (x − xi)/∆x and s = (y − yj)/∆y denote
the offset from that mesh point. We are interested in recovering the position
density, we do not need to reconstruct over the momentum. The probability
For l,m ∈ {−2, . . . , 2} define mesh-constrained approximation to ρ(x, y) as

ρ̃i+l,j+m = wn,k

[

σ(r + l + 1
2
) − σ(r + l − 1

2
)
] [

σ(s + m + 1
2
) − σ(s + m − 1

2
)
]

(32)
with the cut-off function [18]

σ(u) =



















































0 u < −2
1
24

(2 + u)4 −2 < u < −1
1
2

+ 1
3
(2u − u3) − 1

8
u4 −1 < u < 0

1
2

+ 1
3
(2u − u3) + 1

8
u4 0 < u < 1

1 − 1
24

(2 + u)4 1 < u < 2

1 2 < u

.

The probability distribution f(x,p, t) may be reconstructed using the four-
dimensional cutoff function analogous to σ(u).

The deterministic method (for two branches) is summarized as follows:

(1) During initialization, compute the scattering coefficients associated with
the components of momentum normal to the interface. The coefficients
are saved in a table over which to interpolate.
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(2) Calculate the weight w associated with the initial distribution using (28),
for a particle initially at (x0,p0, t0 = 0).

(3) Begin with node I = 0. While the node index I > 0
(a) Compute (x∗,p∗) from (xn,pn) using (29).
(b) If x∗ and xn are both in the same regions, take (xn+1,pn+1) =

(x∗,p∗). Otherwise:
(i) Compute the position and momentum (x∗,p∗) and the unit nor-

mal n̂ at barrier.
(ii) Increment the node index I and save (x∗,p∗, t∗) to the new node.
(iii) Take the reflection branch and calculate (xn+1,pn+1) using (29)

with time step ∆t − ∆t∗ given by (30).
(c) If t ≥ tmax

(i) Reconstruct the solution using (32).
(ii) Decrease I to latest node with an unexplored transmission branch.
(iii) Set (x∗,p∗, t∗) to value stored at node I.
(iv) Take the transmission branch and calculate (xn+1,pn+1) using

equation (29) with ∆t − ∆t∗.

The Monte Carlo method is summarized as follows:

(1) Initialization. Calculate the scattering distribution associated with the
momentum incident to the quantum barrier. Save the coefficients in a
table over which to interpolate.

(2) Choose an initial particle (x0,p0) from the initial distribution using Monte
Carlo sampling.

(3) For each particle, while tn < tmax

(a) Calculate (x∗,p∗) from (xn,pn) using (29).
(b) If x∗ and xn are both in the same regions, take (xn+1,pn+1) =

(x∗,p∗). Otherwise:
(i) Compute the position and momentum at barrier (x∗,p∗) using

equation (30) and compute the unit normal n̂ at x∗.
(ii) Use Monte Carlo sampling of the scattering coefficient s(θ) to

determine the scattering momentum p∗.
(iii) Calculate (xn+1,pn+1) using (29) with time step ∆t−∆t∗ given

by (30).
(4) Reconstruct the solution using (32). Go back to Step 2.

4 Numerical Examples

In this section we present two examples to verify the numerical scheme and
validate the semiclassical model. Because of limitations in computer resources
required to solve the von Neumann equation as discussed in [11]—even using
an indirect method—we shall limit the analysis to a Schrödinger wavepacket.
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Fig. 2. Reflection (R) and transmission (T) coefficients (right) for the absorbing
potential V (x) = i9

8sech2(x/4ε) (left). Note that the potential is “tuned” to absorb
the momenta near p = 1.06 used in Example 4.1.

In the first example, we consider the scattering with a circular step-potential.
This geometry is important because it captures phenomena such as caustics
and internal reflection. In the second example, we consider the scattering on
an electron diffraction grating for which the potential varies on the quantum
length scale along the length of the barrier. Such an interface produces multiple
scattering angles.

To solve the time-dependent Schrödinger equation we use a time-splitting
pseudospectral method with Strang splitting [1,2]. The kinetic and potential
terms are split so that for each time step we have

ψ(x, y, t + ∆t) = e∆tB/2F−1
[

e∆tAF
(

e∆tB/2ψ(x, y, t)
)]

(33)

where

A = exp(∆t
ε

2mi
(k2

x + k2
y)) and B = exp(∆t

1

iε
V (x, y))

and the operators F and F−1 denote the two-dimensional discrete Fourier
transform and discrete inverse Fourier transform with respect to the (x, y) and
(kx, ky) variables. When the potential is discontinuous, the solution exhibits
artificial oscillations unless ∆t < (∆x)2/ε and ∆t < ε/V (x). Therefore, we
take ∆x < ε/2, allowing us to take ∆t < ε/4.

By solving the Schrödinger equation over a periodic domain (rather than an
unbounded domain), spurious solutions are eventually introduced as informa-
tion is transmitted across the domain boundaries. By embedding the domain in
a larger domain we can emulate an unbounded domain for a sufficiently short
simulation time; however, this approach is inefficient especially in higher di-
mensions. An alternative method to approximate an unbounded domain is to
employ an absorbing potential VB(x, y) near the boundaries [9,16]. By adding
a negative imaginary potential that decays rapidly away from the domain
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boundaries, we have the modified Schrödinger equation

∂

∂t
ψ(x, y, t) = 1

2
im−1∆ψ(x, y, t) − iV (x, y)ψ(x, y, t) − VB(x, y)ψ(x, y, t)

where VB(x, y) > 0. Such a potential should be strong enough to eliminate
(at least to sufficient precision) any wave information passing through the
boundaries, yet not so strong as to reflect the wave. In addition, the potential
should be sufficiently narrow so that it does not affect the solution away from
the boundary or require an overly large border. In this case, we take

VB(x) = V0sech
2((x − xb)/εℓ)

where xb is the position of the domain boundary, V0 is the barrier strength,
and ℓ is the characteristic barrier width. One may examine other absorbing
potentials by using transfer matrices discussed [11,15,7]. For this potential
the transmission, reflection and absorption coefficients may be found exactly
giving [6]

T =

∣

∣

∣

∣

∣

Γ(−ipℓ − γ)Γ(−ipℓ + γ + 1)

Γ(−ipℓ)Γ(−ipℓ + 1)

∣

∣

∣

∣

∣

2

,

R =

∣

∣

∣

∣

∣

Γ(−ipℓ − γ)Γ(−ipℓ + γ + 1)

Γ(−γ)Γ(γ + 1)

∣

∣

∣

∣

∣

2

, and

A = 1 − T − R

where Γ is the gamma function, γ = −1
2

+ 1
2

√
1 − 8iV0ℓ2 and p is the normal

component of the incident momentum. When pℓ ≫ 1, γ ≈ (1 − i)V
1/2
0 ℓ, and

hence T ≈ R at p = V
1/2
0 . See Figure 2. By adjusting V0 we may “tune” the

barrier to absorb a specific range of energies by maximizing the absorption
coefficient A. Note that the reflection and transmission coefficients are inde-
pendent of ε and by taking ∆x = ε/2, we may specify the barrier thickness in
terms of grid points.

To compare the convergence of the Schrödinger to the semiclassical limit in
two dimensions we consider the following L1-errors:

• the L1-error of the position probability density function (pdf)

∫∫ ∞

−∞
|ρ(x, y, t) − ρ̂(x, y, t)| dy dx

• the L1-error of the marginal probability distribution function (mpdf)

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

−∞
ρ(x, y, t) − ρ̂(x, y, t) dy

∣

∣

∣

∣

dx
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In the above definitions, ρ(x, y, t) =
∫∫ ∞

−∞ f(x, y, p, q, t) dp dq for the semiclassi-
cal Liouville solution and ρ̂(x, y, t) = |ψ(x, y, t)|2 for the Schrödinger solution.
In both examples we take the effective mass m = 1.

4.1 Schrödinger O(1) wave envelope with a circular barrier

Consider the circular barrier with unit diameter

V (x) =







0 x ∈ Ω1 = { x | |x| > 1
2
}

1
2

x ∈ Ω2 = Ω
C
1 .

Consider initial conditions

ψ(x, y, 0) =
1√

2πσ2
exp

(

−(x − x0)
2 − (y − y0)

2

4σ2

)

exp

(

i(p0x + q0y)

ε

)

(34)

describing a symmetric Gaussian wavepacket initially located at (x0, y0) trav-
eling with momentum (p0, q0). In the semiclassical limit we take the initial
conditions

f(x, y, p, q) =
1

2πσ2
exp

(

−(x − x0)
2 − (y − y0)

2

2σ2

)

δ(p − p0)δ(q − q0). (35)

Let (x0, y0) = (−1,−1), (p0, q0) = (3
4
, 3

4
) and σ = 1

4
. We compute over a square

domain with length L = 4. We determine the reflection coefficient to be

R(|p|) =











∣

∣

∣|p|2 −
√

|p|2 + 1
∣

∣

∣

4
for a particle entering Ω1 from Ω2

∣

∣

∣|p| −
√

|p|2 − 1
∣

∣

∣

4
for a particle entering Ω2 from Ω1.

The Schrödinger equation is solved using a time-splitting pseudospectral method
with Strang splitting (33) with ∆x = ε/2 and ∆t = ε/4. Spurious reflections
and transmissions are mollified across the periodic boundary conditions by
using an absorbing boundary with width ℓ = 50ε = 100∆x encircling the
domain. The semiclassical solution is computed using a deterministic parti-
cle method with approximately 109 particles and reconstructed using a mesh
spacing ∆x = 100−1. Since the semiclassical solution is reconstructed over a
coarser mesh than the Schrödinger solution, we linearly interpolate the semi-
classical solution to compare it and Schrödinger solutions.

The marginal probability (position) density function
∫

ρ(x, y, t) dy for the
semiclassical Liouville solution and the Schrödinger solution for several values
of ε are shown in Figure 3. Time evolution of the Schrödinger solutions and
semiclassical solutions are shown in Figures 4 and 5. The errors in the two
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Fig. 3. Marginal position density function for Example 4.1 for ε = (a) 50−1, (b)
100−1, (c) 200−1, (d) 400−1 at time t = 2. The numerical semiclassical limit is
indicated by ∗. The plots are offset by 0.25 for clarity.

solutions are listed in Table 1. Based on our study, we find the convergence
rate of the l1-errors to be about first order.

Table 1
The l1-errors in the probability density function and marginal probability density
function of the solutions of Example 4.1 for different values of ε.

ε 50−1 100−1 200−1 400−1 convergence

pdf 4.52 × 10−1 2.90 × 10−1 1.73 × 10−1 1.24 × 10−1 0.6

mpdf 3.20 × 10−1 1.01 × 10−1 5.03 × 10−2 2.37 × 10−2 1.2

Notable phenomena emergent in the Schrödinger solution to this example are
formation of interior caustics and internal reflection. See Figures 4 and 5.
Suppose a particle originally in a region Ω1 with potential V1 is transmitted
across an interface ΓQ near the critical angle and enters a convex region Ω2

with potential V2 > V1. The particle “creeps” internally along the interface
ΓQ, and with a nonvanishing probability the particle is trapped in the region
of higher potential. While the semiclassical model accurately captures both
caustics and internal reflection, the classical model does not.

4.2 Electron diffraction grating

Consider the semiclassical potential

V (x, y) =







V 0
Q if (x, y) ∈ ΓQ

0 otherwise
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where ΓQ is a smooth curve—we shall take the ΓQ to be y-axis to simplify
the analysis. The quantum potential V 0

Q = limε→0 VQ(εx′, εy′) where x′-axis
is normal to ΓQ and the y′-axis is parallel to the ΓQ. Let the local quantum
potential (with x and y scaled by ε) be given by

VQ(x, y) = f(x) (1 + cos αy) with f(x) = 1
2
(1 + cos πx)

if x ∈ [−1, 1] and y ∈ R where α is some parameter. Take V (x, y) = 0
elsewhere.

We begin by determining the scattering coefficients for the barrier. Consider
a particle with momentum p (and energy E = 1

2
p2) with an incident angle

θin and a scattering angle θ. The y-component of the incident momentum is
ξin = p sin θin and the y-component of the scattered momentum is ξ = p sin θ.
Then the x-component of the momentum is η(ξ) =

√
p2 − ξ2. Let ψ̂Q be the

Fourier transform of ψQ with respect to y as defined in Section 3.1. By using
the identity

∫ ∞

−∞
f(x)(1 + cos αy)ψQ(x, y)e−iξy dy =

1
2
f(x)

(

ψ̂Q(x, ξ + α) + 2ψ̂Q(x, ξ) + ψ̂Q(x, ξ − α)
)

equation (21) becomes

− ∂2

∂x2
ψ̂Q(x, ξ) − η2(ξ)ψ̂Q(x, ξ)+ (36)

f(x)
(

ψ̂Q(x, ξ + α) + 2ψ̂Q(x, ξ) + ψ̂Q(x, ξ − α)
)

= 0

with the mixed boundary values

iη(ξ)ψ̂Q +
∂

∂x
ψ̂Q = 2iη(ξ)δ(ξ − ξin) at x = −1 (37a)

iη(ξ)ψ̂Q − ∂

∂x
ψ̂Q = 0 at x = +1. (37b)

To solve the boundary value problem (36) and (37) we consider a finite dif-
ference method. Let xi be the discretization of x over [−1, 1] using m grid
points with uniform spacing ∆x. Let ξj be the discretization of ξ using a uni-
form spacing ∆ξ = α/d for an integer d. The second-order centered-difference
approximation of (36) is

−ui+1,j − 2uij + ui−1,j

(∆x)2
− η2

j uij + (ui,j+d + 2uij + ui,j−d)fi = 0 (38)

where we define uij = ψ̂Q(xi, ξj), fi = f(xi), and ηj = η(ξj). As a simplifica-
tion, one may restrict ξin to a grid point k (ξin = ξk) and interpolate over the
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scattering coefficients to approximate intermediate values. The second-order
approximation of the boundary conditions (37) are

iηju1j +
u2,j − u0,j

2∆x
= 2iηjδjk (39a)

iηjumj −
um+1,j − um−1,j

2∆x
= 0 (39b)

where δjk = 1 if j = k and δjk = 0 otherwise. Substituting the value for
u0,j from the left boundary condition (39a) and substituting the value for
um+1,j from the right boundary condition (39b) into equation (38), we have
the equivalent system of equations

(

(∆x)2η2
j − 2(∆x)2fi − 2

)

uij + ui+1,j + ui−1,j

− (∆x)2fiui,j+d − (∆x)2fiui,j−d = 0 for 1 < i < m

(40a)

2u2,j +
(

(∆x)2η2
j − 2(∆x)2f1 − 2 + i2(∆x)ηj

)

u1j

− (∆x)2f1u1,j+d − (∆x)2f1u1,j−d = 4i(∆x)ηjδjk

(40b)

2um−1,j +
(

(∆x)2η2
j − 2(∆x)2fm − 2 + i2(∆x)ηj

)

umj

− (∆x)2fmum,j+d − (∆x)2fmum,j−d = 0.
(40c)

By condition (20) we have that uij = 0 if |ξj| ≥ p. Furthermore, the solutions
uij = 0 if j /∈ {. . . , k − d, k, k + d, . . . }. Therefore, for each incident momenta
ξk, we solve system (40) for j ∈ {. . . , k − d, k, k + d, . . . }. Let {l} be the n-
element enumeration of this set. In this case, we may express the equations as
the system Mv = b where the nm-element vector v is defined using vi+mj = uij,
b is defined using bi+mj = 4i(∆x)ηj, and M is the block tridiagonal matrix
with components

M =





























T (1) D

D T (2) D
. . . . . . . . .

D T (n−1) D

D T (n)





























.

In this matrix, D are m × m diagonal matrices with Dij = −(∆x)2fiδij and
T (l) are m × m tridiagonal matrices

T
(l)
ij =

(

(∆x)2η2
J − 2(∆x)2fi − 2

)

δij + δi+1,j + δi−1,j

with the exceptions T
(l)
ii = (∆x)2η2

l −2(∆x)2fi−2+ i2(∆x)ηl for i = 1,m and

T
(l)
12 = 2 and T

(l)
m,m−1 = 2.
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From (18), the transmission coefficients are given by |vm+nl|2η−1
k ηl. The reflec-

tion coefficients are given by |1− v1+nl|2 when l corresponds to k incident and
|v1+l|2η−1

k ηl otherwise. The discrete scattering angles are given by

θl = − sin−1

(

ξk − lα

|p|

)

which is simply the Fraunhofer diffraction grating formula

lλ = d(sin θin + sin θl)

with wavelength λ = 2πε/|p| and groove spacing d = 2πα−1.

To validate the semiclassical model, we took α = 1
2

and considered the ini-
tial conditions (34) and (35) with σ = 1/16 and (p0, q0) = (cos θin, sin θin),
(x0, y0) = 0.3(− cos θin, sin θin) where θin = 10◦. The semiclassical model can
be solved exactly by considering the method of characteristics with the scat-
tering coefficients computed numerically. In this case

ρ(x, y, t) = ρ0(x
∗, y∗) +

∑

k

s(θk)ρ0

(

x∗ − cos θk − cos θin

cos θk

x, y∗ − sin θk + sin θin

cos θk

x

)

1(x cos θk>0)

where x∗ = x−t cos θin and y∗ = y+t sin θin and ρ0(x, y) is the position density
of the initial distribution (34).

The ρ(x, y) = 2 contours of the position density for the Schrödinger solution
and the semiclassical solution are shown in Figure 6 and 7 for ε = 200−1 and
800−1. The errors in the two solutions are listed in Table 2. The solutions have
roughly first-order convergence in probability density functions. As evident in
Figures 6 and 7, while the semiclassical model does agrees with the Schrö-
dinger solution for small scattering angles, there is some discrepancy at larger
scattering angles.

Table 2
The l1-errors in the probability density function and marginal probability density
function of the solutions of Example 4.2 for different values of ε.

ε 100−1 200−1 400−1 800−1 convergence

pdf 6.09 × 10−1 3.05 × 10−1 2.25 × 10−1 2.09 × 10−1 0.8

mpdf 3.46 × 10−1 1.81 × 10−2 1.33 × 10−1 1.04 × 10−1 0.9
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5 Conclusion

In this paper, we investigated a time-dependent quantum transport model in
the semiclassical limit for two-dimensional O(ε) barriers. We implemented a
particle method to solve the model and we verified that the model correctly
describes the weak limit of the Schrödinger equation. Currently, we are con-
sidering for more general applications, namely a coherent semiclassical model.
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Fig. 4. Solutions for Example 4.1 for ε = 50−1 (left) and ε = 100−1 (right) at times
t = 0, 2, 4, 6, 8.
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Fig. 5. Solutions for Example 4.1 for ε = 200−1 (left) and the semiclassical limit
(right) at times t = 0, 2, 4, 6, 8.
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Fig. 6. Contour plot of solution to Example 4.2 at ρ(x, y) = 2 for ε = 200−1 at
t = 0.25, 0.5, 0.75 and 1.0. The contour of the Schrödinger solution is filled in and
the contour for numerical semiclassical limit is illustrated by a bold line.

28



−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

Fig. 7. Contour plot of solution to Example 4.2 at ρ(x, y) = 2 for ε = 800−1 at
t = 0.25, 0.5, 0.75 and 1.0.The contour of the Schrödinger solution is filled in and
the contour for numerical semiclassical limit is illustrated by a bold line.
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