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Abstract

We construct quantum algorithms to compute the solution and/or physical observables

of nonlinear ordinary differential equations (ODEs) and nonlinear Hamilton-Jacobi equations

(HJE) via linear representations or exact mappings between nonlinear ODEs/HJE and linear

partial differential equations (the Liouville equation and the Koopman-von Neumann equation).

The connection between the linear representations and the original nonlinear system is estab-

lished through the Dirac delta function or the level set mechanism. We compare the quantum

linear systems algorithms based methods and the quantum simulation methods arising from dif-

ferent numerical approximations, including the finite difference discretisations and the Fourier

spectral discretisations for the two different linear representations, with the result showing that

the quantum simulation methods usually give the best performance in time complexity. We

also propose the Schrödinger framework to solve the Liouville equation for the HJE, since it

can be recast as the semiclassical limit of the Wigner transform of the Schrödinger equation.

Comparsion between the Schrödinger and the Liouville framework will also be made.
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1 Introduction

Some of the most important problems in physics, chemistry, engineering, biology and finance

are modelled by nonlinear ordinary and partial differential equations (ODEs and PDEs). Promi-

nent examples include climate modelling, aircraft design, molecular dynamics and drug design,

deep learning neural networks and mean-field games in mathematical finance. Among the most

important examples of nonlinear ODEs include Newton’s equations in molecular dynamics, while

examples of nonlinear PDEs include the Euler and Navier-Stokes equations in fluid dynamics, the

Boltzmann equations in rarified gas, and the Hamilton-Jacobi equations in geometric optics, front

propagation, mean-field games and optimal control. In spite of tremendous progresses in developing

classical algorithms for solving these equations, there remain major challenges that are difficult to

be handled by classical algorithms, for examples the curse-of-dimensionality, multiple scales, strong

nonlinearity, and large numbers of degree of freedoms. On the other hand, quantum algorithms,

due to their potential polynomial and even exponential advantages, could be the game changer to

deal with some of these difficulties. However, since quantum algorithms are based on the principle

of quantum mechanics, which is fundamentally linear (as far as we know), so far the development

of quantum algorithms have been mostly confined to linear problems, with the most notable in

linear algebra [2,13,18,20,23,25,28,41,46,48,49,51,54,55]. For linear ODEs and PDEs, once they

are numerically discretised, they became linear algebra problems which can then be handled by

quantum linear algebra solvers (e.g. [10, 14,17,19,22,44]).

Since most natural phenomena are nonlinear, the ability of quantum computing to solve non-

linear problems will significantly extend the horizon of quantum computing. The most natural idea

of handling nonlinear problems by a quantum computer is to represent the nonlinear problem in a

linear way, so quantum algorithms for linear problems can be used. There are two approaches in

recent literatures. One is to approximate the nonlinear problem through linearisation of the non-

linearity, or truncation of the equation, which is referred to as linear approximation methods. The
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second is coined as linear representation methods [31], which tries to find a map from the linear to

the nonlinear systems, and usually yields a system in the phase space which is equivalent (without

any approximation) to the original system.

In the linear approximation approach, in which one linearises the nonlinear system, modeling

errors are inevitable, hence the approach may only be valid for a short time, weak or special

nonlinearities, and consequently after a long time solutions may lose significant nonlinear features.

A more appealing approach uses the Carlemann linearisation in [47] or the techniques in [40, 50],

but they are restricted to polynomial nonlinearities, and need to truncate the system since only

finite number of equations is used. Such a truncation may lead to loss of some important nonlinear

features of the original system. It is similar to moment closure technique in kinetic theory, in which

one attempts to close the moment system with finite number of moments but often ends up with

a closed system that has mathematical stability problems [7,27] or physical realizibility issues [39].

This is similarly true for methods in [40,50], see [43].

For the linear representation methods, there are two current approaches. One is the Koopman-

von Neumann (KvN) approach [35] (see also [21]), which was introduced for nonlinear ODEs. The

other is the level set method, first introduced in [31], applicable to both nonlinear ODEs, and

nonlinear PDEs – more specifically the Hamilton-Jacobi equations and scalar nonlinear hyperbolic

equations. Both approaches introduce equations in the phase space but the extra dimensionality

that is difficult for classical algorithms can be significantly eased by quantum algorithms, hence

quantum advantages in most numerical parameters can still be achieved, even including the mea-

surements of physical observables as analysed in [31].

The goal of this paper is to compare the two linear representation methods – the Liouville

equation in the level set approach and the KvN equation, their variants and their different numer-

ical approximations. The KvN is, so to speak, the square of the Liouville equation, and, when

the solution is smooth, they are equivalent if the force is divergence free (for example in the case

of Hamilton system). While both equations are of linear transport nature, which can be solved

similarly by classical algorithms, the KvN equation, due to its unitary structure, can be directly

solved by quantum simulations, while the Liouville equation was solved by quantum linear sys-

tem solvers in [31]. Despite the absence of the unitary structure, we still proposed a “quantum

simulation” algorithm for the Liouville representation in Appendix A by using the dimensional

splitting Trotter based approximation. The basic idea is to transform the asymmetric evolution

in each direction into a symmetric one, which requires only a simple variable substitution with

the transformation matrix being diagonal. However, different from the traditional time-marching

Hamiltonian simulation, non-unitary procedures for the variable substitution are involved, which

may lead to exponential increase of the cost arising from multiple copies of initial quantum states

at every time step as pointed out in Remark A.1.

The connection between the Liouville or KvN equation with the original nonlinear system

can be made through the Dirac delta-function δ(x), which is naturally defined in the weak sense

for the Liouville equation which solves for the probability distribution of particles. However, to

connect the KvN model – which computes, so to speak, the square root of the probability density
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distribution, one needs to use
√
δ, which is not well-defined mathematically, even in the weak sense,

so one needs to be more careful in interpreting its solution (as will be discussed in Section 2.1.2)

and the consequent numerical convergence in a suitable solution space. In addition, since the KvN

is not in conservation form, it also requires higher smoothness for the force field than the Liouville

approach.

Another alternative approach to the Liouville equation is to use the linear Schrödinger equa-

tion, which approximates the Liouville equation in the classical limit by sending the “Planck con-

stant” to zero. Here the Planck constant is an artificial small parameters, which can be chosen

to depend on ε, the numerical precision. The Schrödinger equation can be solved by quantum

simulation techniques [34, 51], or by quantum linear algebraic solvers after spatial and temporal

discretisations. We will compare all these different models and their different approximations: spec-

tral methods vs. finite difference methods; and quantum simulation vs. quantum linear algebra

solvers, and identify the pros and cons of each of these solvers in order to identify the best possible

linear representation method.

Our results on time complexities for the computation of physical observables are summarized

in Tab. 1. For nonlinear ODEs, the quantum simulation method has less computational cost

than the quantum linear systems algorithm (QLSA) based approaches for both Liouville and KvN

representations, and the cost of computing the physical observables for the Liouville representation

has a multiplicative factor squared times as larger as the one for the KvN representation (if the

number of copies needed of the initial state is neglected).

For nonlinear Hamilton-Jacobi equations, the Schrödinger framework/representation, using

quantum simulation, has advantages over other approaches in time complexity, for both d (the

space dimension) and ε. However, we would like to point out that the solution to the Schrödinger

equation has oscillations of frequency of O(1/
√
ε), as shown in Fig. 2. If one wants high resolution

results – for example oscillations free, then the Liouville representation with spectral approximation

and QLSA has edges on d, and ε for smooth solution, while the Liouville replantation with finite

difference approximation and QLSA has edges in ε if solution is less smooth (in Sobolev space H l

for l ≤ 4).

For general scalar hyperbolic equation, one can still use the Liouville representation [31] but

the Schrödinger representation is not available. It is also unclear how to devise the KvN approach,

as will be discussed in Section 5.

We also note that we do not compare these quantum alrogithms with the corresponding clas-

sical algorithms, which were partly made, for example, in [31]. In particular, for nonlinear ODEs,

these algorithms could be more expensive than the classical solvers [31].

It should be pointed out that the optimal QLSA with query complexity Q = O(sκ log(1/ε))
is presented in [18], where s is the sparsity, meaning it has at most s nonzero entries per row and

column, κ is the condition number of the coefficient matrix. On the other hand, the gate complexity

may be quantified by O(Qpoly(logQ, logN)), which is larger than the query complexity only by

logarithmic factors [13,18,42]. For simplicity, we use Õ(Q) to denote the case where all logarithmic

factors are suppressed.
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The outline of the paper is as follows. In Section 2 we summarize the general framework for

computing the nonlinear ODEs by using the linear representation approaches, and analyse in detail

the time complexity of the QLSA based methods and the quantum simulation methods. We propose

a simple algorithm to compute the observables of integral form and figure out the multiplicative

factor for the sampling procedure. In Section 3 we propose and analyse several quantum algorithms

for solving the nonlinear Hamilton-Jacobi PDEs. By using the level set mechanism proposed

in [31], we map the nonlinear PDEs of (d+ 1)-dimension to a linear (2d+ 1)-dimensional Liouville

equation, referred to as the Liouville representation for nonlinear PDEs, and repeat the analysis

of the quantum algorithms for the associated Liouville equation as in the previous section. In

Section 4, we propose a Schrödinger framework to solve the nonlinear Hamilton-Jacobi PDEs since

the Schrödinger equation can be transformed into the quantum Liouville equation via the Wigner

transform, which in turn leads to the Liouville equation when taking the semiclassical limit. We

present the quantum interpretation of the classical time-splitting Fourier spectral method proposed

for the Schrödinger equation, and give a detailed discussion about the associated sampling law and

the gate complexity for the computation of the expectation of observables. In Section 5 we briefly

study scalar nonlinear hyperbolic equations. Discussion and summary are given in Section 6.

2 Linear representation methods for nonlinear ODEs: Liouville

vs. KvN representations

In this section we consider the following nonlinear ODEs

dqj
dt

= Fj(q1, · · · , qd), qj(0) = q0,j , j = 1, · · · , d,

where q0,j are initial data and Fj are real-valued, which can be written in vector form as

dq(t)

dt
= F (q(t)), q(0) = q0, q = [q1, · · · , qd]T . (2.1)

2.1 Linear representation methods

2.1.1 The Liouville representation

For x = (x1, · · · , xd), let δ(x) = Πdi=1δ(xi) be the Dirac delta distribution. The Liouville

equation corresponding to (2.1) can be derived by considering a function ρ(t, x) : R+ × Rd → R,
defined by

ρ(t, x) = δ(x− q(t)), (2.2)

which represents the probability distribution in space x that corresponds to the solution x = q. By

the properties of the delta function, one obtains the solution of (2.1) by taking the moment:

q(t) =

∫
xδ(x− q(t))dx =

∫
xρ(t, x)dx. (2.3)

Other quantity of interest G(q(t)) can be obtained by the moment

G(q(t)) =

∫
G(x)δ(x− q(t))dx =

∫
G(x)ρ(t, x)dx. (2.4)
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To this end, we can characterize the dynamics of ρ(t, x) and find the solution q(t) via (2.3). One

can check that ρ satisfies, in the weak sense, the linear (d+ 1)-dimensional PDE [21,31] ∂tρ(t, x) +∇x · [F (x)ρ(t, x)] = 0,

ρ0(x) := ρ(0, x) = δ(x− q0).
(2.5)

Since the initial data involves a delta function, one can consider the following problem with the

smoothed initial data  ∂tρ
ω(t, x) +∇ · [F (x)ρω(t, x)] = 0,

ρω0 (x) := ρω(0, x) = δω(x− q0)
(2.6)

when solving (2.5) by a classical or quantum algorithm, where ω is a smoothing parameter of the

delta function [31]. For example, in one-dimensional case, one can choose

δω =


1
ωβ(x/ω), |x| ≤ ω,

0, |x| > ω,

where typical choices of β include

β(x) = 1− |x| and β(x) =
1

2
(1 + cos(πx)).

Here ω = mh and m is the number of mesh points within the support of δω. For d dimensions, one

defines

δω(x) = Πdi=1δω(xi), x = (x1, · · · , xd).

In addition, the periodic boundary conditions can be imposed since ρ(0, x) or ρω(0, x) has compact

support and the solutions to problems (2.5) and (2.6) propagate with finite speed.

To compare with the KvN approach to be introduced next, note the equation in (2.5) is usually

transformed to the (some classical) analogue of the Schrödinger equation

i∂tρ = Lρ, (2.7)

where L is referred to as the Liouville operator, satisfying

Lρ := −i
∑
j

(
Fj

∂

∂xj
+
∂Fj
∂xj

)
ρ.

The operator L is generally not a Hermitian operator, and thus cannot be directly simulated by

quantum Hamiltonian unless divF = 0 (In this case one has

Lρ := −i
∑
j

(
Fj

∂

∂xj
+
∂Fj
∂xj

)
ρ = −i

∑
j

(
Fj

∂

∂xj
+

1

2

∂Fj
∂xj

)
ρ,

which is the symmetric KvN operator defined later).
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2.1.2 The Koopman-von Neumann representation

The starting point of the Koopman-von Neumann (KvN) approach to classical mechanics is

the introduction of a Hilbert space of complex and square integrable functions ψ referred to as the

KvN wave functions such that ρ := |ψ|2 can be interpreted as the probability density of finding

a particle at the point of the phase space. To this end, it is desirable to find a complex-valued

function ψ which satisfies a dynamical behavior similar to that of the Schrödinger equation, and

such that ρ = |ψ|2 = ψ†ψ is a solution of (2.7).

Formally, one can verify that ψ satisfies [8, 9, 35,43]

i∂tψ = HKvNψ,

where the KvN operator is

HKvN = −i
∑
j

(
Fj

∂

∂xj
+

1

2

∂Fj
∂xj

)
.

It can be written in the following symmetric form

HKvNψ =
1

2

∑
j

(
Fj(x)Pjψ + Pj(Fj(x)ψ)

)
=:

d∑
j=1

Hjψ,

where

Hjψ =
1

2

(
Fj(x)Pjψ + Pj(Fj(x)ψ)

)
, Pj = −i

∂

∂xj
.

By introducing the position operator x̂j and the momentum operator P̂j , the KvN representation

can be rewritten as

i∂t|ψ⟩ =
1

2

∑
j

(Fj(x̂)P̂j + P̂jFj(x̂))|ψ⟩ =:

d∑
j=1

Ĥj |ψ⟩, (2.8)

where the notation Fj(x̂) denotes a nonlinear map of the position operator which resembles the

nonlinear flow, potentially through series expansions. Unlike the Liouville operator, the KvN

operator is Hermitian and thus allows for quantum Hamiltonian simulations.

To obtain the quantity of interest G(q(t)) one uses

G(q(t)) =

∫
G(x)δ(x− q(t))dx =

∫
G(x)|ψ(t, x)|2dx. (2.9)

The setting of Eq. (2.2) may be essential, since it allows to determine the solution of the ODEs

via (2.3). To be consistent, one may need to set ψ(t, x) = δ1/2(x − q(t)), the square root of the

delta function. Namely, one needs to solve i∂tψ = HKvNψ,

ψ(0, x) = δ1/2(x− q0).
(2.10)

The solution to the above problem, in general, cannot be defined mathematically since one cannot

define δ1/2, let alone its derivative, even in the weak sense. However, by connecting it with (2.5)

by ρ = |ψ|2 one can make sense of the solution to (2.10) since |ψ|2 satisfies the Liouville equation

(2.5) which can be defined in the weak sense [24,45]. This connection is quite important, especially
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if one discretises (2.10) and hopes the numerical solution will converge, as will be elaborated more

later on.

At the discrete level, as was done in [21], one could instead consider smoothing the δ-function

and obtain  i∂tψ
ω = HKvNψ

ω,

ψω(0, x) = δ
1/2
ω (x− q0),

(2.11)

which satisfies

ρω = |ψω|2 = (ψω)†ψω. (2.12)

Although for every fixed ω, the problem (2.11) is well defined, it will not be possible to

define the ω → 0 limit which is needed to make mathematical sence of the KvN equation with

initial data
√
δ(x− q0). Furthermore, when discretising (2.11) numerically, one will not be able

to prove the convergence of the numerical approximation (when ω, mesh size and time step all

go to zero) toward the solution of the KvN since the solution of KvN is not suitably defined. In

such a case, a different choice of ω or mesh size could pick up different numerical solutions, which

is a well-known phenomenon when numerically approximating the (weak) solution of hyperbolic

conservation laws [38]. These solutions may not be unique, unless stronger conditions, such as the

entropy condition, are satisfied by the numerical approximations.

Even if one disregards the
√
δ problem, when using the Liouville equation (2.5), one only needs

F to be Lipschitz continuous to define its solution, like for the original ODEs (2.1). For the KvN

equation, since it is not in conservation form, one needs divF to be Lipschitz continuous. Thus

this is more restrictive than the case of the Liouville representation.

Unlike in the Liouville representation, in the KvN framework one cannot get the ensemble

average defined as 1
M0

∑M0
j=1 aj for M0 different initial data [31], where a(x) is a quantity of interest

(say physical observables). Rather it gives ( 1
M0

∑M0
j=1
√
aj)

2, Thus one loses quantum advantage in

M0 if one is interested in the ensemble average with M0 ≫ 1 initial data.

2.1.3 Computation of the quantity of interest and error analysis

After regularising the δ function by δω, one now needs to approximate the physical quantity

of interest, which are

• For the Liouville approximation:

⟨Gρω(t)⟩ =
∫
G(x)ρω(t, x)dx, (2.13)

where ρω is the solution of (2.6);

• For the KvN approximation:

⟨Oψω(t)⟩ =
∫
G(x)|ψω(t, x)|2dx, (2.14)

where ψω is the solution of (2.11) satisfying ρω = |ψω|2 for every fixed ω > 0,
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by some quadrature rules.

For this quantity, we have two ways to approximate it. For the Liouville approximation, one

can compute the integral by using the numerical quadrature rule

⟨G(tn)⟩ =
∫
[0,1]d

G(x)ρ(tn, x)dx ≈
∫
[0,1]d

G(x)ρω(tn, x)dx

=: ⟨Gρω(tn)⟩ ≈
1

Md

∑
j

Gjρ
ω
j,n =: ⟨Gρω ,n⟩, (2.15)

where, Gj = ωjG(xj) with ωj being the weight, j = (j1, · · · , jd) and M is the number of points in

each dimension of the d-dimensional space. Throughout the paper, we only consider the trapezoidal

rule: with w = [12 , 1, · · · , 1,
1
2 ]
T , the weight vector can be arranged as

∑
j ωj |j⟩ = w ⊗ · · · ⊗ w.

Accordingly, the solution vector is denoted as

ρωn =
∑

j
ρωj,n|j⟩ =

∑
j1,··· ,jd

ρωj1,··· ,jd,n|j1⟩ ⊗ · · · ⊗ |jd⟩.

That is, the nj-th entry of ρωn is ρωj,n, with the global index given by

nj := j12
d−1 + · · ·+ jd2

0. (2.16)

Note that for periodic boundary conditions, ρ can be assumed to be periodic since the solution to

the Liouville equation is essentially zero outside a compact support. In such a case, the trapezoidal

rule is of spectral accuracy [1].

Lemma 2.1 (Error of the Liouville representation). Let ρω be the analytical solution of the Liouville

representation (2.5) with the smoothed initial data, and ρωh the numerical solution of ρω. Then

eρ := |⟨G(tn)⟩ − ⟨Gρωh ,n⟩| ≤ C(ωe
tn∥divF∥∞ + d∆xℓ/ωℓ+1 + eρ,h), (2.17)

where ∥divF∥∞ = supq|divF (q)|, ℓ is the Sobolev regularity of ρω (namely ρω ∈ Cℓ), and eρ,h = |ρωn−
ρωh,n| is the (relative) discretisation error for the linear Liouville equation, given by for examples:

• For the first-order upwind finite difference scheme, one has

eρ,h ≤ C
(∆t
ω

+
d∆x

ω2

)
= O

(d∆x
ω2

)
(2.18)

with the CFL condition dλ = O(1), where λ = ∆t/∆x.

• For the Fourier spectral discretisation, one has

eρ,h ≤ C
(∆tα
ωα

+
d∆xℓ

ωℓ+1

)
, (2.19)

where α depends on the accuracy of the temporal discretisation.

Proof. The error can be split as

eρ = |⟨G(tn)⟩ − ⟨Gρωh ,n⟩| = |⟨Gρ(tn)⟩ − ⟨Gρωh ,n⟩|

≤ |⟨Gρ(tn)⟩ − ⟨Gρω(tn)⟩|+ |⟨Gρω(tn)⟩ − ⟨Gρω ,n⟩|+ |⟨Gρω ,n⟩ − ⟨Gρωh ,n⟩|

=: I1 + I2 + I3. (2.20)
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For I1, one can apply the the method of characteristics as done in [31,53]. To do so, we introduce

the characteristics of (2.5) as 
dX

dt
= F (X), X ∈ Rd,

X(s) = x,

with the solution denoted by X(t;x, s). Let the Jacobian determination of the map from x to X

be

J(t;x, s) = det
(∂Xi

∂xj
(t;x, s)

)
.

Then one has

J(t;x, s) > 0, J(t;x, s) = exp
(∫ t

s
∇ · F (X(σ;x, s))dσ

)
.

By the method of characteristics (see Eq. (1.11) of [53] or Appendix J of [31]), the solution to (2.5)

can be given by

ρ(t, x) = ρ0(X(0;x, t))J(0;x, t) = ρ0(X(0;x, t)) exp
(
−
∫ t

0
∇ · F (X(σ;x, t))dσ

)
.

Similarly, the solution to (2.6) is

ρω(t, x) = ρω0 (X(0;x, t))J(0;x, t) = ρω0 (X(0;x, t)) exp
(
−
∫ t

0
∇ · F (X(σ;x, t))dσ

)
.

Therefore,

I1 = |⟨Gρ(tn)⟩ − ⟨Gρω(tn)⟩| =
∣∣∣ ∫

[0,1]d
G(x)(ρ(tn, x)− ρω(tn, x))dx

∣∣∣
=

∣∣∣ ∫
[0,1]d

G(x)
(
ρ0(X(0;x, tn))− ρω0 (X(0;x, tn))

)
J(0;x, tn)dx

∣∣∣
≤ Cω max

x∈[0,1]d
J(0;x, tn) ≤ Cωetn∥divF∥∞ ,

where ∥divF∥∞ = supq|divF (q)|.
The second term is just the error of the quadrature rule, hence I2 ≤ Cd∆xℓ/ωℓ+1, where the

1/ωℓ+1 factor comes from the ℓ-th derivative of δw. Obviously, I3 ≤ Ceρ,h. The final result comes

from the standard error analysis for the linear hyperbolic equation [38].

Remark 2.1. Note that for the upwind scheme, due to the CFL condition ∆t = O(∆x/d), one
has

O(∆t/ω) = O(∆x/dω) = O(d∆x/ω2),

hence the second equality in (2.18) holds. For the spectral discretisation in Subsect. A.1, we require

that

d∆tα/ωα ∼ d∆xℓ/ωℓ+1 ∼ ε,

see (A.10) for example, where d for time comes from the dimension splitting in (A.2). This means

∆tα/ωα ≤ d∆tα/ωα ≲ d∆xℓ/ωℓ+1.

That is, we can still combine the two terms on the right hand side of (2.19). We leave it as is in

what follows.
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For the KvN approximation, the quadrature rule gives

⟨Oψω(tn)⟩ =
∫
[0,1]d

G(x)|ψω(tn, x)|2dx ≈
1

Md

∑
j

Gj |ψωj,n|2

=
1

Md/2
(ψωn )

†GMψ
ω
n =: ⟨Oψω ,n⟩, (2.21)

where the elements of the vector ψωn are arranged as ψωn =
∑

j ψ
ω
j,n|j⟩, and GM = diag(g) is a

diagonal matrix with g =
∑

j Gj/M
d/2|j⟩ satisfying ∥g∥ ∼ 1.

Lemma 2.2 (Error of KvN representation). Let ψω be the analytical solution of the KvN repre-

sentation (2.11), and ψωh the numerical solution of ψω. Then

eψ := |⟨G(tn)⟩ − ⟨Oψω
h ,n
⟩| ≤ C(ωetn∥divF∥∞ + d∆xℓ/ωℓ+1 + eψ,h), (2.22)

where ℓ is the regularity of ρω, and eψ,h = ||ψωn |2 − |ψωh,n|2| is the (relative) discretisation error for

the KvN equation (2.8).

• For the first-order upwind finite difference scheme, one has

eψ,h ≤ C
(d∆x
ω2

)
,

with the CFL condition dλ = O(1), where λ = ∆t/∆x.

• For the Fourier spectral discretisation, one has

eψ,h ≤ C
(∆tα
ωα

+
d∆xℓ

ωℓ+1

)
,

where α depends on the accuracy of the temporal discretisation.

Proof. Noting that ρω = |ψω|2, we can split the error as

eψ = |⟨G(tn)⟩ − ⟨Oψω
h ,n
⟩|

≤ |⟨Gρ(tn)⟩ − ⟨Oψω(tn)⟩|+ |⟨Oψω(tn)⟩ − ⟨Oψω ,n⟩|+ |⟨Oψω ,n⟩ − ⟨Oψω
h ,n
⟩|

= |⟨Gρ(tn)⟩ − ⟨Gρω(tn)⟩|+ |⟨Oψω(tn)⟩ − ⟨Oψω ,n⟩|+ |⟨Oψω ,n⟩ − ⟨Oψω
h ,n
⟩|

=: I1 + I2 + I3.

Here, I1 is exactly the first term in (2.20) for the Liouville representation, so I1 ≤ Cωetn∥divF∥∞ .

The second term is the (relative) error of the quadrature rule. One again has I2 ≤ Cd∆xℓ/ωℓ+1

since ρω = |ψω|2, where the 1/ωℓ+1 factor comes from the ℓ-th derivative of δw. For the last term,

one has

I3 = |⟨Oψω ,n⟩ − ⟨Oψω
h ,n
⟩| = |(ψωn )†GMψωn − (ψωh,n)

†GMψ
ω
h,n|

=
1

Md

∣∣∣∑
j

Gj |ψωj,n|2 −
∑
j

Gj |(ψωh )j,n|2
∣∣∣ ≲ ||ψωn |2 − |ψωh,n|2|.

This completes the proof.
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Remark 2.2. When discretising the Liouville equation by the upwind scheme, since it is in con-

servative form, one can show that the l1 norm at later time is bounded by the norm at t = 0 when

the CFL condition is satisfied (namely it is l1 contracting). In addition, the accumulation of the

local truncation error which grows linearly in t. However, this is not true for the KvN represen-

tation. If one uses the upwind scheme to discretize the transport (spatial derivative) term, since

the 1/2 term is a forcing term, it will contribute to the l1 error an exponentially growing term like

etn∥divF∥∞ . When tn ≤ T = O(1) this is not a big issue. But it is worth pointing out the difference

with the Liouville representation here, since if one wants to compute the long time solution, the l1

contraction of the upwind scheme for the Liouville representation gives much smaller error. The

above discussion will be further elaborated later.

For simplicity, we only consider tn ≤ T = O(1) in this article.

2.2 Finite difference discretisation for the Liouville representation

2.2.1 The QLSA for the finite difference discretisation

The Liouville representation can be rewritten as
∂w
∂t +

d∑
i=1

∂
∂xi

(Fi(x)w(t, x)) = 0,

w0(x) = δω(x− x0),
(2.23)

where we have assumed the smoothed initial data δω.

Denote ei = [0, · · · , 1, · · · , 0] to be the unit vector with the i-th entry being 1. Let j =

(j1, · · · , ji, · · · , jd) and xi = ji∆x are the i-th components of xj . The first-order upwind discreti-

sation at (tn, xj) takes the following form [31, Appendix K]:

∂tw −→
wn+1
j − wnj

∆t
,

∂

∂xi
(Fi(x)w(t, x)) −→

1

∆x

({
Fi(xji+1/2)

}−

j
wnj+ei

−
{
Fi(xji−1/2)

}+

j
wnj−ei

)
+

1

∆x

({
Fi(xji+1/2)

}+

j
−
{
Fi(xji−1/2)

}−

j

)
wnj ,

where

α+ = max{α, 0} = α+ |α|
2

≥ 0, α− = min{α, 0} = α− |α|
2

≤ 0,

and {
Fi(xji±1/2)

}
j
=

1

2
(Fi(xj±ei) + Fi(xj)) =

1

2
(Fi(xj1,··· ,ji±1,··· ,jd) + Fi(xj1,··· ,ji,··· ,jd)).

For convenience we introduce the following notation

ai,±j =
{
Fi(xji+1/2)

}±

j
, bi,±j =

{
Fi(xji−1/2)

}±

j
.

The discrete scheme can be written as

wn+1
j −

[
1− λ

d∑
i=1

(ai,+j − bi,−j )
]
wnj + λ

d∑
i=1

[
ai,−j wnj+ei

− bi,+j wnj−ei

]
= 0, (2.24)
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where λ = ∆t/∆x. In matrix form one has

wn+1 −Bwn = fn+1, n = 0, 1, · · · , Nt − 1,

with f i being the terms resulting from the initial and boundary conditions, where the nodal values

at t = tn are arranged as wn =
∑

j w
n
j |j⟩. With the help of the global index (2.16), the non-zero

entries of B can be given by

Bnj ,nj
= 1− λ

d∑
i=1

(ai,+j − bi,−j ), Bnj ,nj+ei
= −λai,−j , Bnj ,nj−ei

= λbi,+j .

By introducing the notation w = [w1; · · · ;wNt ], where “;” indicates the straightening of {wi}i≥1

into a column vector, one obtains the following linear system

Lw = F, (2.25)

where

L =


I

−B I
. . .

. . .

−B I

 , F =


f1

f2

...

fNt

 .
For periodic boundary conditions, one has f1 = Bw0 and f i = 0 for i ≥ 2.

Theorem 2.1. Suppose that λ = ∆t/∆x satisfies the following CFL condition

λ
d∑
i=1

sup
x
|Fi(x)| ≤ 1.

(1) The condition number and the sparsity of L satisfy κ = O(1/∆t) and s = O(d).

(2) For fixed spatial step ∆x, let ∆t = O(∆x/d) and ω = (d∆x)1/3. Given the error tolerance ε,

the gate complexity of the QLSA (for the problem in Eq. (2.25)) is

NGates = Õ
(d3
ε3

log
1

ε

)
.

Proof. 1) We claim that ∥B∥2 ≤ 1 + ∆t∥divF∥∞. To this end, one can show that the summation

of the absolute values of row or column entries is not greater than 1 + ∆t∥divF∥∞.

Let Ri be the sum of absolute values of row entries. Since the i-th equation in Ax = b is actually

the i-th row of A multiplied by x, the entries of the i-th row of A are completely determined by

the i-th equation. On the other hand, the grid values corresponding to the initial or boundary

conditions in the i-th equation will increase the values of the summation of the absolute values of

row entries since they will be moved to the right-hand side. That is, Ri ≤ R̃i, where R̃i includes

the contribution from the initial-boundary values.

With the CFL condition, one has

c := 1− λ
d∑
i=1

(ai,+j − bi,−j ) ≥ 0.
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The argument is as follows. Without loss of generality, we set d = 1 and obtain

c = 1− λ

4
(Fj+1 − Fj−1 + |Fj+1 + Fj |+ |Fj−1 + Fj |) =: 1− λ

4
cF ,

where Fj = F (xj). This reduces to verify that cF contains only four terms of the grid values of F :

• For Fj−1 + Fj ≥ 0, one has

cF = Fj+1 − Fj−1 + |Fj+1 + Fj |+ Fj−1 + Fj = Fj+1 + Fj + |Fj+1 + Fj |,

as required.

• For Fj−1 + Fj < 0, one has

cF = Fj+1 − Fj−1 + |Fj+1 + Fj | − Fj−1 − Fj

=

Fj+1 − Fj−1 + Fj+1 − Fj−1, if Fj+1 + Fj ≥ 0,

−Fj−1 − Fj − Fj−1 − Fj , if Fj+1 + Fj < 0,

as required.

The above argument implies that

Ri ≤ R̃i ≤ 1− λ
d∑
i=1

(ai,+j − bi,−j ) + λ

d∑
i=1

(bi,+j − ai,−j )

= 1− λ
d∑
i=1

(ai,+j + ai,−j − bi,+j − bi,−j ) = 1− λ
d∑
i=1

(aij − bij)

= 1− λ
d∑
i=1

({
Fi(xi+1/2)

}
j
−
{
Fi(xi−1/2)

}
j

)
.

Since F is smooth, we obtain from the mean value theorem that

Ri ≤ 1− λ
d∑
i=1

({
Fi(xi+1/2)

}
j
−
{
Fi(xi−1/2)

}
j

)
= 1− λ

d∑
i=1

∂xiFi(ξi)∆x (xi−1/2 < ξi ≤ xi+1/2)

= 1−∆t

d∑
i=1

∂xiFi(ξi) ≤ 1 + ∆t∥divF∥∞,

where Fi(ξi) := Fi(xj1 , · · · , ξi, · · · , xjd).
Let Cj be the absolute column under discussion. The j-th column of A is exactly the collection

of the coefficients of xj in each equation of Ax = b, hence the absolute column sum is simply the

sum of the absolute values of the coefficients with respect to xj . Consider the variable w
n
j in (2.24).

Notice that the other subscripts are only shifted left and right once in some direction, and thus

the other elements of the corresponding column are only changed by the upper index i. This again

implies that

Cj ≤ 1− λ
d∑
i=1

(ai,+j − bi,−j ) + λ
d∑
i=1

(bi,+j − ai,−j ) ≤ 1 + ∆t∥divF∥∞.
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2) By definition, σmin(L) = 1/σmax(L
−1). After simple algebra, one has

L−1 =


I

B I

B2
. . .

. . .

...
. . .

. . .
. . .

BNt−1 · · · B2 B I

 =


I

I

. . .

. . .

I

+


B

. . .

. . .

B

+ · · · ,

which gives

σmax(L
−1) = ∥L−1∥2 ≤ ∥I∥2 + ∥B∥2 + ∥B∥22 + · · ·+ ∥B∥Nt−1

2 .

According to the previous analysis, one has

∥B∥2 ≤ 1 + ∆t∥divF∥∞ ≤ c =


1, ∥divF∥∞ = 0,

1 + ∆t, 0 < ∥divF∥∞ < 1,

1 + ∆t∥divF∥∞, ∥divF∥∞ ≥ 1,

and hence

σmax(L
−1) ≤ 1 + c+ c2 + · · · cNt−1 =

cNt − 1

c− 1
.

Noting that (1 + x/n)n ≤ ex holds for any real number, we then have

σmax(L
−1) ≤ 1

∆t
×


1, ∥divF∥∞ = 0

e, 0 < ∥divF∥∞ < 1

exp(∥divF∥∞), ∥divF∥∞ ≥ 1

,

which can be simply written as

σmax(L
−1) ≤ exp(∥divF∥∞ + 1)

1

∆t
,

hence

σmin(L) ≥
∆t

exp(∥divF∥∞ + 1)
.

By the Gershgorin-type theorem for singular values [29,52],

σmax(L) ≤ 1 + ∥B∥2 ≤ 2 + ∆t∥divF∥∞.

which gives

κ(L) ≤ (2 + ∆t∥divF∥∞) exp(∥divF∥∞ + 1)
1

∆t
≲ exp(∥divF∥∞)

1

∆t
.

3) In view of the CFL condition, we set ∆t = O(∆x/d). According to Lemma 2.1, the classical

error of the numerical approximation (if the first order upwind scheme is used to discretize the

Liouville equation) to the observables is O(ω + ∆t/ω + d∆x/ω2). One can choose ω such that

ω ∼ d∆x/ω2 or ω = (d∆x)1/3 so the numerical error becomes O((d∆x)1/3). To reach the precision

O(ε), we choose ∆x ∼ ε3/d, and hence ∆t/ω ∼ ε2/d2 ≤ ε. This naturally leads to the query

complexity [18]

Q = O
(
sκ log

1

ε

)
= O

(d3
ε3

log
1

ε

)
.

The gate complexity is larger than the query complexity only by logarithmic factors.
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Remark 2.3. Since the Liouville equation is in conservative form, one can get the l1 contracting

of the upwind scheme. Without loss of generality we set d = 1. The upwind scheme in (2.24) is

then given by

wn+1
j − (1− λ(a+j − b

−
j ))w

n
j + λ(a−j w

n
j+1 − b+j w

n
j−1) = 0,

where a±j = F (xj+1/2)
± and b±j = F (xj−1/2)

±. Since b±j = a±j−1, the scheme can be rewritten as

wn+1
j − (1− λ(a+j − a

−
j−1))w

n
j + λ(a−j w

n
j+1 − a+j−1w

n
j−1) = 0.

Under the CFL condition given in Theorem 2.1, one has

∥wn+1∥1 =
∑
j

|wn+1
j | ≤

∑
j

[
(1− λ(a+j − a

−
j−1))|w

n
j | − λa−j |w

n
j+1|+ λa+j−1|w

n
j−1|

]
=

∑
j

[
(1− λ(a+j − a

−
j−1))|w

n
j | − λa−j−1|w

n
j |+ λa+j |w

n
j |
]

=
∑
j

|wnj | = ∥wn∥1,

as required.

2.2.2 The algorithm for the computation of the observable

The quantum algorithm to approximate physical observables is presented in [31] with a detailed

analysis on the gate complexity, where the observable is computed by using the amplitude estima-

tion algorithm with block-encoding techniques augmented by amplitude amplification. Amplitude

amplification was used to achieve optimal scaling of the query complexity with respect to the error

ε while measuring an expectation value. However, since our purpose here is only to compare the

strengths of the Liouville approach versus the Koopman-von Neumann approach, for simplicity we

can instead compute the observable with a more straightforward means, without using amplitude

amplification. In this paper, we first obtain the quantum state proportional to the solution of the

problem, either with QLSA or with quantum simulation, then compute the observable afterwards.

The expectation of the observable

In order to measure observables, we need to express them as Hermitian operators. Let wj,n :=

ρωj,n be the solution of the upwind finite difference method (with the smoothed initial data δω).

One has

|ψ⟩ = 1

Nψ

∑
j,n

wj,n|j⟩|n⟩,

where the normalization constant Nψ = ∥w∥. With Gj in (2.15), we define the state

|Gn⟩ :=
1

NG

∑
j

G†
j |j⟩|n⟩,

where NG = (
∑

j |G
†
j |
2)1/2 is the normalisation constant. Given the density matrix G := |Gn⟩⟨Gn|,

we define Υ := ⟨ψ|G|ψ⟩. Simple algebra yields

⟨G(tn)⟩ ≈ ⟨Gρω ,n⟩ = nψnG|
√
Υ|, (2.26)
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where nG = NG/M
d/2 = O(1) is known and nψ = Nψ/M

d/2 may be unknown. We further define

⟨O⟩ = ⟨Gρω ,n⟩2 = (nGnψ)
2Υ := ⟨ψ|O|ψ⟩, O = (nGnψ)

2G. (2.27)

Then one only needs to estimate it to precision ε since

|⟨Gρω ,n⟩ − ⟨Gρω ,n⟩app| =
1

|⟨Gρω ,n⟩+ ⟨Gρω ,n⟩app|
|⟨O⟩ − ⟨O⟩app|

and ⟨Gρω ,n⟩ and ⟨Gρω ,n⟩app can be considered as O(1), where the subscript “app” refers to the

approximations.

The problem then reduces to approximating the normalisation constant Nψ = ∥w∥ to a desired

precision, where w = L−1F . This can be referred to as the amplitude estimation or linear equation

norm estimation in quantum computing [12, 44]. As shown in Fig. 1, for the QLSA of the upwind

discretisation, we first compute an approximation Ñψ of Nψ by using amplitude estimation, and

then construct the approximate observable with nψ replaced by ñψ.

Fig. 1: Construction of the observables when ∥w∥ is unknown.

The general sampling law

Since the measurement outcome is probabilistic in general, we have to evaluate the expectation

value via sampling. Let O be an observable with µ := ⟨O⟩ = ⟨ψ|O|ψ⟩ being the expectation value,

where |ψ⟩ is a quantum state. Suppose that we conduct n experiments with the outcomes labelled

µ1, · · · , µn. By the law of large numbers

Pr

(∣∣∣µ1 + · · ·+ µn
n

− µ
∣∣∣ < ε

)
≥ 1− Var(O)

nε2
,

where Var(O) is the variance. For a given lower bound p, the number of samples required to

estimate ⟨O⟩ to additive precision ε satisfies

1− Var(O)

nε2
≥ p =⇒ n ≥ 1

1− p
Var(O)

ε2
.

This implies a multiplicative factor Var(O)/ε2 in the total gate complexity [35,41], which is referred

to as the “general sampling law” in this article. We remark that in many cases of interest, the num-

ber of repetitions can be reduced to O(1/ε), up to polylogarithmic factors. For example, quantum

algorithms based on amplitude amplification and estimation are able to compute numerical approx-

imations to sums and integrals with a quadratic speedup over classical probabilistic algorithms, so
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that the number of repetitions of the quantum simulation follows the “quantum sampling law”

O(1/ε), up to polylogarithmic factors [35]. In this paper, we only assume the general sampling law

O(Var(O)/ε2). Noting that

Var(O) = (nGnψ)
4Var(G) ≲ n4ψ,

we may need to include this multiplicative factor n4ψ in the query complexity. Below we will show

that in fact we can replace this factor instead by nψ0 where nψ0 = Nψ0/M
d/2 = ∥w0∥/Md/2 as

defined in [31].

For the QLSA of the upwind discretisation, referring to the linear system (2.25), and noting

that ∥B∥ ≲ 1 + ∆t and ∥L−1∥ = σmax(L
−1) ≲ Nt, we have

Nψ = ∥w∥ = ∥L−1F∥ ≤ Nt∥F∥ ≲ Nt∥w0∥, and nψ ≲ Ntnψ0 ,

which gives the multiplicative factor N4
t n

4
ψ0
. However this N4

t factor can be removed as addressed

in [4, 41] by adding Nt copies of the final state wNt . That is, we add the following additional

equations

wn+1 −wn = 0, n = Nt, · · · , 2Nt (2.28)

in (2.25), which is referred to as the dilation procedure. For simplicity, we assume that ∥w1∥ =
· · · = ∥wNt∥ = ∥w0∥ = Nψ0 . Let the padded state vector be

ŵ = [ŵ1; · · · ; ŵNt ; ŵNt , · · · , ŵNt ] = |0⟩ ⊗ x+ |1⟩ ⊗ y, (2.29)

where |0⟩ = [1, 0]T , |1⟩ = [0, 1]T , and the unnormalized vectors are

x = [ŵ1; · · · ; ŵNt ], y = [ŵNt , · · · , ŵNt ],

satisfying

∥ŵNt∥2 = 1

2Nt
=

1

2NtN2
ψ0

∥wNt∥2.

Let us block the matrix O as (Oij) according to the structure of w. One easily finds that Oij = O

are zeros matrices when (i, j) ̸= (Nt, Nt). Then,

⟨O⟩ = ⟨ψ|O|ψ⟩ = 1

N2
ψ

⟨w|O|w⟩ = 1

N2
ψ

(wNt)†ONt,Ntw
Nt (2.30)

=
2NtN

2
ψ0

N2
ψ

(ŵNt)†ONt,Ntŵ
Nt =

2N2
ψ0

N2
ψ

(y)†Oyy
Nt

=
N2
ψ0

Md/2

Md/2

N2
ψ

⟨ŵ|Ô|ŵ⟩ = n2ψ0

1

n2ψ
⟨ŵ|Ô|ŵ⟩,

where Oy = diag(ONt,Nt , · · · , ONt,Nt), and Ô = diag(O, · · · ,O, Oy). It is evident that Var(Ô) ∼
Var(O), and hence Var(Ô/n2ψ) ≲ 1, which implies that the new multiplicative factor is n4ψ0

, as

expected. It’s worth pointing out that the solution vector in (2.29) only requires one ancilla qubit.
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Boosting the success probability of the final state projection

It can be seen from (2.30) that the observable is an expectation value taken with respect to

the value of the state at the final time. When the solution decays exponentially in time, the success

probability of projecting the history state onto the final state is exponentially small. One can raise

the success probability via the amplitude amplification as in [6, 16]. This implies a multiplicative

factor g = maxt∈[0,T ] ∥w(t)∥/∥w(T )∥ in the time complexity, which characterises the decay of the

final state relative to the initial state.

In conclusion, the additional multiplicative factor in the time complexity is gn4ψ0
/ε2 for the

computation of the observable. In the subsequent discussion, we will ignore the parameter g for

convenience. For the range of nψ0 , please refer to Lemma 14 in [31] for some discussions.

2.2.3 The gate complexity of computing the observable

The corresponding result for the quantum state is given in Theorem 2.1. We now consider the

computation of the observable. In this case, we have to discuss the additional cost in estimating

the norm of w. Let ⟨Õ⟩app be the approximate value of ⟨Õ⟩. Then the total error Err satisfies

Err := |⟨O⟩ − ⟨Õ⟩app| ≤ |⟨O⟩ − ⟨Õ⟩|+ |⟨Õ⟩ − ⟨Õ⟩app| =: I1 + I2, (2.31)

where the first term is for the estimation of Nψ = ∥w∥, and the second one is for the sampling.

We first need to evaluate Nψ = ∥w∥, with the result described as follows. One can refer

to [44, Theorem 16] and [12, Corollary 32] for details.

Lemma 2.3 (Estimation of ∥A−1b∥). Let Ax = b for an N×N matrix with sparsity s and condition

number κ. Then there exists a quantum algorithm that outputs α̃ such that

|α̃− ∥x∥| ≤ η∥x∥

with probability at least 0.99, in time

O
(
(TU + Tb)

κ

η
log3 κ log log

κ

η

)
,

where Tb is the time of constructing the state |b⟩ = 1
∥b∥

∑
bi|i⟩, and

TU = logN
(
logN + log2.5

sκ log(κ/η)

η

)
log2

κ

η
.

The cost Tb is neglected throughout the paper. With the help of the above result, we are

able to bound the gate complexity of computing the observable for the QLSA of the Liouville

representation.

Theorem 2.2. Suppose the condition of Theorem 2.1 is satisfied and supx |Fi(x)| = O(1) for i =

1, · · · , d. Given the error tolerance ε, if the QLSA for the upwind finite difference discretisation is

used, then the observable of the Liouville representation (2.5) can be computed with gate complexity

given by

NGates(⟨O⟩) = Õ
(n4Ld3

ε5
log

1

ε

)
,

where nL = ∥(ρω)0∥/Md/2.
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Proof. (1) For the error I1 in (2.31), let α and α̃ be the exact and approximate norms of w,

respectively. Denote ñψ = Ñψ/M
d/2 = α̃/Md/2 and nψ = Nψ/M

d/2 = α/Md/2, where |α̃−α| ≤ ηα.
Then

|(ñψ)2 − (nψ)
2| ≤ ηnψ(nψ + ñψ) ≤ η(2 + η)(nψ)

2,

and the error

I1 = |(nGñψ)2Υ− (nGnψ)
2Υ| ≤ η(1 + η)(nGnψ)

2Υ = η(2 + η)⟨O⟩.

This suggests to take η = O(ε) since ⟨O⟩ = O(1).
For the error I2, by the general sampling law, we can obtain an approximation ⟨Õ⟩app to preci-

sion ε by repeating the quantum algorithm k = O(n4ψ0
/ε2) times, where nψ0 = nL := ∥(ρω)0∥/Md/2.

(2) According to Theorem 2.1, one has

M = 1/∆x ∼ d/ε3, ∆t ∼ ∆x/d, κ ∼ 1/∆t ∼ d2/ε3, s ∼ d.

(3) Let T1 be the gate complexity of obtaining the estimation of Nψ. By Lemma 2.3,

T1 = Õ(κ/η) = Õ(d2/ε4).

Let T2 be the gate complexity of the QLSA. Then,

T2 = Õ
(
sκ log

1

ε

)
= Õ

(d3
ε3

log
1

ε

)
.

The overall gate complexity is

T = T1 + kT2 = Õ
(n4ψ0

d3

ε5
log

1

ε

)
.

The proof is completed.

Remark 2.4. As observed in the proof, the overall complexity T of the algorithm is dominated

by the complexity kT2 of sampling. This implies, when computing the observables, we just need

to multiply the original gate complexity under an appropriate mesh strategy by the sampling

factor k = O(Var(O)/ε2). We further remark that the classical cost contains exponential terms in

dimension like dd and (1/ε)d, which is absent in applications where nL does not grow so quickly.

Remark 2.5. Despite the absence of the unitary structure, we can still propose a “quantum

simulation” algorithm for the Liouville representation as shown in Appendix A by using the di-

mensional splitting Trotter based approximation. The basic idea of the algorithm is to transform

the asymmetric evolution in each direction into a symmetric one, which requires only a simple

variable substitution with the transformation matrix being diagonal. However, unlike the tradi-

tional time-marching Hamiltonian simulation, non-unitary procedures for the variable substitution

are involved, which leads to exponential increase of the cost arising from multiple copies of initial

quantum states at every time step as pointed out in Remark A.1.
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2.3 Finite difference discretisation for the KvN representation

2.3.1 The QLSA for the finite difference discretisation

We consider the upwind finite difference discretisation for the KvN representation, which can

be written as 
∂tu+

d∑
i=1

Fi
∂u
∂xi

+ 1
2(divF )u = 0, u = ψω,

u(x, 0) = ψω0 .

(2.32)

The scheme reads

un+1
j −

[
1− 1

2
∆t(divF )j − λ

d∑
ℓ=1

(bℓ,+j − bℓ,−j )
]
unj + λ

d∑
ℓ=1

[
bℓ,−j unj+eℓ

− bℓ,+j unj−eℓ

]
= 0, (2.33)

where

bk,±j =
{
Fk

}±

j
, j = (j1, · · · , jd).

In matrix form one has

un+1 −Bun = 0, n = 0, 1, · · · , Nt − 1. (2.34)

The final coefficient matrix L is of the same form as in Eq. (2.25).

Theorem 2.3. Suppose λ = ∆t/∆x satisfies the following CFL condition

λ
d∑
i=1

sup
x
|Fi(x)| ≤ 1.

(1) The condition number and the sparsity of L satisfy κ ≲ 1/∆t and s = O(d).

(2) For fixed spatial step ∆x, let ∆t = O(∆x/d) and ω = (d∆x)1/3. Given the error tolerance ε,

the gate complexity of the QLSA is

NGates = Õ
(d3
ε3

log
1

ε

)
.

Proof. The proof is similar to the argument in Theorem 2.1, so we omit the details.

Remark 2.6. For the upwind discretisation of the KvN representation, the forcing term 1
2(divF )u

will contribute to the l1 error an exponentially growing term like etn∥divF∥∞ . In fact, one easily

obtains from (2.33) that

∥un+1∥1 ≤
(
1 +

1

2
∆t∥divF∥∞

)
∥un∥1 ≤

(
1 +

1

2
∆t∥divF∥∞

)n
∥u0∥1

=
(
1 +

1

2

tn
n
∥divF∥∞

)n
∥u0∥1 ≤ etn∥divF∥∞∥u0∥1.

As a comparison, if one uses the Liouville equation, the l1 norm of the error is contracting, as

shown in Remark 2.3.
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2.3.2 The gate complexity of computing the observable

Let n = Nt for convenience. For the KvN approximation, from (2.21) we know that the

observable at t = tn is

⟨Oψω ,n⟩ =
1

Md/2
(ψωn )

†GMψ
ω
n ≈

1

Md/2
(un)†GMu

n =
1

Md/2
u†GMu,

where u is the solution of (2.34), and GM = diag(O, · · · ,O, GM ). Let

|ψ⟩ = 1

Nψ

∑
j,n

uj,n|j⟩|n⟩,

where the normalisation Nψ = ∥u∥. The expectation of the observable can be defined as

⟨Oψω ,n⟩ =
1

Md/2
⟨ψ|O|ψ⟩ =: ⟨O⟩, O =

N2
ψ

Md/2
GM .

One easily finds from (2.21) that Var(GM ) is bounded since

Var(GM ) = ⟨G2M ⟩ − ⟨GM ⟩2 ≤ ∥GMψ∥2 ≲ 1.

Following the similar analysis in Subsect. 2.2.2 for the Liouville representation, one obtains

the multiplicative factor in the time complexity can be given by n4K/ε
2, where nK = ∥u0∥/Md/4 =

∥(ψω)0∥/Md/4, where we have omitted the parameter g which characterises the decay of the final

state relative to the initial state. The arguments for computing the observable of the Liouville

representation also apply to the KvN representation. The corresponding result is described in the

following theorem.

Theorem 2.4. Suppose the condition of Theorem 2.3 is satisfied and supx |Fi(x)| = O(1) for

i = 1, · · · , d. Given the error tolerance ε, if the QLSA for the upwind finite difference discretisation

is used, then the observable of the KvN representation can be computed with gate complexity given

by

NGates(⟨O⟩) = Õ
(n4Kd3

ε5
log

1

ε

)
,

where nK = ∥(ψω)0∥/Md/4.

Proof. The KvN representation has the same error estimate as the Liouville representation, which

leads to the same mesh strategy. From Theorem 2.3, we also observe the same condition number

and sparsity for the associated coefficient matrix. We therefore obtain the same gate complexity

with the multiplicative factor replaced by n4K/ε
2.

Remark 2.7. In view of the relation (2.12), one easily finds that

nL =
∥(ρω)0∥
Md/2

=
∥(ψω)0∥2

Md/2
= n2K .

2.4 Spectral discretisation for the KvN representation

The KvN representation can be solved by quantum Hamiltonian simulation directly since

the evolutionary operator is Hermitian, where the Hamiltonian simulation can be realised by the

quantum version of the classical Fourier spectral method. On the other hand, we can also develop

the QLSA based method for the spectral discretisation.
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2.4.1 The notations

We consider the Fourier spectral discretisation. To this end, we first introduce some notations

frequently used in this article.

For one-dimensional problems we choose a uniform spatial mesh size ∆x = 1/M for M =

2N = 2m with m an positive integer and the time step ∆t, and we let the grid points and the time

step be

xj = j∆x, tn = n∆t, j = 0, 1, · · · , N, n = 0, 1, · · · .

We consider the periodic boundary conditions. For x ∈ [0, 1], the 1-D basis functions for the Fourier

spectral method are usually chosen as

ϕl(x) = eiµlx, µl = 2πl, 1 = −N, · · · , N − 1.

For convenience, we adjust the index as

ϕl(x) = eiµlx, µl = 2π(l −N − 1), 1 ≤ l ≤M = 2N.

The approximation in the 1-D space is

u(t, x) =

M∑
l=1

cl(t)ϕl(x), x = xj , j = 0, 1, · · · ,M − 1. (2.35)

which can be written in vector form, u(t) = Φc(t), where

u(t) = (u(t, xj))M×1, c = (cl)M×1, Φ = (ϕjl)M×M = (ϕl(xj))M×M .

The d-dimensional grid points are then given by xj = (xj1 , · · · , xjd), where j = (j1, · · · , jd),
and

xji = ji∆x, ji = 0, 1, · · · ,M − 1, i = 1, · · · , d.

We use the notation 1 ≤ j ≤ M to indicate 1 ≤ ji ≤ M for every component of j. The multi-

dimensional basis functions are written as ϕl(x) = ϕl1(x1) · · ·ϕld(xd), where l = (l1, · · · , ld) and

1 ≤ l ≤M . The corresponding approximate solution is u(t, x) =
∑

l cl(t)ϕl(x), with the coefficients

determined by the exact values at the grid or collocation points xj . These collocation values will

be arranged as a column vector:

u(t) =
∑
j

u(t, xj)|j1⟩ ⊗ · · · ⊗ |jd⟩.

That is, the nj-th entry of u is u(t, xj), with the global index given by

nj := j12
d−1 + · · ·+ jd2

0, j = (j1, · · · , jd).

Similarly cl is written in a column vector as c =
∑

l cl|l1⟩ ⊗ · · · ⊗ |ld⟩.
To determine the transformation matrix between u and c, let cl = cl1 · · · cld . Then

u(t, xj) =
∑
l

cl1 · · · cldϕl1(xj1) · · ·ϕld(xjd). (2.36)
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The direct calculation gives∑
j

u(t, xj)|j1⟩ ⊗ · · · ⊗ |jd⟩ =
(∑
j1,l1

cl1ϕl1(xj1)|j1⟩
)
⊗ · · · ⊗

(∑
jd,ld

cldϕld(xj1)|jd⟩
)
,

which implies

u = (Φc(1))⊗ · · · ⊗ (Φc(d)) = (Φ⊗ · · · ⊗ Φ)(c(1) ⊗ · · · ⊗ c(d)) = Φ⊗d
c,

where

Φ⊗d
= Φ⊗ · · · ⊗ Φ︸ ︷︷ ︸

d matrices

, c(i) = (cli)M×1,

c = c(1) ⊗ · · · ⊗ c(d) =
∑
l

cl|l1⟩ ⊗ · · · ⊗ |ld⟩. (2.37)

This shows that by arranging xj in the order of |j1⟩⊗· · ·⊗|jd⟩, and cl in the order of |l1⟩⊗· · ·⊗|ld⟩,
the corresponding coefficient matrix is exactly the tensor product of the matrices in one dimension.

For later use, we next determine the transitions between the position operator x̂j and the

momentum operator P̂j = −i ∂
∂xj

in discrete settings.

We first consider the one-dimensional case. Let u(x) be a function in one dimension and

u = [u(x0), · · · , u(xM−1)]
T be the mesh function with M = 2N . The discrete position operator x̂d

of x̂ can be defined as

x̂d : u =
(
u(xi)

)
→

(
xiu(xi)

)
= Dxu or x̂du = Dxu,

where Dx = diag(x0, x1, · · · , xM−1) is the matrix representation of the position operator in x-space.

By the discrete Fourier expansion in (2.35), the momentum operator can be discretised as

P̂ u(x) ≈ P̂
M∑
l=1

clϕl(x) =

M∑
l=1

clP̂ ϕl(x) =

M∑
l=1

cl(−i∂xϕl(x))

=
M∑
l=1

clµlϕl(x), µl = 2π(l −N − 1)

for x = xj , j = 0, 1, · · · ,M − 1, which is written in matrix form as

P̂ du = ΦDµΦ
−1u =: Pxu, Dµ = diag(µ1, · · · , µM ),

where P̂ d is the discrete momentum operator. The matrices Dµ and Px can be referred to as

the matrix representation of the momentum operator in p-space and x-space, respectively, and are

related by the discrete Fourier transform.

For d dimensions, we still denote u =
∑

j u(xj)|j1⟩ · · · |jd⟩. Let

u(xj) = u(xj1 , · · · , xjd) = u(1)(xj1) · · ·u(d)(xjd),

where u(l) = Φc(l). One has u = u(1) ⊗ · · · ⊗ u(d). The discrete position operator x̂dl is defined as

x̂dl : u = u(1) ⊗ · · · ⊗ u(d) → u(1) ⊗ · · · ⊗ ũ(l) ⊗ · · · ⊗ u(d),
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where

ũ(l) :=
(
xjliu

(l)(xjli )
)
= Dxu

(l).

Then,

x̂dl u = (I⊗
l−1 ⊗Dx ⊗ I⊗

d−l
)u =:Dlu.

Using the expansion in (2.36), one easily finds that

P̂ d
l u = (I⊗

l−1 ⊗ Px ⊗ I⊗
d−l

)u =: Plu.

Note that

(Φ⊗d
)−1PlΦ

⊗d
= I⊗

l−1 ⊗Dµ ⊗ I⊗
d−l

=:Dµ
l . (2.38)

2.4.2 The QLSA for the spectral discretisation

Let us consider the matrix representation of the operator Ĥj in (2.8), where

Ĥj =
1

2
(Fj(x̂)P̂j + P̂jFj(x̂)).

For clarity, we still use u to denote the mesh function of ψ (see the notations in Subsect. 2.4.1).

When performing series expansion on F , one has

Fj(x̂
d)u :=

∑
l

al(x̂
d
1)
l1 · · · (x̂dd)ldu =

∑
l

al(D
l1
1 · · ·D

ld
d )u

=
∑
l

al(D
l1
x ⊗ · · · ⊗Dld

x )u =: Fju

in the discrete setting, where Fj is clearly a diagonal matrix. We assume that the series expansion

is accurate enough to simplify the discussion. Then one has

Ĥd
j u =

1

2
(Fj(x̂

d)P̂ d
j + P̂ d

j Fj(x̂
d))u =

1

2
(FjPj + PjFj)u

= (F
(1)
j ⊗ · · · ⊗ F (j−1)

j ⊗ F̃ (j)
j ⊗ F

(j+1)
j ⊗ · · · ⊗ F (d)

j )u =:Hju,

where each F
(l)
j is a diagonal matrix and

F̃
(j)
j =

1

2
(PxF

(j)
j + F

(j)
j Px).

One easily finds that the sparsity of Hj is O(M). The resulting system of ordinary differential

equations is 
d
dtu(t) = Au(t), A = −i

d∑
j=1
Hj ,

u(0) = (ψω(0, xj)).

(2.39)

The analytic solution is obviously given by

u(t) = eAtu(0) = exp
(
− i

d∑
j=1

Hj

)
u(0),
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which implies ∥u(t)∥ = ∥u(0)∥ for any t ≥ 0 since Hj are real symmetric matrices. Let n = Nt

and denote

|ψ⟩ = 1

Nψ

∑
j

unj |j⟩, Nψ = ∥un∥.

Since Nψ = ∥un∥ = ∥u0∥ =: Nψ0 , the observable can be reformulated as

⟨Oψω ,n⟩ =
1

Md/2
(ψωn )

†GMψ
ω
n ≈

1

Md/2
(un)†GMu

n =
N2
ψ0

Md/2
⟨ψ|GM |ψ⟩ =: ⟨ψ|O|ψ⟩.

The ODEs in (2.39) can be solved by the quantum differential equations solver reported in

[4,6,16]. Here we consider the one in [6] with the result described below. For convenience, we still

refer it to as the QLSA based method since the approach in [6] applies the QLSA.

Lemma 2.4. Suppose A = V −1DV is an N×N diagonalizable matrix, where D = diag(λ1, · · · , λN )
satisfies Re(λj) ≤ 0 for any j ∈ {1, · · · , N}. In addition, suppose A has at most s nonzero entries

in any row and column, and we have an oracle OA that computes these entries. Suppose xin and

b are N -dimensional vectors with known norms and that we have two controlled oracles, Ox and

Ob, that prepare the states proportional to xin and b, respectively. Let x evolve according to the

differential equation
dx

dt
= Ax+ b

with the initial condition x(0) = xin. Let T > 0 and g = maxt∈[0,T ] ∥x(t)∥/∥x(T )∥. Then there

exists a quantum algorithm that produces a state ϵ-close to x(T )/∥x(T )∥ in l2 norm, succeeding

with probability Ω(1), with a flag indicating success, using

O
(
sκV ∥A∥gT · Poly(log(sκV ∥A∥gTβ/ε))

)
queries to OA, Ox , and Ob, where κV is the condition number of the transformation matrix

V , g characterises the decay of the final state relative to the initial state, and β = (∥xin∥ +
T∥b∥)/∥x(T )∥. The gate complexity of this algorithm is larger than its query complexity by a

factor of Poly(log(sNκV ∥A∥gTβ/ε)).

Note that the parameter g can be dropped if we only output the quantum state |x⟩, not the

projection |x(T )⟩. For the approximate evolutionary operator in (A.2), we are ready to quantify

the gate complexity for the QLSA.

Remark 2.8. The authors in [6] utilised the matrix exponential to construct a linear system for the

ODEs and solved the linear system by using the QLSA proposed in [18]. As claimed in [18], the gate

complexity exceeds the query complexity by a multiplicative factor O(logN + log2.5(sκ/ε)), where

N = O(Md) is the order of the matrix A. This implies the linear dependence of the dimension d

when considering the gate complexity with respect to the matrix order.

Theorem 2.5. Assume that max1≤j≤d ∥Fj∥ = O(1) and T = O(1).

(1) There exists a quantum algorithm that produces a state ε-close to u(T )/∥u(T )∥ with the gate

complexity given by

NGates = Õ
(d2+2/ℓ

ε2+4/ℓ

)
.
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(2) The observable of the KvN representation can be computed with gate complexity given by

NGates(⟨O⟩) = Õ
(n4Kd2+2/ℓ

ε4+4/ℓ

)
,

where nK = ∥(ψω)0∥/Md/4.

Proof. (1) Let A = V −1DV with D = diag(λ1, · · · , λN ), , where N = O(Md) is the order of

A. Since Hj are real symmetric matrices, the matrix
∑d

j=1Hj has only real eigenvalues and the

transformation matrix V can be chosen as an orthogonal matrix. This implies Re(λj) = 0 for any

j ∈ {1, · · · , N} and κV = 1. According to Lemma 2.4, there exists a quantum algorithm that

produces a state ε-close to u(T )/∥u(T )∥ with the gate complexity given by

NGates = O
(
sκV ∥A∥T · Poly(log(sNκV ∥A∥T/ε))

)
,

where we have omitted the parameter g that characterises the decay of the final state relative to

the initial state.

It is evident that the sparsity of A is O(M) = O(1/∆x). The norm of A satisfies

∥A∥ ≤
d∑
j=1

∥Hj∥ ≤
d∑
j=1

∥Fj∥∥Pj∥ ≤
d∑
j=1

∥Fj∥∥Dµ
j ∥

≤M
d∑
j=1

∥Fj∥ ≤ dM max
1≤j≤d

∥Fj∥ = d/∆x · max
1≤j≤d

∥Fj∥.

According to Lemma 2.2, the error of the spectral discretisation is O(ω+∆tα/ωα+d∆xℓ/ωℓ+1),

where α is for the precision of the temporal discretisation which has been considered in the quantum

algorithm in [6]. To reach a precision of ε, one just needs to set ω ∼ d∆xℓ/ωℓ+1 ∼ ε, and gets

∆x ∼ ε1+2/ℓ/d1/ℓ. Therefore, we have

NGates = Õ
( d

∆x2

)
= Õ

(d2+2/ℓ

ε2+4/ℓ

)
.

where in the last equal sign we have included the additional factor d arising from the matrix order

(see Remark 2.8).

(2) For the spectral discretisation, the constant Nψ is known. The desired estimate follows

from the general sampling law.

2.4.3 The quantum simulation for the spectral discretisation

The ODEs (2.39) can also be solved by quantum Hamiltonian simulations.

Theorem 2.6. Given the error tolerance ε, assume that max1≤j≤d ∥Fj∥∞ = O(1) and the simula-

tion time t = O(1).

(1) The semi-discrete problem (2.39) obtained from the spectral discretisation of the KvN represen-

tation can be simulated with gate complexity given by

NGates = Õ
(d2+2/ℓ

ε2+4/ℓ

)
.
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(2) The observable of the KvN representation can be computed with gate complexity given by

NGates(⟨O⟩) = Õ
(n4Kd2+2/ℓ

ε4+4/ℓ

)
,

where nK = ∥(ψω)0∥/Md/4.

Proof. (1) Let H =
∑d

j=1Hj . Then the evolution of (2.39) can be written as |ψ(t)⟩ = e−iHt|ψ(0)⟩.
According to Theorem 1 in [5], e−iHt can be simulated within error ε with

O
(
τ(md + log2.5(τ/ε))

log(τ/ε)

log log(τ/ε)

)
= O(τmd · polylog)

2-qubits gates, where τ = s∥H∥maxt, s is the sparsity of H and ∥H∥max denotes the largest entry

of H in absolute value, and

polylog ≡ log2.5(τ/ε)
log(τ/ε)

log log(τ/ε)
.

This result is near-optimal by Theorem 2 therein.

The sparsity of H is s = O(M). According to the proof of Theorem 2.5, the mesh strategy is

M = 1/∆x = d1/ℓ/ε1+2/ℓ, and hence the number of qubits per dimension is

m = O(logM) = O
(
log

d1/ℓ

ε1+2/ℓ

)
.

The total number of qubits is md = dm. With these settings, noting that

Hmax ≤
d∑
j=1

∥Hj∥∞ ≲M
d∑
j=1

∥Fj∥∞ ≤ dM · max
1≤j≤d

∥Fj∥∞,

one has

τ = O
(d1+2/ℓ

ε2+4/ℓ

)
, τ/ε = O

(d1+2/ℓ

ε3+4/ℓ

)
.

The gate complexity for solving the ODEs is then given by

NGates = Õ
(d2+2/ℓ

ε2+4/ℓ

)
.

(2) The gate complexity for computing the observable is obtained from the general sampling

law.

One can also run the simulation along each direction by using the Trotter based approximation.

The evolution of (2.8) can be written as

|ψ(t+∆t)⟩ = e−i(Ĥ1+···+Ĥd)∆t|ψ(t)⟩.

Let

U∆t = e−iĤd∆t · · · e−iĤ1∆t. (2.40)

One has [15,51]

e−i(Ĥ1+···+Ĥd)∆t = U∆t + CH∆t
2, (2.41)

where CH depends on the operator Ĥ = Ĥ1 + · · ·+ Ĥd or the matrix H, considered as O(1) in the

following. Therefore, the problem is reduced to the simulation of each Ĥj .
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Remark 2.9. One can clearly make the time discretization second order by using Strang’s splitting.

Since other methods use first order time discretization, in order to compare the time complexities

on equal footing we also use first order time discretization, namely the simple splitting, here.

First, we determine the mesh strategy. According to the error estimate in Lemma 2.2 and

noting Eq. (2.41), one has the error estimate

eψ ≤ C(ω +∆t/ω + d∆xℓ/ωℓ+1).

The above error bounds suggest the following mesh strategy:

M = 1/∆x = O(d1/ℓ/ε1+2/ℓ), ∆t ∼ ε2. (2.42)

Second, we quantify the number of gates used in the quantum simulation. According to

Theorem 1 in [5], e−iĤj∆t can be simulated within error η with

O
(
τ(md + log2.5(τ/η))

log(τ/η)

log log(τ/η)

)
2-qubits gates, where τ = s∥Hj∥max∆t, s is the sparsity of Hj and ∥Hj∥max denotes the largest

entry of Hj in absolute value. One can check that the sparsity of Hj is s = O(M). Therefore, U∆t

defined in (2.40) can be simulated within error O(dη) [41, Proposition 1.12] with

NGates(U∆t) = O(dτmd · polylog),

where

τ =MH̃max∆t, H̃max = max
j
∥Hj∥max ≲M max

j
∥Fj∥max,

polylog = log2.5(τ/η)
log(τ/η)

log log(τ/η)
.

We also need dη = O(∆t2) or η = O(ε4/d), and the number of qubits per dimension is m =

O(log(d1/ℓ/ε1+2/ℓ)). The total number of qubits is md = dm. With these settings, we obtain

τ = O
(
∆t

d2/ℓ

ε2+4/ℓ

)
, τ/η = O

(d1+2/ℓ

ε6+4/ℓ

)
,

and the total number of gates required to iterate to the n-th step is

NGates = nNGates(U∆t) = Õ
(d2+2/ℓ

ε2+4/ℓ

)
,

which is comparable to the result in Theorem 2.6.

Remark 2.10. From time t = tn to time t = tn+1, we solve un+1 = Ud
∆tu

n, where Ud
∆t is the

discrete version of U∆t in (2.40), given by Ud
∆t = e−iĤd

d∆t · · · e−iĤd
1∆t. According to the previous

discussions, one has Ud
∆tu

n = Bun, with B = e−iHd∆t · · · e−iH1∆t. One can alternatively solve a

linear system LU = F in the form of Eq. (2.25), which, however, is not a suitable algorithm because

the sparsity of L grows exponentially with the number of dimensions, i.e., s(L) = O(Md).
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3 Liouville representation for nonlinear Hamilton-Jacobi PDEs:

finite difference vs. spectral approximations

In [31], the level set method was used to map the nonlinear Hamilton-Jacobi equation into linear

Liouville equation in the phase space, based on which quantum algorithms were then constructed.

Hamilton-Jacobi equations take the following general form

∂tS +H(∇S, x) = 0, (3.1)

S(0, x) = S0(x)

with t ∈ R+, x ∈ Rd, S(t, x) ∈ R. Define u = ∇S ∈ Rd. Then u solves a hyperbolic system of

conservation laws in gradient form:

∂tu+∇H(u, x) = 0, (3.2)

u(0, x) = ∇S0(x).

The level set function ϕi(t, x, p) can be defined by

ϕi(t, x, p = u(t, x)) = 0,

where i = 1, · · · , d and x, p ∈ Rd, and u(t, x) is the solution of Eq. (3.2). The zero level set of ϕ is the

set {(t, x, p)|ϕi(t, x, p) = 0}. Since u(t, x) solves Eq. (3.2), one can show that ϕ = (ϕ1, · · · , ϕd) ∈ Rd

solves a (linear!) Liouville equation [33]

∂tϕ+∇pH · ∇xϕ−∇xH · ∇pϕ = 0. (3.3)

The initial data can be chosen as

ϕi(0, x, p) = pi − ui(0, x), i = 1, · · · , d. (3.4)

Then u can be recovered from the intersection of the zero level sets of ϕi (i = 1, · · · , d), namely

u(t, x) = {p(t, x)|ϕi(t, x, p) = 0, i = 1, · · · , d}.

To retrieve physical observables (and to avoid finding the zero level set of ϕ which is challenging)

later, [31] proposed to solve for ψ, defined by the following problem

∂tψ +∇pH · ∇xψ −∇xH · ∇pψ = 0, (3.5)

ψ(0, x, p) =

d∏
i=1

δ(pi − ui(0, x)),

whose analytical solution is ψ(t, x, p) = δ(ϕ(t, x, p)). We have thus transformed a (d+1)-dimensional

nonlinear Hamilton-Jacobi PDE to a (2d + 1)-dimensional linear PDE – the Liouville equation,

without any approximations or constraints on the nonlinearity. The mapping is exact, but at the

expense of doubling the spatial dimension.

In the following, we consider a typical case, namely H(x, p) = 1
2 |p|

2 + V (x). The Liouville

equation is then rewritten as ∂tw + p · ∇xw −∇xV (x) · ∇pw = 0,

w(0, x, p) = ψω(0, x, p) =
∏d
i=1 δω(pi − ui(0, x)),

(3.6)

where we have assumed the smoothed initial data.
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3.1 Finite difference discretisation for the Liouville equation

3.1.1 The QLSA for the finite difference discretisation

Consider x, p together as a new variable, and write y = (x, p) = (x1, · · · , xd, p1, · · · , pd) =

(y1, · · · , y2d). Use the same uniform mesh in each yi direction. Let j = (j1, · · · , jd, jd+1, · · · , j2d).
Then the upwind discretisations for each term of the equation in (4.6) are

∂tw −→
wn+1
j − wnj

∆t
,

∂H

∂pi

∂w

∂xi
−→ 1

∆x

{∂H
∂pi

}−

j
(wnj+ed+i

− wnj ) +
1

∆x

{∂H
∂pi

}+

j
(wnj − wnj−ed+i

),

− ∂H
∂xk

∂w

∂pk
−→ − 1

∆x

{ ∂H
∂xk

}+

j
(wnj+ek

− wnj )−
1

∆x

{ ∂H
∂xk

}−

j
(wnj − wnj−ek

),

where

α+ = max{α, 0} = α+ |α|
2

, α− = min{α, 0} = α− |α|
2

.

For convenience we introduce the following notation

ak,±j =
{ ∂H
∂xk

}±

j
, bi,±j =

{∂H
∂pi

}±

j
.

The discrete scheme can be written as

wn+1
j − wnj + λ

d∑
i=1

[
bi,−j (wnj+ed+i

− wnj ) + bi,+j (wnj − wnj−ed+i
)
]

− λ
d∑

k=1

[
ak,+j (wnj+ek

− wnj ) + ak,−j (wnj − wnj−ek
)
]
= 0,

or

wn+1
j −

[
1− λ

d∑
ℓ=1

(bℓ,+j − bℓ,−j + aℓ,+j − aℓ,−j )
]
wnj

+ λ
d∑
ℓ=1

[
bℓ,−j wnj+ed+ℓ

− bℓ,+j wnj−ed+ℓ
− aℓ,+j wnj+eℓ

+ aℓ,−j wnj−eℓ

]
= 0. (3.7)

In matrix form one has

wn+1 −Bwn = fn+1, n = 0, 1, · · · , Nt − 1,

with f i being the terms resulting from the initial and boundary conditions, where the nodal values

at t = tn are arranged as

wn =
∑
j

wnj |j1⟩ ⊗ · · · ⊗ |jd⟩ ⊗ · · · ⊗ |j2d⟩.

That is, the nj-th entry of Wn is wnj , with the global index given by nj := j12
2d−1 + · · · + j2d2

0.

The non-zero entries of B can be provided by using the global index as before. The resulting linear

system is

Lw = F, (3.8)
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where

w = [w1; · · · ;wNt ], F = [f1;f2; · · · ;fNt ].

The coefficient matrix L is of the same form as in Eq. (2.25). Note that we consider the Liouville

equation with the smoothed initial data, and for periodic boundary conditions, one has f1 = Bw0

and f i = 0 for i ≥ 2.

Theorem 3.1. Suppose λ = ∆t/∆x satisfies the following CFL condition

λ

d∑
i=1

(
sup
x,p
|∂xiH|+ sup

x,p
|∂piH|

)
≤ 1,

and assume

sup
x,p
|∂xiH|+ sup

x,p
|∂piH| = O(1), i = 1, · · · , d.

Then the condition number and the sparsity of L satisfy κ = O(1/∆t) and s = O(d). For fixed

spatial step ∆x, let ∆t = O(∆x/d) and ω = (d∆x)1/3. Given the error tolerance ε, the gate

complexity of the quantum difference method is

NGates = Õ
(d3
ε3

log
1

ε

)
.

Proof. The proof is similar to the argument in Theorem 2.1, so we omit the details.

3.1.2 The computation of the physical observables

In the following, we consider the computation of the physical observables for the Liouville

equation and assume the periodic boundary conditions. Then physical observables are defined as

⟨G(t, x)⟩ =
∫
Rd

G(p)ψ(t, x, p)dp, (3.9)

where G(p) = 1, p, |p|2/2 for example, which yield density, momentum and kinetic enregy respec-

tively [31]. As in (2.15), one can compute the integral (3.9) by using the numerical quadrature

rule

⟨G(tn, xj)⟩ =
∫
Rd

ψ(tn, xj , p)dp ≈
1

Md

∑
l

Glψ
ω
j,l,n =

1

Md

∑
l

Glwj,l,n =: ⟨Gωn,j⟩, (3.10)

where, Gl are the weights, j = (j1, · · · , jd) and l = (l1, · · · , ld) and M is the number of points in

each dimension of the 2d phase space.

Letwj,l,n be the solution of the classical spectral method or the upwind finite difference method

(for the smoothed initial data). Then for the QLSA one has

|ψ⟩ = 1

Nψ

∑
j,l,n

wj,l,n|j⟩|l⟩|n⟩,

where the normalisation Nψ = ∥w∥. For the quantum simulation method, one can just remove the

“time register” (in this case Nψ is for time t = tn). With Gl in (3.10), we define the state

|Gn,j⟩ :=
1

NG

∑
l

G†
l |j⟩|l⟩|n⟩
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where NG =
√∑

l |G
†
l |2 is the normalisation. Given the density matrix G := |Gn,j⟩⟨Gn,j |, we define

Υ := ⟨ψ|G|ψ⟩. A simple algebra yields

⟨G(tn, xj)⟩ ≈ ⟨Gωn,j⟩ = nψnG|
√
Υ|,

where nG = NG/M
d/2 = O(1) is known and nψ = Nψ/M

d/2 may be unknown. We further define

⟨O⟩ = ⟨Gωn,j⟩2 = (nGnψ)
2Υ := ⟨ψ|O|ψ⟩, O = (nGnψ)

2G,

as in Subsect. 2.2.2.

Theorem 3.2. Suppose the condition of Theorem 3.1 is satisfied. Given the error tolerance ε, if

the QLSA for the upwind finite difference discretisation is used, then the observable of the Liouville

equation (3.5) can be computed with gate complexity given by

NGates(⟨O⟩) = Õ
(n4Hd3

ε5
log

1

ε

)
,

where nH = ∥(ψω)0∥/Md/2.

Proof. According to Remark 2.4, one just needs to multiply the gate complexity in Theorem 3.1

by the factor n4H/ε
2.

Remark 3.1. According to Lemma 14 in [31], one has nH = O(βdMd/2) if we assume the initial

data has support in a box of size β.

3.2 Spectral discretisation for the Liouville equation

3.2.1 The QLSA for the spectral discretisation

Now we consider solving the Liouville equation in (3.6) by using the Fourier spectral methods.

For simplicity, the periodic boundary conditions are used for the spectral discretisation. To this

end, we introduce some notations. We always assume that x = (x1, · · · , xd) ∈ [0, 1]d and p =

(p1, · · · , pd) ∈ [0, 1]d. Introduce a new variable y = (x, p) = (x1, · · · , xd, p1, · · · , pd), and set

w(t, x, p) = w(t, y) =
∑
l

cl(t)ϕl(y), l = (l1, · · · , ld, ld+1, · · · , l2d). (3.11)

The collocation points are denoted by yj with j = (jx, jp). As in (2.37), we define c = cx⊗cp, where
cx = c(1) ⊗ · · · ⊗ c(d) and cp = c(d+1) ⊗ · · · ⊗ c(2d). We also introduce the notation w = wx ⊗wp,

where wx = w(1) ⊗ · · · ⊗w(d), wp = w(d+1) ⊗ · · · ⊗w(2d), and w(l) = Φc(l) can be viewed as the

approximate solution of w in yl direction.

According to the discussion in Subsect. 2.4.1, the first term can be discretised as

p · ∇xw = i

d∑
l=1

yl+d(−i∂yl)w −→ i

d∑
l=1

ŷl+dP̂
d
l (wx ⊗wp)

= i
d∑
l=1

(I⊗
d ⊗Dl)(Pl ⊗ I⊗

d
)(wx ⊗wp) = i

d∑
l=1

(Pl ⊗Dl)(wx ⊗wp).
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For the second term, one has

∇xV (x) · ∇pw = (∂1V (x), · · · , ∂dV (x)) · ∇pw =: (v1(x), · · · , vd(x)) · ∇pw

=
d∑
l=1

vl(x)∂yl+d
w = i

d∑
l=1

vl(x)(−i∂yl+d
)w −→ i

d∑
l=1

vl(x̂
d)P̂ d

l+d(wx ⊗wp)

= i

d∑
l=1

(Vl ⊗ I⊗
d
)(I⊗

d ⊗ Pl)(wx ⊗wp) = i

d∑
l=1

(Vl ⊗ Pl)(wx ⊗wp),

where

Vk = diag(vk), vk =
∑
jx

vk(xjx)|j1⟩ · · · |jd⟩ =
∑
jx

∂kV (xjx)|j1⟩ · · · |jd⟩.

Let

A = −i
d∑
l=1

(Pl ⊗Dl − Vl ⊗ Pl) =: −iÃ. (3.12)

Note that Ã is a real symmetric matrix. The resulting ODEs is
d
dtu(t) = Au(t),

u(0) = (ψω(0, yj)).
(3.13)

We are ready to apply the quantum algorithm in [6] to solve the above ODEs, with the time

complexity described below.

Theorem 3.3. Assume that max1≤l≤d ∥Vl∥ = O(1) and T = O(1).

(1) There exists a quantum algorithm that produces a state ε-close to u(T )/∥u(T )∥ with the gate

complexity given by

NGates = Õ
(d2+2/ℓ

ε2+4/ℓ

)
.

(2) The observable of the Liouville equation can be computed with gate complexity given by

NGates(⟨O⟩) = Õ
(n4Hd2+2/ℓ

ε4+4/ℓ

)
,

where nH = ∥(ψω)0∥/Md/2.

Proof. The argument is similar to that of Theorem 2.5.

(1) Let A = V −1DV with D = diag(λ1, · · · , λN ). Since the matrix Ã in (3.12) is a real

symmetric matrix, Re(λj) = 0 for any j ∈ {1, · · · , N} and κV = 1. According to Lemma 2.4, there

exists a quantum algorithm that produces a state ε-close to u(T )/∥u(T )∥ with the gate complexity

given by

NGates = O
(
sκV ∥A∥T · Poly(log(sNκV ∥A∥T/ε))

)
,

where we have omitted the parameter g that characterises the decay of the final state relative to

the initial state.
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It is evident that the sparsity of A is O(M) = O(1/∆x). The norm of A satisfies

∥A∥ ≤
d∑
l=1

∥Pl ⊗Dl − Vl ⊗ Pl∥ ≤
d∑
l=1

(∥Pl∥∥Dl∥+ ∥Vl∥∥Pl∥)

≲M
d∑
l=1

(∥Dl∥+ ∥Vl∥) ≲ dM max
1≤l≤d

(1 + ∥Vl∥).

According to Lemma 2.2, the error of the spectral discretisation is O(ω+∆tα/ωα+d∆xℓ/ωℓ+1),

where α is for the precision of the temporal discretisation which has been considered in the quantum

algorithm in [6]. To reach a precision of ε, one just needs to set ω ∼ d∆xℓ/ωℓ+1 ∼ ε, and gets

∆x ∼ ε1+2/ℓ/d1/ℓ. Therefore, we have

NGates = O
( d

∆x2

)
= O

(d2+2/ℓ

ε2+4/ℓ

)
,

where in the last equal sign we have included the additional factor d arising from the matrix order

(see Remark 2.8).

(2) For the spectral discretisation, the constant nψ = Nψ/M
d/2 is known since Nψ = ∥uNt∥ =

∥u0∥ = Nψ0 . The desired estimate follows from the general sampling law.

3.2.2 The quantum simulation for the spectral discretisation

One can directly solve the ODEs (3.13) by using the quantum simulation since Ã is real

symmetric. We in the following consider the Fourier spectral methods based on the time-splitting

approximations.

From time t = tn to time t = tn+1, the Liouville equation is solved in two steps: One solves

∂tw + p · ∇xw = 0 (3.14)

for one time step, followed by solving

∂tw −∇xV (x) · ∇pw = 0 (3.15)

again for one time step.

Step 1. According to the previous discussion, one has

p · ∇xw −→ i

d∑
l=1

(Pl ⊗Dl)(wx ⊗wp).

Since Plwx = Φ⊗d
Dµ
l cx, the first step (3.14) gives

d

dt
(cx ⊗wp) + i

d∑
l=1

(Dµ
l ⊗Dl)(cx ⊗wp) = 0,

which can be written as
d

dt
(cx ⊗wp) + iL(cx ⊗wp) = 0,

where

L = Dµ ⊗ I⊗
d−1 ⊗Dp ⊗ I⊗

d−1
+ · · ·+ I⊗

d−1 ⊗Dµ ⊗ I⊗
d−1 ⊗Dp
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is a diagonal matrix. Therefore the intermediate solution of the first step is

(cx ⊗wp)
∗ = e−iL∆t(cx ⊗wp)

n.

Step 2. The second step is to solve (3.15), i.e.,

0 = ∂tw −∇xV (x) · ∇pw = ∂tw − (∂1V (x), · · · , ∂dV (x)) · ∇pw

=: ∂tw − (v1(x), · · · , vd(x)) · ∇pw.

Similar to the first step, one has

(wx ⊗ cp)n+1 = eiU∆t(wx ⊗ cp)∗,

where

U = V1 ⊗Dµ ⊗ I⊗
d−1

+ · · ·+ Vd ⊗ I⊗
d−1 ⊗Dµ

is a diagonal matrix, and

Vk = diag(vk), vk =
∑
jx

vk(xjx)|j1⟩ · · · |jd⟩ =
∑
jx

∂kV (xjx)|j1⟩ · · · |jd⟩.

Given the initial state of w0, applying the inverse QFT to the x-register, one gets (cx ⊗wp)
0.

At each time step, one needs to consider the following procedure

(cx ⊗wp)
n e−iL∆t

−−−−→ (cx ⊗wp)
∗ Fx⊗F−1

p−−−−−→ (wx ⊗ cp)∗
eiU∆t

−−−→ (wx ⊗ cp)n+1 F−1
x ⊗Fp−−−−−→ (cx ⊗wp)

n+1,

where Fx = Fp = Φ⊗d
.

Theorem 3.4. Given the error tolerance ε, assume that S0(x), A0(x) and V (x) are smooth enough.

(1) The Liouville equation can be simulated with gate complexity given by,

NGates = O
( d
ε2

log
d1/ℓ

ε1+2/ℓ

)
.

(2) The observable of the Liouville equation can be computed with gate complexity given by

NGates(⟨O⟩) = O
(n4Hd
ε4

log
d1/ℓ

ε1+2/ℓ

)
,

where nH = ∥(ψω)0∥/Md/2.

Proof. When S0(x) and V (x) are smooth, the time-splitting spectral method has the error estimate

∥wn(·)− w(tn, ·)∥ ≤ Cℓ
(
ω +

∆t

ω
+
d∆xℓ

ωℓ+1

)
, (3.16)

where ωℓ+1 comes from the ℓ-th order derivative of w := wω, and Cℓ is an O(1) constant. Then

one can implement the following meshing strategy

ω ∼ ε, ∆t ∼ ε2, ∆x ∼ ε1+2/ℓ/d1/ℓ (3.17)
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by forcing both error terms to be of order ε. Thus,

M = L/∆x = 2m =⇒ m = log
L

∆x
= O

(
log

d1/ℓ

ε1+2/ℓ

)
,

where m is the number of qubits per dimension, and the total number of qubits is m2d = 2dm.

The diagonal unitary operators e−iL∆t and eiU∆t can be implemented using J(m2d) = O(m2d)

gates, and the quantum Fourier transforms Fx or Fp can be implemented using dO(m logm) gates.

Therefore, the gate complexity required to iterate to the n-th step is

NGates = 2n(J(m2d) + 2dO(m logm)) = 2nO(2dm+ 2dm logm)

= O(4ndm logm) = O
( d
ε2

log
d1/ℓ

ε1+2/ℓ

)
.

The gate complexity for the observable is obtained from the sampling law.

4 The Schrödinger framework

In this section we propose another framework based on solving the Schrödinger equation, since

the Liouville equation is the classical limit of the Schrödinger equation. The idea is to choose a

semiclassical parameter, still denoted by ℏ here, sufficiently small, so the solution of the Schrödinger

equation is close to that of the Liouville equation.

Since the error between the expectation of the wave function and its classical counterpart (the

physical observables of the Liouville equation) is of O(ℏ2) [37], one can take ℏ = O(
√
ε), to maintain

the computational precision of O(ε) for this framework.

We consider the Schrödinger equation in the semiclassical regime iℏ∂tu(t, x) = −ℏ2
2 ∆u(t, x) + V (x)u(t, x) in Ω = (a, b)d, t > 0,

u(0, x) = u0(x)
(4.1)

with periodic boundary conditions, where x = (x1, x2, · · · , xd) ∈ Rd, u(t, x) := uℏ(t, x) is the

complex-valued wave function, V (x) is the external potential and ℏ = O(
√
ε) with ε≪ 1 being the

precision. Without loss of generality, we always set a = 0 and b = 1. The initial condition in (4.1)

is chosen in a WKB form,

u0(x) = A0(x)e
i
S0(x)

ℏ , (4.2)

with A0 and S0 independent of ℏ, real-valued and smooth. The periodic boundary conditions, for

example, in one-dimensional case can be written as

u(t, a) = u(t, b), ux(t, a) = ux(t, b), t ≥ 0.

The problem (4.1) will be solved by the classical time-splitting Fourier spectral method [3],

which, as described below, can be interpreted as the Trotter based Hamiltonian simulation [34,41].
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4.1 The semiclassical approximation

We first recall the WKB analysis, which assumes that the solution remains the same form as

the initial data at later time:

u = A(t, x)ei
S(t,x)

ℏ ,

where A(t, x) and S(t, x) are the amplitude and phase respectively. Substituting this into (4.1),

and separating the real and imaginary parts, one gets

A∂tS +
1

2
|∇xS|2 +AV =

ℏ2

2
∆A,

∂tA+∇xA · ∇xS +
1

2
A∆S = 0.

Ignoring the O(ℏ2) terms, and multiplying the second equation by A, one gets

∂t|A|2 +∇x(|A|2∇xS) = 0, (4.3)

∂tS +
1

2
|∇xS|2 + V = 0. (4.4)

The first equation (4.3) is a transport equation, and the second one (4.4) is the eikonal equation,

which is exactly the Hamilton-Jacobi equation (3.1). Note that the eikonal equation admits solu-

tions S with discontinuous derivatives (usually referred to as the caustic) even if the initial data

of u is smooth. Thus the WKB analysis is only valid up to the time when the first caustic forms.

Beyond caustics, the solution becomes multi-valued [30,32].

In contrast to that, the Wigner tranform technique yields the Liouville equation on phase

space, in the semiclassical limit ℏ → 0, whose solution does not exhibit caustics, hence is valid

globally in time. The Wigner transform of u is defined as [30,32]

wℏ(t, x, p) = wℏ[u](t, x, p) :=
1

(2π)d

∫
Rd

u
(
x+

ℏ
2
η
)
u
(
x− ℏ

2
η
)
eip·ηdη. (4.5)

Applying this transformation on the Schrödinger equation (4.1), one obtains the Wigner equation

(also called the quantum Liouville equation):

∂tw
ℏ + p · ∇xwℏ −HV w

ℏ = 0, wℏ(0, x, p) = win(x, p),

where

HV w
ℏ =

i

(2π)d

∫∫
Rd×Rd

δV (x, y)f(x, p′)eiη(p−p
′)dηdp′,

δV =
1

ℏ

(
V (x− ℏ

2
y)− V (x+

ℏ
2
y)
)
.

When ℏ→ 0, the Wigner equation becomes the classical Liouville equation on the phase space:

∂tw + p · ∇xw −∇xV (x) · ∇pw = 0.

Let H(x, p) = 1
2 |p|

2 + V (x). One easily finds that the Liouville equation can be written as ∂tw +

{w,H} = 0, where {·, ·} is the Poisson bracket, defined as

{w,H} = ∇pH · ∇xw −∇xH · ∇pw.
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When u0 is given in WKB form (4.2), the corresponding Wigner measure is found to be

wℏ[u0]
ℏ→0−−−→ w0 = |A0(x)|2δ(p−∇S0(x)),

see [32, Eq. (3.9)]. It should be pointed out that Eqs. (4.3) and (4.4) can be deduced from the

moment-closure of the Liouville problem ∂tw +∇pH · ∇xw −∇xH · ∇pw = 0,

w(0, x, p) = |A0(x)|2δ(p−∇S0(x))
(4.6)

with mono-kinetic ansatz w(t, x, p) = |A(t, x)|2δ(p−∇xS(t, x)), but are not valid beyond caustics

since δ(p − ∇xS(t, x)) is not well-defined when ∇xS(t, x) becomes discontinuous. However, the

equation in (4.6) is valid globally in time, since it unfolds the caustics in the phase space [30–32].

For this reason, we instead solve (4.6) in the semiclassical regime.

Clearly, (4.6) is the level set formulation (3.5) if A0(x) ≡ 1. Here we leave the general A0(x).

One can solve the problems in (4.6) by upwind finite difference methods or spectral methods as

shown in the previous section.

4.2 Quantum simulations for the spectral discretisation

4.2.1 The time-splitting spectral approximations

From time t = tn to time t = tn+1, the Schrödinger equation is solved in two steps [3]: One

solves

ℏut − i
ℏ2

2
∆u = 0 (4.7)

for one time step, followed by solving

ℏut + iV (x)u = 0 (4.8)

again for one time step. Equation (4.7) will be discretised in space by the Fourier pseudo-spectral

method and integrated in time exactly. The ODE (4.8) will then be solved exactly.

Remark 4.1. We remark that usually the Trotter or Strang splitting is used for quantum simulation

of the Schrödinger equation, which is second order in time rather than first order in the above simple

splitting. We use the first order one in order to compare, on the equal footing, with other methods

since all other methods use the first order approximation in time. For time complexity of the

Trotter or Strang splitting see [34].

Let unj be the numerical solution at t = tn and u∗j the solution given by the first step for

0 ≤ j ≤M − 1.

• For the first step, according to the previous discussion one easily obtains

d

dt
u(t) + iℏ/2 · (P 2

1 + · · ·+ P 2
d )u(t) = 0,

or
d

dt
c(t) + iℏ/2 · ((Dµ

1 )
2 + · · ·+ (Dµ

d )
2)c(t) = 0,
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where the relation (2.38) is used, which gives

c∗ =
(
e−iℏ∆tD2

µ/2
)⊗d

cn, Dµ = diag(µ1, · · · , µM ).

• The updated numerical solution for the second step is un+1
j = e−iV (xj)∆t/ℏu∗j , which can be

written in vector form as u = e−iV ∆t/ℏu∗, where V is a diagonal matrix with

Vnj ,nj
= V (xj), nj = j12

d−1 + · · ·+ jd2
0.

4.2.2 The quantum simulation of the Schrödinger equation

We only consider the 1-D case since it is straightforward to extend the arguments to high-

dimensional cases by using tensor products. According to the previous discussion, we have the

following algorithm (Algorithm 1) represented by the matrix-vector multiplication.

Algorithm 1 Time splitting approximations for the Schrödinger equation

1. Given the initial data u0 and n = 0, compute the discrete Fourier coefficients cn = Φ−1un.

2. Calculate the intermediate variables c∗ = e−iℏD2
µ∆t/2cn and u∗ = Φc∗.

3. Update the numerical solution un+1 = e−iV ∆t/ℏu∗.

In the above algorithm, the matrix Φ plays the role of the discrete Fourier transform (DFT),

where given a set of numbers x0, x1, · · · , xM−1, the DFT and the inverse DFT are defined by

yk =
1√
M

M−1∑
j=0

e2πijk/Mxj , k = 0, · · · ,M − 1

and

xj =
1√
M

M−1∑
k=0

e−2πijk/Myk, j = 0, · · · ,M − 1,

respectively. Denote the transformation matrix of DFT by F . It is easy to find the transformation

matrix in Algorithm 1 satisfies Φ =
√
MSF , where S is the diagonal matrix

S = diag
(
[1,−1, · · · , 1,−1]M×1

)
,

which in turn gives

un+1 = e−iV ∆t/ℏSF e−iℏD2
µ∆t/2F−1Sun

since S−1 = S. For convenience, the above two diagonal matrices are denoted by D1 and D2,

respectively, and then one has

un+1 = D1SFD2F
−1Sun = SD1FD2F

−1Sun,

or

vn+1 = (D1FD2F
−1)vn, vn = Sun,
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where we have used the fact that SD1 = D1S.

Therefore, when preparing the variable v in the computational basis, the implementation in

each iteration involves one application of an inverse quantum Fourier transform (QFT), followed

by a multiplication of a diagonal unitary operator D2, and a QFT and another diagonal unitary

operator D1, since the QFT is exactly the quantum version of the DFT.

According to the above discussion, the quantum simulation algorithm to find vn := Sun is

described as follows (see Algorithm 2).

Algorithm 2 Quantum simulation of the Schrödinger equation

Step 0. Initialization of the quantum state: Given v0j encode it as

|ψ0⟩ = 1

N

M−1∑
j=0

ψ0
j |j⟩, ψ0

j = v0j ,

where N is the normalization constant. Let n = 0.

Step 1. Performing inverse QFT on |ψn⟩ yields |ψ̃⟩.

Step 2. Perform a diagonal unitary operator
(
e−iℏµ2l ∆t/2

)
1≤l≤M

for |ψ̃⟩, and the resulting state is

denoted as |ψµ⟩.

Step 3. Perform QFT on |ψµ⟩ with the output denoted by |ψ∗⟩.

Step 4. Apply a diagonal unitary operator
(
e−iV (xj)∆t/ℏ

)
0≤j≤M−1

to |ψ∗⟩. The output is denoted

by |ψn+1⟩.

Step 5. Let n← n+ 1 and go back to Step 1.

The following example is taken from Example 1 in [3].

Example 4.1. The initial data is u(x, 0) = A0(x)e
iS0(x)/ℏ, where

A0(x) = e−25(x−0.5)2 , S0(x) = −
1

5
ln
(
e5(x−0.5) + e−5(x−0.5)

)
.

We take [a, b] = [0, 1] and V (x) = 10. The position density ρ(t, x) = |u(t, x)|2 is shown in Fig. 2.

One can see that the solution is oscillatory for small ℏ. For numerical descriptions, please refer

to [3].

4.2.3 Gate counts for the computation of wave functions

To simplify the discussion, we set L = b− a = 1 and the evolution time t = 1 throughout the

paper. The time-splitting scheme involves only diagonal operators and QFTs whose complexities

depend on the number of qubits m per dimension. Since the meshing satisfies ∆x = L/M and

M = 2m, we can determine ∆x and thus m by the expected precision of the algorithm.
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Fig. 2: The position density ρ(t, x) = |u(t, x)|2 at t = 0.54.

Theorem 4.1. Given the error tolerance ε, assume V (x) is sufficiently smooth and ℏ = O(
√
ε).

Then the Schrödinger equation (4.1) can be simulated using md qubits with gate complexity NGates,

given respectively by,

md = O
(
d log

d1/ℓ

ε1/2+5/(2ℓ)

)
, NGates = O

( d

ε3/2
log

d1/ℓ

ε1/2+5/(2ℓ)

)
.

Proof. According to Refs. [3, 34], if ∆x/ℏ = O(1) and ∆t/ℏ = O(1), then for each ℓ, the error of

the Fourier spectral method is bounded by,

∥un − u(tn, ·)∥ ≤ Cℓn
(
d
(∆x

ℏ

)ℓ
+

∆t2

ℏ

)
. (4.9)

Here Cℓ is considered as O(1). The mesh strategy is

∆t

ℏ
∼ ε, ∆x

ℏ
∼

( ε

nd

)1/ℓ
, ℏ ∼

√
ε,

or equivalently,

∆t ∼ ε3/2, ∆x ∼ ε1/2+5/(2ℓ)/d1/ℓ, (4.10)

which is obtained by forcing both error terms to be of order ε. With this choice of ∆x and ∆t, the

number of qubits is

md = dm, m = log
1

∆x
= O

(
log

d1/ℓ

ε1/2+5/(2ℓ)

)
.

The diagonal unitary operators can be implemented using J(md) = O(md) gates [34,36]. Thus

the gate complexity required to iterate to the n-th step is

NGates ∼ n(2dm logm+ 2J(md)) ∼ 2ndm logm = O
( d

ε3/2
log

d1/ℓ

ε1/2+5/(2ℓ)

)
, (4.11)

as required.
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4.3 The QLSA for the spectral discretisation

According to the discussion in Subsect. 4.2.1, one has the following ODEs

d

dt
u(t) = Au(t),

where

A = −i
(ℏ
2
(P 2

1 + · · ·+ P 2
d ) +

1

ℏ
V
)
=: −iÃ. (4.12)

Obviously, Ã is a real symmetric matrix.

As in Theorem 3.3, we can apply the quantum algorithm in [6] to solve the above ODEs.

Theorem 4.2. Assume that ∥V ∥ = O(1) and T = O(1). Then there exists a quantum algorithm

that produces a state ε-close to u(T )/∥u(T )∥ with the gate complexity given by

NGates = Õ
(d2+2/ℓ

ε1+5/ℓ

)
.

Proof. Let A = V −1DV with D = diag(λ1, · · · , λN ), where N = O(Md) is the order of A. Since

the matrix Ã in (4.12) is a real symmetric matrix, Re(λj) = 0 for any j ∈ {1, · · · , N} and κV =

1. According to Lemma 2.4, there exists a quantum algorithm that produces a state ε-close to

u(T )/∥u(T )∥ with the gate complexity given by

NGates = O
(
sκV ∥A∥T · Poly(log(sNκV ∥A∥T/ε))

)
,

where we have omitted the parameter g that characterises the decay of the final state relative to

the initial state.

It is evident that the sparsity of A is O(M) = O(1/∆x). For the mesh strategy in (4.10), the

norm of A satisfies

∥A∥ ≤ ℏ
2

d∑
l=1

∥Pl∥+
1

ℏ
∥V ∥ ≲ ℏdM +

1

ℏ
≲
d1+1/ℓ

ε5/(2ℓ)
+

1

ε1/2
≤ d1+1/ℓ

ε1/2+5/(2ℓ)
.

Then one has

NGates = Õ
(d2+2/ℓ

ε1+5/ℓ

)
,

where in the last equal sign we have included the additional factor d arising from the matrix order

(see Remark 2.8). This completes the proof.

4.4 The computation of physical observables

The quantum mechanical wave function u(t, x) can be considered as an auxiliary quantity used

to compute physical quantities. The most basic quadratic observables [3,30,32] include the position

density ρ(t, x) := |u(t, x)|2, the current density

J(t, x) = ℏIm(u(t, x)∇u(t, x)) = ℏ
2i
(u∇u− u∇u),

and the kinetic or total energy

E(t, x) =
ℏ2

2
|∇u(t, x)|2 or

ℏ2

2
|∇u(t, x)|2 + V (x)|∇u(t, x)|2.
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4.4.1 The expectation of observables for the quantum simulation

The observables ρ(tn, xi), J(tn, xi) and E(tn, xi) can be expressed as the standard form of

⟨O⟩ = ⟨ũ|O|ũ⟩, which is the expectation of the observable O. Here, ũ is normalized to 1 since the

output of the quantum algorithms is the normalized state. For the spectral discretisation of the

Schrodinger equation, one has

∥uNt∥ = · · · = ∥u0∥ =: Nu0 , (4.13)

and ũ = uNt/Nu0 . The output state of the quantum simulation is

|ũ⟩ = 1

Nu0

∑
j

uNt |j⟩ =
∑
j

ũ|j⟩, j = (j1, · · · , jd).

For the position density ρ(tn, xi), it is obvious that one can measure the magnitude of the

wave function using multiple shots in the computational basis |i⟩ as was done in the numerical

experiments in [34], so we choose

Oρ =: N2
u0 |i⟩⟨i| for the position density.

Let p = |ũi|2 ≤ 1. Then Var(Oρ) = N4
u0p(1−p) ≤ N

4
u0 , hence the number of samples is nρ = N4

u0/ε
2

for the position density.

For the current density, we consider d = 1 for simplicity and denote ei = |i⟩. Let u = uNt for

simplicity. Using the previous notations, one has

u(xi) = u
Tei, (∂xu)(xi) = (ΦDµΦ

−1u)Tei = e
T
i (ΦDµΦ

−1u),

which gives

(u∂xu)(xi) = u
T (eie

T
i ΦDµΦ

−1)u = u†(eie
T
i ΦDµΦ

−1)u =: u†Au,

and

(u∂xu)(xi) =
(
(u∂xu)(xi)

)†
= u†A†u.

Therefore,

J(tn, xi) =
ℏ
2i
u†(A−A†)u =

ℏN2
u0

2i
ũ†(A−A†)ũ,

and we can choose

OJ :=
ℏN2

u0

2i
(A−A†) for the current density.

One can check that

Var(OJ) ≤ ∥OJ ũ∥2 ≲
(ℏMN2

u0

4

)2
,

where M comes from Dµ = diag(−N, · · · , N − 1) with N = M/2, which implies a multiplicative

factor nJ = (ℏMN2
u0)

2/ε2 =M2N4
u0/ε for the current density since ℏ = O(

√
ε).

For the kinetic energy, we similarly obtain

E(tn, xi) =
ℏ2

2
u†(ΦDµΦ

−1eie
T
i ΦDµΦ

−1)u =:
ℏ2

2
u†Bu =

ℏ2N2
u0

2
ũ†Bũ

for the one-dimensional case. We can choose

OE :=
ℏ2N2

u0

2
B for the kinetic energy.
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It is obvious that

Var(OE) ≤ ∥OEũ∥2 ≲
(ℏ2M2N2

u0

4

)2
,

which implies a multiplicative factor nE = (ℏ2M2N2
u0)

2/ε2 =M4N4
u0 for the kinetic energy.

Remark 4.2. By definition, ρ(t, x) := |u(t, x)|2, where

ρ(t, x) =

∫
w(t, x, p)dp ≈ 1

Md

∑
l

Glw
ω
j,l,n,

where w is the solution to (4.6). Then

N2
u0 = ∥u0∥2 = ∥ρ0∥ ≲ ∥G∥∥(wω)0∥/Md ≲ ∥(wω)0∥/Md/2 = nH .

Here, (wω)0 is exactly the (ψω)0 in Theorem 3.2 when considering the problem (4.6).

4.4.2 The expectation of observables for the QLSA

Unlike the quantum simulation, the solution of the QLSA is a quantum state that is a super-

position of the solution at all temporal and spatial points, denoted as

|ũ⟩ = [ũ1; · · · ; ũNt ], ũn =
1

Nu
un,

where the normalization constant is

Nu = ∥u∥ = (∥u1∥2 + · · ·+ ∥uNt∥2)1/2 =
√
Nt∥u0∥ =:

√
NtNu0 .

Here we have used (4.13). Let Oi = |i⟩⟨i|, On = |n⟩⟨n| and

Oni = On ⊗Oi = |n, i⟩⟨n, i|,

where |n⟩ is of size Nt. Then the position density

ρ(t = tn, xi) = (un)†Oiu
n = u†(On ⊗Oi)u = NtN

2
u0 · ⟨ũ|O

n
i |ũ⟩.

The expectation ⟨Oni ⟩ := ⟨ũ|Oni |ũ⟩ satisfies the condition that Var(Oni ) is bounded. In this case,

however, we must evaluate ⟨Oni ⟩ to precision O(ε/(NtN
2
u0)), which increases the number of samples

by another factor (NtN
2
u0)

2 when considering the general sampling law. We remark that the factor

N2
t can be removed by using the dilation procedure. In this case, the multiplicative factor is still

given by nρ = N4
u0/ε

2.

For the current density, one easily finds that (d = 1)

J(tn, xi) =
ℏ
2i
(un)†(A−A†)un = NtN

2
u0 ·

ℏ
2i
ũ†(A−A†)ũ.

We still need to apply the dilation procedure (2.28) to remove the unexpected multiplicative factor

N2
t , and still obtain nJ =M2N4

u0/ε for the current density.

The kinetic energy can be analysed similarly, with the factor given by nE =M4N4
u0 .
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4.5 Gate complexity for the computation of the observables

It is worth pointing out that the time step ∆t can be chosen independently of the small param-

eter ℏ if one is only concerned with the computation of the physical quantities. This observation

was interpreted by using the Wigner transformation approach in [3], and mathematically rigorously

investigated in [11,26]. For instance, the first-order time splitting spectral method gives [11,34]

∥⟨O⟩un − ⟨O⟩u(tn,·)∥ ≤ Cℓn
(
d
(∆x

ℏ

)ℓ
+∆t2 +∆tℏ2

)
, (4.14)

where h = O(
√
ε) implies the above observation since n∆tℏ2 = O(ε). Note that the term n∆tℏ2 =

tℏ2 is the error between the classically evolved Wigner function and the expectation value of the

Schrödinger solution [11].

4.5.1 The gate counts of the quantum simulation method

Theorem 4.3. Given the error tolerance ε, suppose that the estimate (4.14) holds with Cℓ con-

sidered as O(1). The gate complexities for the observables from the Schrödinger equation (4.1) are

given by

NGates(⟨O⟩) = O
(
cO
N4
u0d

ε3
log

d1/ℓ

ε1/2+2/ℓ

)
,

where

cO =


1, for the position density,

d2/ℓ/ε4/ℓ, for the current density,

d4/ℓ/ε8/ℓ, for the kinetic energy.

(4.15)

Proof. For the observables, one can implement the mesh strategy according to (4.14), given by

∆t = O(ε), ∆x = O(ε1/2+2/ℓ/d1/ℓ). (4.16)

Then the number of gates for outputting the quantum sate is

O
(d
ε
log

d1/ℓ

ε1/2+2/ℓ

)
.

For computing the observables, we must add a multiplicative factor Var(O)/ε2 if the general sam-

pling law is used. According to the previous discussion, one has

nρ =
N4
u0

ε2
, nJ =

M2N4
u0

ε
∼
N4
u0d

2/ℓ

ε2+4/ℓ
, nE =M4N4

u0 ∼
N4
u0d

4/ℓ

ε2+8/ℓ
. (4.17)

This completes the proof.

4.5.2 The gate counts of the quantum linear systems algorithm

Theorem 4.4. Given the error tolerance ε, suppose that the estimate (4.14) holds with Cℓ consid-

ered as O(1). The gate complexities of the QLSA for the observables from the Schrödinger equation

(4.1) are given by

NGates(⟨O⟩) = Õ
(
cO
N4
u0d

2+2/ℓ

ε3+4/ℓ

)
,

where cO is defined by (4.15).
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Proof. For the mesh strategy in (4.16), according to the proof of Theorem 4.2, one easily finds that

the number of gates for approximating the wave function is

NGates = Õ
(d2+2/ℓ

ε1+4/ℓ

)
,

where in the last equal sign we have included the additional factor d arising from the matrix order.

For computing the observables, one just need to include the multiplicative factor Var(O)/ε2 as

given in (4.17).

5 Linear representation approach for scalar nonlinear hyperbolic

PDEs

We consider the linear representations for the spatially d-dimensional scalar nonlinear hyper-

bolic PDEs  ∂tu+ F (u) · ∇xu+Q(x, u) = 0,

u(0, x) = u0(x),
(5.1)

where x ∈ Rd and u ∈ R.

5.1 The Liouville representation

For this general scalar hyperbolic equation, one can still use the Liouville representation but

the Schrödinger representation is not available. In fact, the Liouville representation has been

considered in [31] by using the level set formalism. To this end, we first review the construction.

Let ϕ(t, x, p) be the level set function in (d + 1) + 1 = d + 2 dimensions, where p ∈ R. The

zero level set of ϕ gives solution u:

ϕ(t, x, p) = 0 at p = u(t, x).

One easily finds that ϕ satisfies ∂tϕ+ F (p) · ∇xϕ−Q(x, p)∂pϕ = 0,

ϕ(0, x, p) = p− u0(x).

Like for the Hamilton-Jacobi PDEs, we can similarly define a function φ such that ∂tφ+ F (p) · ∇xφ−Q(x, p)∂pφ = 0,

φ(0, x, p) = δ(p− u0(x)),
(5.2)

with the solution given by φ(t, x, p) = δ(ϕ(t, x, p)). Eq. (5.2) is referred to as the Liouville repre-

sentation of (5.1).

One can apply the quantum difference method to solve (5.2) and compute the physical observ-

ables as in Subsect. 3.1. For the spectral discretisation, one can utilize the Trotter based technique

in Subsect. A.1. The similar numerical performance can be deduced, so we omit the detailed

discussions in view of the length of the article and the similarity of the numerical implementation.
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5.2 The KvN representation

For scalar nonlinear hyperbolic PDEs, it is not very clear how to formulate the KvN represen-

tation. Here we offer an idea, which is inspired by the evolution of the phase factor of the KvN

wave function in [35].

Let x = (x, p) and denote v = [F (p),−Q(x, p)]. Then problem (5.2) can be written as ∂tφ+ v · ∇xφ = 0,

φ0(x) = φ(0,x) = φ(0, x, p) = δ(p− u0(x)).
(5.3)

Let ψ be the complex-valued KvN wave function and f = ψ†ψ be the probability distribution

function. Inspired by the discussion in Section II(B) of [35], we define ψ = f1/2eiφ:

• The amplitude f satisfies the Liouville equation in conservative form: ∂tf +∇x · (vf) = 0,

f(0,x) = f0(x),
(5.4)

where f0(x) = δ(x− q0) and q0 is an arbitrarily given vector.

• The phase factor φ satisfies the non-conservative Liouville equation in (5.3).

As in [35], one can check that the KvN wave function ψ is governed by the KvN equation

i∂tψ = HKvNψ = −i
(
v · ∇x +

1

2
∇x · v

)
ψ, (5.5)

with the initial data given by

ψ0(x) = ψ(0,x) = f
1/2
0 (x)eiφ0(x).

The original intention of [35] is to introduce the linear representation for the following nonlinear

ODEs
dq

dt
= v(t, q). (5.6)

Like in Sect. 2, one can first obtain the Liouville representation (5.4) corresponding to (5.6). The

KvN representation is then derived by assuming the non-conservative hyperbolic equation (5.2)

for the phase factor. In view of the evolution of the phase factor, we therefore propose the KvN

representation for the scalar nonlinear hyperbolic PDEs.

It should be pointed out that one cannot get the phase factor φ from ψ = f1/2eiφ since eiφ is

periodic with respect to φ. For this reason, it may be impossible to define the physical observables

⟨g(t, x)⟩ =
∫
g(p)φ(t, x, p)dp

as in [31]. One may instead define

⟨gχ(t, x)⟩ =
∫
g(p)χ(φ(t, x, p))dp

to remove the unexpected period, where χ is a function with period 2π. However, ⟨gχ(t, x)⟩ is
actually very tricky to compute. It’s not clear if this is possible to do. Suppose we have χ(φ) =
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sin(φ) or cos(φ). If we have access to a Hamiltonian diagonal in φ, i.e. H =
∑

j φj |j⟩⟨j|, then we

can create a control unitary U = |0⟩⟨0| ⊗ 1+ |1⟩⟨1| ⊗ eiH . Then a standard Hadamard test can be

employed to compute ⟨gχ(t, x)⟩ = Im⟨√g|U |√g⟩ or Re⟨√g|U |√g⟩ where |√g⟩ has amplitudes
√
gj .

However, by solving Eq. (5.5) alone, one cannot create access to H unless every φj is individually

computed, which defeats the purpose of a quantum algorithm.

Instead we can try to create the state | sin(φ)⟩ or | cos(φ)⟩ whose amplitudes are proportional

to sin(φj) or cos(φj). Note that

sinφj = Im(ψj/
√
fj) = Im(ψj/

√
ψjψ

†
j) =

1

2i

ψj − ψ†
j√

ψjψ
†
j

, cos(φj) =
ψj + ψ†

j

2
√
ψjψ

†
j

.

The question is if we can create a quantum state with amplitudes proportional to Im(ψj/
√
fj) or

Re(ψj/
√
fj). If we solve Eq. (5.5) alone to obtain |ψ⟩, then we cannot easily access these states.

An alternative to solving Eq. (5.5) alone is to include also its complex conjugate and we instead

solve for ψ̃ obeying

i
∂

∂t
ψ̃ = H̃KvNψ̃

where

ψ̃ =

[
ψ − ψ†

ψ + ψ†

]
, H̃KvN =

[
HKvN 0

0 HKvN

]
.

We now perform quantum simulation of the state |ψ̃⟩ ∝ |ψ−ψ†⟩+|ψ+ψ†⟩ with the new Hamiltonian

H̃KvN and we can choose to post-select either the state |ψ − ψ†⟩ or |ψ + ψ†⟩. Given |ψ ± ψ†⟩, we
can compute the inner product |⟨g|ψ±ψ†⟩|2 to obtain the observable ⟨gχ(t, x)⟩ for χ(φ) = |ψ±ψ†|
using standard methods. This differs from χ(φ) = sin(φ) or cos(φ) up to norm factors

√
ψψ†. We

leave it as an open question on how to design algorithms for more general χ(φ) functions.

6 Summary and discussion

In this paper, we systematically studied the quantum difference methods and the quantum

spectral methods for solving the linear representations of nonlinear ODEs and nonlinear PDEs.

Since our studies involve many different methods, we summarize the results for computing the

physical observables in Tab. 1, from which we clearly observe that the quantum simulation methods

give the best performance in the computational cost.
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Tab. 1: Time complexities for the computation of physical observables

Nonlinear Ordinary Differential Equations

Problem
Quantum simulation Spectral QLSA FD QLSA (α ≥ 4)

Subroutine Observable Subroutine Observable Subroutine Observable

Liouville

representation

d2+2/ℓ

ε2+4/ℓ

∗
n4Ld

2+2/ℓ

ε4+4/ℓ

∗
d3+2/ℓ

ε4+4/ℓ

∗
n4Ld

3+2/ℓ

ε6+4/ℓ

∗
dα

ε3
n4Ld

α

ε5

KvN

representation

d2+2/ℓ

ε2+4/ℓ

n2Ld
2+2/ℓ

ε4+4/ℓ

d2+2/ℓ

ε2+4/ℓ

n2Ld
2+2/ℓ

ε4+4/ℓ

dα

ε3
n2Ld

α

ε5

Nonlinear Hamilton-Jacobi PDEs

Problem
Quantum simulation Spectral QLSA FD QLSA (α ≥ 4)

Subroutine Observable Subroutine Observable Subroutine Observable

Liouville

equation

d

ε2
n4Hd

ε4
d2+2/ℓ

ε2+4/ℓ

n4Hd
2+2/ℓ

ε4+4/ℓ

dα

ε3
n4Hd

α

ε5

Schrödinger

equation

d

ε

cON
4
u0d

ε3
d2+2/ℓ

ε1+4/ℓ

cON
4
u0d

2+2/ℓ

ε3+4/ℓ

a) The notations O for quantum simulations and Õ for QLSA based methods are omitted. Since

the dependence on the matrix order is not explicitly presented in [18], we just include the multi-

plicative factor dα−3 (α ≥ 4) in the gate complexity for the finite difference discretisations (note

that the order of the matrix grows exponentially with respect to the dimension).

b) nL and nH are the sampling factors for the Liouville equation, given respectively in Theorems

2.2 and 3.2. Nu0 and cO are defined by (4.13) and (4.15), respectively. Note that cO depends on

d, ε when computing the current density and kinetic energy. For the Hamilton-Jacobi equations,

cO may be neglected, and Nu0 ≲ n
1/2
H (see Remark 4.2).

*) Despite the absence of the unitary structure, we still proposed a “quantum simulation” algorithm

for the Liouville representation in Appendix A, where non-unitary procedures are involved. The

results are presented in Theorem A.1 and Theorem A.2 when the cost arising from multiple copies

of initial quantum states is ignored.

Fig. 3: Schematic diagram of linear representations

Let us summarize the three parts of the article as follows.

(1) Motivated by the idea in [21,31], we established the correspondence between the nonlinear

dynamic system and the Liouville representation via a simple ansatz, which relates the ODE solu-
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tion and the density distribution by the Dirac delta function. In this case, the ODE solution can be

recast as a physical observable of the Liouville equation, which provides an efficient way to solve the

nonlinear ODEs by using quantum algorithms for the resulting linear Liouville equation. We intro-

duced the Liouville approximation and the KvN approximation from the perspective of quantum

differential equations solvers for the Liouville equation with smoothed initial data, while the KvN

approximation can be regarded as the “symmetrized” counterpart of the Liouville approximation

(See Fig. 3 for illustration). For both linear representation approaches, we proposed the upwind

difference discretisations and Fourier spectral discretisations and provided in detail the time com-

plexity analysis for the QLSA based methods and the quantum simulation methods, including the

output of the quantum states and the post-processing for the computation of physical observables.

The KvN mechanism allows direct quantum Hamiltonian simulations, while the Liouville method

can also be translated into the evolution of symmetric propagators with additional non-unitary

procedures at every time step after an appropriate Trotter based approximation.

(2) For the nonlinear PDEs, more specifically the Hamilton-Jacobi equations, by using the

level set mechanism as proposed in [31], one can map the nonlinear PDEs of (d + 1)-dimension

to a linear (2d + 1)-dimensional Liouville equation, referred to as the Liouville representation for

nonlinear PDEs. For a classical device, doubling the dimension of the problem may seem too costly

because the cost increases exponentially with dimension. However, for quantum algorithms, the

relative overhead in doubling the dimension can be up to exponentially smaller, which has been

verified by the proposed quantum algorithms since no exponential terms in dimension like dd and

(1/ε)d for the classical cost are included.

(3) It is well-known that the Schrödinger equation can be transformed into the quantum Li-

ouville equation via the Wigner transform, which in turn leads to the Liouville equation when

taking the semiclassical limit. In view of the close relations between their physical observables, we

introduced the Schrödinger framework for solving the Liouville equation. We studied the quan-

tum interpretation of the classical time-splitting Fourier spectral method proposed in [3] for the

Schrödinger equation, and presented a comprehensive discussion in the correspondence between

the time-splitting spectral method and the Trotter based Hamiltonian simulation, although this

issue has been addressed (in less detail) in some earlier literature. The time-splitting spectral

discretisation for the Schrödinger equation generates a discretised Hamiltonian system, which can

be handled by standard Hamiltonian simulation algorithms or quantum linear systems algorithms.

We analysed in detail the gate complexity of these two approaches for numerically resolving the

wave function and the physical observables. Despite the advantages in terms of time complexity, it

should be pointed out that the solution to the Schrödiner equatin is oscillatory, hence if one wants

high-resolution (oscillation-free) numerical results the Liouville framework is preferred.
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A Spectral discretisation for the Liouville representation of non-

linear ODEs

A.1 The Trotter based spectral discretisation

Consider the problem (2.23). Let u = Fi(x)w(t, x). According to the above discussion, one

has

−i ∂
∂xi

u −→ P̂ d
i u = Piu = PiΛFiw,

where ΛFi = diag(Fi) is a diagonal matrix, where the vector Fi =
∑

j Fi(xj)|j⟩. The resulting

system of ordinary differential equations is
d
dtw(t) = −iAw(t),

w(0) = w0 = (w0(xj)),
(A.1)

where A =
∑d

i=1Ai with Ai = PiΛFi . One can check from (2.38) that Pi are Hermitian matrices.

However, we note that this does not mean that A is Hermitian, since in general (PiΛFi)
† = ΛFiPi ̸=

PiΛFi .

The evolution of (A.1) can be formally written as

|ψ(t+∆t)⟩ = e−i(A1+···+Ad)∆t|ψ(t)⟩,

where |ψ(t)⟩ is a quantum state whose amplitudes are proportional to w(t) and the evolution

operator exp(−iAi∆t) is not necessarily unitary. Let us consider the first-order product formula

U∆t = e−iAd∆t · · · e−iA1∆t. (A.2)

One obtains from [15,51] that

e−i(A1+···+Ad)∆t = U∆t + CA∆t
2, (A.3)

where CA depends on the matrix A, considered as O(1) in the following. Therefore, the problem

is reduced to the simulation of each Aj , where Aj is not necessarily symmetric. Take j = 1 as

an example and consider the decomposition ΛF1 = Λ+
F1
− Λ−

F1
, where Λ±

F1
= diag(d±1 , · · · , d±n )

are diagonal matrices with d±j > α for some positive constant α. One can further require that

∥Λ±
Fi
∥ ≲ max1≤j≤d ∥Fj∥. Let A±

1 = P1Λ
±
F1
. The Strang splitting gives

e−iA1∆t = e−iA+
1 ∆t/2eiA

−
1 ∆te−iA+

1 ∆t/2 + C1∆t
3, (A.4)
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where eiA
−
1 ∆t and e−iA+

1 ∆t/2 can be evolved in the similar way (note that one can also use the

first-order approximation). To this end, we consider the second one as an example.

The simulation of e−iA+
1 ∆t/2 is related to the following ODEs:

d

dt
w(t) = − i

2
A+

1 w(t) = − i

2
P1Λ

+
F1
w(t), 0 ≤ t ≤ ∆t.

Let w̃ =
√

Λ+
F1
w, where

√
Λ+
F1

= diag(
√
d+1 , · · · ,

√
d+n ). Then the above ODEs can be reformulated

as
d

dt
w̃(t) = − i

2
Ã+

1 w̃(t), 0 ≤ t ≤ ∆t, (A.5)

where Ã+
1 =

√
Λ+
F1
P1

√
Λ+
F1

is a Hermitian matrix. The one-step simulation gives

|ψ̃(t+∆t)⟩ = e−iÃ+
1 ∆t/2|ψ̃(t)⟩, (A.6)

where |ψ̃(t)⟩ corresponds to w̃(t). Since d±j > α > 0, w̃ =
√

Λ+
F1
w can be viewed as a linear

systems problem:

w̃ = D−1
1 w, D1 = (

√
Λ+
F1
)−1. (A.7)

Similarly,

w = D−1
2 w̃, D2 =

√
Λ+
F1

= D−1
1 . (A.8)

Given the initial state of w0, denoted by |ψ0⟩. At each time step, one needs to consider the

procedure

|ψ0⟩ (A.7)−−−→ |ψ̃0⟩ (A.6)−−−→ |ψ̃1⟩ (A.8)−−−→ |ψ1⟩

for e−iA+
1 ∆t/2, followed by the similar procedures for eiA

−
1 ∆t and the first e−iA+

1 ∆t/2 in (A.4), where

(A.6) can be solved by quantum Hamiltonian simulations or quantum differential equations solvers.

Remark A.1. The transition between w̃ and w in (A.7) and (A.8) may be implemented in a

simpler manner, for example, the LCU method, which decomposes the diagonal (and Hermitian)

matrices Di = diag(di,1, · · · , di,n), i = 1, 2 into a sum of two unitary operations. In fact, it is always

possible to write Di = (Ui+ Vi)/2, where Ui = Di+ i
√

1−D2
i , and Vi = Di− i

√
1−D2

i (One can

assume ∥Di∥ ≤ 1 after an adjustment). These unitaries are also diagonal matrices with diagonal

entries diag(di,1 ± i
√

1− d2i,1, · · · , di,n ± i
√
1− d2i,n). Applying the operation Di onto a quantum

state can be done by a straightforward application of the LCU method (e.g. Lemma 6 in [13]).

Here we can assume access to the control operation |0⟩⟨0| ⊗ Ui + |1⟩⟨1| ⊗ Vi.
However, multiple copies are needed at every time step for both the QLSA and the LCU since

they are not unitary procedures, hence the cost (i.e. number of copies needed of the initial state)

will increase exponentially with Nt. We can see the last statement more explicitly.

• For the QLSA, when solving D1|w̃⟩ = |w⟩ with the quantum state |w⟩ given, one must prepare

unitary operations to query the entries of w. This needs post-processing or multiple uses of

|w⟩, hence multiple copies of |w⟩.

• For the LCU, to obtain the state Di|w⟩ for some state |w⟩, one can construct a unitary

procedure acting on |w⟩ and an ancilla that will output a state |w′⟩ = αiDi|w⟩+βi|v⟩, where
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|v⟩ is some state we don’t want. One can then obtain a single copy of Di|w⟩ upon post-

selection of |w′⟩ with O(1/∥αiDi|w⟩∥2) number of measurements, and hence multiple copies

of |w⟩, where ∥αiDi|w⟩∥ ≤ 1.

We are not only interested in the cost at every time step: we want to evolve for a long time, to

Nt time-steps. Suppose we wanted to repeat this procedure Nt times with at least C > 1 copies

at every time step. At the last N th
t step if we need only a single copy of the desired state, then C

copies of the state in the previous Nt− 1 time-step is required, which means C2 copies of the state

in the (Nt − 2)th time-step is needed. Ultimately, this requires CNt copies of the original |w⟩ state
in the initial time-step.

In the following, we ignore the cost of multiple copies at each time step.

A.1.1 The QLSA for the spectral discretisation

Theorem A.1. Assume further that max1≤j≤d ∥Fj∥ = O(1) and T = O(1).

(1) There exists a quantum algorithm that produces a state ε-close to w(T )/∥w(T )∥ with the gate

complexity given by

NGates = Õ
(d3+2/ℓ

ε4+4/ℓ

)
.

(2) The observable of the Liouville representation can be computed with gate complexity given by

NGates(⟨O⟩) = Õ
(n4Ld3+2/ℓ

ε6+4/ℓ

)
,

where nL = ∥(ρω)0∥/Md/2.

Proof. For simplicity, we omit the discussion of the cost and the error resulting from (A.7) and

(A.8).

(1) Since Ã+
1 is hermitian, the eigenvalues of Ã+

1 are real and κV = 1, where V is the trans-

formation matrix associated with Ã+
1 . At each time step, by Lemma 2.4, the gate complexity of

solving (A.5) within error η is

Q∆t = Õ(sκV ∥Ã+
1 ∥) = Õ(M

2) = O(M2Polylog(Md+2/η)),

where s = O(M) = O(1/∆x), ∥Ã+
1 ∥ = O(M). Therefore, U∆t defined in (A.2) can be evolved

within error O(d(3η +∆t2)) [41, Proposition 1.12] with

NGates(U∆t) = O(dQ∆t) = Õ(dM2). (A.9)

In the following, we choose η ∼ ∆t2, and hence U∆t can be evolved within error O(d∆t2). According
to the error estimate (2.17) and noting Eq. (A.3), one may have

eρ ≤ C(ω + d∆t/ω + d∆xℓ/ωℓ+1),

which is also true for the computation of the observable. The above error bounds suggest the

following mesh strategy:

ω ∼ d∆t/ω ∼ d∆xℓ/ωℓ+1 ∼ ε, (A.10)
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or equivalently,

M ∼ d1/ℓ/ε1+2/ℓ, ∆t = ε2/d. (A.11)

The total number of gates required to iterate to the n-th step is

NGates = nNGates(U∆t) = Õ
(d2+2/ℓ

ε4+4/ℓ

)
= Õ

(d3+2/ℓ

ε4+4/ℓ

)
,

where in the last equal sign we have included the additional factor d arising from the matrix order

(see Remark 2.8).

(2) For the computation of the observable, according to Remark 2.4, one just needs to multiply

the original gate complexity by the sampling factor k = O(n4L/ε2). This completes the proof.

A.1.2 Quantum simulation for the spectral discretisation

The approximate operator in (A.2) can also evolved by the quantum simulation.

Theorem A.2. Assume further that max1≤j≤d ∥Fj∥ = O(1) and T = O(1).

(1) There exists a quantum algorithm that produces a state ε-close to w(T )/∥w(T )∥ with the gate

complexity given by

NGates = Õ
(d2+2/ℓ

ε2+4/ℓ

)
.

(2) The observable of the Liouville representation can be simulated with gate complexity given by

NGates(⟨O⟩) = Õ
(n4Ld2+2/ℓ

ε4+4/ℓ

)
,

where nL = ∥(ρω)0∥/Md/2.

Proof. We first quantify the number of gates used in the quantum simulation. According to Theo-

rem 1 in [5], e−iÃ+
j ∆t/2 in (A.6) can be simulated within error η with

O
(
τ(md + log2.5(τ/η))

log(τ/η)

log log(τ/η)

)
2-qubits gates, where τ = s∥Ã+

j ∥max∆t/2, s is the sparsity of Ã+
j and ∥Ã+

j ∥max denotes the largest

entry of Ã+
j in absolute value. This result is near-optimal by Theorem 2 therein. One can check

that the sparsity of Ã+
j is s = O(M). Therefore, U∆t defined in (A.2) can be simulated within

error O(d(3η +∆t2)) [41, Proposition 1.12] with

NGates(U∆t) = O(dτmd · polylog),

where

τ =MÃmax∆t, Ãmax = max
j
∥Ã±

j ∥max = O(M),

polylog = log2.5(τ/η)
log(τ/η)

log log(τ/η)
.

In the following, we choose η ∼ ∆t2, and hence obtain the same mesh strategy for the QLSA.
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With the mesh strategy given in (A.11), one has the number of qubits per dimension is

m = O(logM) = O
(
log

d1/ℓ

ε1+2/ℓ

)
.

The total number of qubits is md = dm. With these settings, we obtain

τ = O
( d2/ℓ

ε2+4/ℓ
∆t

)
, τ/η = O

(d1+2/ℓ

ε4+4/ℓ

)
,

and the total number of gates required to iterate to the n-th step is

NGates = nNGates(U∆t) = O
(d2+2/ℓ

ε2+4/ℓ
log

d1/ℓ

ε1+2/ℓ
· polylog

)
.

(2) For the computation of the observable, one just needs to add the multiplicative factor

O(n4L/ε2). This completes the proof.

Remark A.2. We emphasise that here only the total cost of the Hamiltonian simulation component

at each time-step is included. The simulation protocol here is different from the traditional time-

marching Hamiltonian simulation since non-unitary procedures are involved at each time step,

leading to exponential increase of the cost as discussed in Remark A.1.
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