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Abstract
We develop a general polynomial chaos (gPC) based stochastic Galerkin (SG) for
hyperbolic equations with random and singular coefficients. Due to the singular nature
of the solution, the standard gPC-SG methods may suffer from a poor or even non
convergence. Taking advantage of the fact that the discrete solution, by the central
type finite difference or finite volume approximations in space and time for example, is
smoother, we first discretize the equation by a smooth finite difference or finite volume
scheme, and then use the gPC-SG approximation to the discrete system. The jump
condition at the interface is treated using the immersed upwind methods introduced
in [8, 12]. This yields a method that converges with the spectral accuracy for finite
mesh size and time step. We use a linear hyperbolic equation with discontinuous
and random coefficient, and the Liouville equation with discontinuous and random
potential, to illustrate our idea, with both one and second order spatial discretizations.
Spectral convergence is established for the first equation, and numerical examples for
both equations show the desired accuracy of the method.
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1 Introduction
We are interested in developing efficient numerical methods to solve linear hyperbolic equa-
tions with non-smooth and uncertain coefficients. Such problems arise in wave propagation
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in heterogeneous media, through interfaces between different media, or potential barriers,
making the coefficients in these equations discontinuous or even more singular. Random
uncertainties arise due to modeling or experiment errors. These errors are inevitable since
the fluxes in hyperbolic equations are often given by empirical laws, equations of state or
moment closures which are often ad hoc.

When hyperbolic equations contain singular coefficients, one usually needs to provide an
extra physical condition at the singular points to make the initial or boundary value problems
well-posed and to account for the correct physics of waves at the interface or barrier [8,12]. In
the case of potential barriers, a natural physical condition is the transmission and reflection
conditions, and such conditions can be built into the numerical fluxes in a natural way, in
the framework of the Hamiltonian-Preserving schemes [12,13]. This is the approach we will
take to tackle the problems with singular coefficients.

To handle the difficulty induced by the random uncertainties, we will utilize the gen-
eralized polynomial chaos (gPC) expansion based stochastic Galerkin (SG) method [1, 5, 7,
15,18,21,23,24]. Such methods outperform the classical Monte-Carlo method in that, given
sufficient regularity of the solution in the random space, they can achieve the spectral conver-
gence, thus are much more efficient for problems with random uncertainties. Unfortunately,
for hyperbolic problems, one often is not blessed with such regularities, which leads to sig-
nificant reduction of order of convergence [17, 26, 27], thus slows down the computation or
even gives non-convergent results due to Gibbs’ phenomenon. The problems under study in
this paper are problems with discontinuous solutions in the random space, due to jumps of
solutions formed at the interfaces or barriers which will propagate into the random space.

A standard gPC-SG method begins with a gPC approximation of the original differential
equation in the random space, yielding a deterministic system of equations for the gPC
coefficients (while the randomness is built into the basis functions which are orthonormal
polynomials), which is then discretized by standard schemes (finite difference, finite volume,
finite element, or spectral methods) in space and time. The gPC approximation is accurate
if solutions to the original problem are smooth in the random space. This is not the case for
the problems under study.

Our central idea in this paper is to reverse the above gPC-SG process. Namely, we first
discretize the original equation in space and time, using smooth numerical fluxes, and then
apply the gPC approximation to this discrete equation. Since the discrete solution is more
regular than the continuous one, the gPC approximation is applied to a smoother function
(for fixed time step and mesh size), thus one expects a better convergence rate. We refer
to such gPC-SG methods as the discrete gPC-SG methods. A similar idea is presented and
analyzed in the context of stochastic collocation methods in [17] where they also noticed that
although the solution is indeed discontinuous, however, some quantities of interests (QoIs)
often have more regularities such that one can expect a better convergence rate.

For hyperbolic equations, the smooth numerical fluxes are usually central differences
which do not depend on the characteristic information (for examples the Lax-Friedrichs, the
Lax-Wendroff scheme, etc.). The upwind type schemes are not smooth, since they depend on
the sign of the absolute value of the characteristic speeds thus do not yield smooth numerical
fluxes. For second order scheme, in order to suppress numerical viscosity, one usually uses
slope limiters or ENO or WENO type reconstruction [14, 16, 19] which in general are not
smooth functions. In order to keep the numerical flux smooth, we use the smooth BAP
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slope limiter introduced in [3].
In this paper we will develop this idea for two problems. The first is a scalar hyperbolic

equation with a discontinuous and random coefficient:

ut(x, t, z) +
[
c(x, z)u(x, t, z)

]
x
= 0, x ∈ R, t > 0. (1.1)

Here c(x, z) is the random coefficient where z is a random variable in a properly defined
complete random space with event space Ω and probability density function ρ(z). c(x, z)
is discontinuous respect to x, which corresponds to an interface between different media.
The second is the Liouville equation for the particle density distribution u(x, v, t, z) > 0 at
position x and velocity v:

ut + vux − Vxuv = 0, t > 0, x, v ∈ R, (1.2)

in which the potential function V (x, z) may be discontinuous in x, corresponding to a po-
tential barrier. The quantities of interest to be computed in these problems include the
expectation of u,

E[u] =
∫

u(z)ρ(z) dz. (1.3)

and its variance
V[u] := E

[
(u− E(u))2

]
=

∫
u(z)2ρ(z) dz − (E[u])2 (1.4)

For equation (1.1), by using the Lax-Friedrichs scheme followed by the gPC-SG approx-
imation, we will establish the regularity and consequently the spectral convergence of the
proposed method in the random space, while the numerical convergence in space and time
is the same as the deterministic problem established in [11]. The error will be verified
numerically, for both the convection and the Liouville equations.

In such problems the uncertainty may also come from the initial data. This is a well-
studied problem [6,26] and our method can obviously be used in this case.

The paper is organized as follows. In Section 2, we will present the discrete gPC-SG
method for the convection equation (1.1), and conduct the regularity and numerical con-
vergence analysis for the fully discrete scheme. In Section 3, we will show how to use this
idea for the Liouville equation for both first and second order spatial discretizations. In Sec-
tion 4, we will present numerical examples for both equations that will show an exponential
convergence in the random space.

2 A Discrete gPC-SG scheme for convection equation
with discontinuous wave speed

We first consider a scalar model convection equation{
ut(x, t, z) +

[
c(x, z)u(x, t, z)

]
x
= 0, t > 0,

u(x, 0, z) = u0(x, z).
(2.1)
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Here we consider the case that c(x, z) can be discontinuous with respect to x at some point,
for example,

c(x, z) =

{
c−(z) > 0, if x < 0,

c+(z) > 0, if x > 0.
(2.2)

As in [8], an interface condition at x = 0 is needed to make the problem well-posed:

u(0−, t, z) = α(z)u(0+, t, z). (2.3)

where α(z) = 1 corresponds to conservation of mass or α(z) = c−(z)/c+(z) for the conserva-
tion of flux which is the case we will use in the sequel. Notice that here we assume c(x, z) is
smooth enough with respect to the random variable z, and only has one discontinuous point
at x = 0.

The discontinuity of u(x, t, z) generated by the interface condition (2.3) will propagate
into the random space, preventing the gPC method from high order convergence due to
Gibb’s phenomenon. Here we propose a slightly different approach from the traditional gPC
method: We first discretize equation (2.1) in space and time as done in [11] with the random
variable z as a fixed parameter. A key idea in [11] is to “immerse” the interface condition (2.3)
into the scheme. The gPC method will then be applied to the discrete system.

2.1 The scheme
Let the spatial mesh be xi = i∆x, where i ∈ Z, the set of all integers, and ∆x is the mesh
size. Let tn = n∆t be the discrete time where ∆t is the time step. Let Un

i (z) = U(xi, t
n, z)

be the numerical approximation of u(xi, t
n, z). The immersed upwind scheme proposed by

Jin and Qi in [11], for (2.1) (2.3) is
Un+1
i (z) = (1− λ−(z))Un

i (z) + λ−(z)Un
i−1(z), if i ≤ 0,

Un+1
i (z) = (1− λ+(z))Un

i (z) + λ−(z)Un
i−1(z), if i = 1,

Un+1
i (z) = (1− λ+(z))Un

i (z) + λ+(z)Un
i−1(z), if i ≥ 2,

(2.4)

where λ±(z) = c±(z)∆t/∆x.
Notice, from this discrete scheme (2.4), if one assumes that Un

i (z) is a smooth function
of z for each i, then after one time step, Un+1

i (z) is still a smooth function of z. The reason
is simple: λ±(z) = c±(z)∆t/∆x is a smooth function of z! Since we assume the initial data
is smooth with respect to z, the numerical solution at any time tn should also be smooth
with respect to z. Then if applying the standard gPC Galerkin method to this discrete
system, one can expect a fast convergence of gPC expansion to this discrete solution when
the physical mesh size ∆x and ∆t are fixed.

Following the standard gPC Galerkin framework, we apply the gPC expansion of z to
Un
i (z). Namely, we seek an approximate solution in the form of the truncated gPC expansion,

i.e.

Un
i,(K)(z) =

K∑
k=0

Ûn
i,(k)Pk(z), (2.5)
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where Pk(z) form an orthonormal polynomial basis with weights ρ(z), and the degree of
Pk(z) of k satisfying

⟨Pi, Pj⟩ =
∫

Pi(z)Pj(z)ρ(z) dz = δij, (2.6)

with the weighted inner product defined as

⟨f, g⟩ =
∫

f(z)g(z)ρ(z) dz, (2.7)

and δij is the Kronecker delta function. The expansion coefficients are determined as

Ûn
i,(k) =

∫
Un
i,(K)(z)Pk(z)ρ(z) dz. (2.8)

By utilizing the expansion (2.5) and employing a Galerkin projection, the coefficients
Ûn
i,(k) satisfy the following system of equations

Ûn+1
i = (I − λ−)Ûn

i + λ−Ûn
i−1, if i ≤ 0,

Ûn+1
i = (I − λ+)Ûn

i + λ−Ûn
i−1, if i = 1,

Ûn+1
i = (I − λ+)Ûn

i + λ+Ûn
i−1, if i ≥ 2.

(2.9)

Here Ûn
i = (Ûn

i,(0), . . . , Û
n
i,(K))

T is a vector of dimension (K +1), I is the identity matrix and
λ± are the (K + 1)× (K + 1) matrices whose entries are {λ±

k,m}0≤k,m≤K where

λ±
k,m =

∆t

∆x

∫
c±(z)Pk(z)Pm(z)ρ(z) dz . (2.10)

2.2 The error estimate and convergence analysis
We first introduce some notations, spaces and norms that will be used for our analysis. We
assume that u(x, t, z) has a compact support in the domain D = [a, b] for all time up to
a final time T , where a < 0 and b > 0 such that the domain includes the interface x = 0.
−M ≤ i ≤ M is the spatial discretization index and ∆x = (b− a)/(2M + 1). The time step
index is n = 0, 1, . . . .

Define a weighed L2 norm on the random space Ω,

∥f(·)∥2L2(Ω) =

∫
f 2(z)ρ(z) dz. (2.11)

We also define the norm

∥un(·)∥2H :=

∫
∥un(z)∥2ℓ1(D)ρ(z) dz, (2.12)

where

∥un(z)∥ℓ1(D) =
M∑

i=−M

|un
i (z)|∆x. (2.13)
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2.2.1 Regularity of the discrete solution in the random space

In order to obtain the error estimate, we need to investigate the regularity of discrete solution
Un
i (z) in the random space. It is natural that some assumptions for the given data will be

made. More precisely, we make the following assumptions (see [20,26]).

Assumption 2.1.

max
z∈Ω

|∂s
zλ

±(z)| ≤ γℓ, max
D⊗Ω

|∂s
zu0(x, z)| ≤ ηℓ, ∀0 ≤ s ≤ ℓ, (2.14)

where 0 ≤ λ±(z) = c±(z)∆t/∆x ≤ 1 and ℓ = 1, 2, . . . and γ, η are positive constants.
Without loss of generality, we also assume a bounded constant τ = max

{
γℓ, ηℓ, 1

}
.

Note that in (2.14) the constants γℓ and ηℓ are independent of x. We are now ready to
state and prove the following regularity result.

Theorem 2.1. Under Assumption (2.14), the discrete solution Un
i (z) have properties

max
i∈N,z∈Ω

|∂ℓ
zU

n
i (z)| ≤ Cℓ(n)(2τ)

nτ, (2.15)

for ∀ℓ ∈ N, where

Cℓ(n) =
n∑

s=0

(
n

s

)
(1 + s)ℓ ≤ 2(ℓ+1)n. (2.16)

Proof. Differentiating scheme (2.4) ℓ times with respect to z,

∂ℓ
zU

n+1
i (z) = ∂ℓ

zU
n
i (z)−

ℓ∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ−(z)∂s

zU
n
i (z) +

ℓ∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ−(z)∂s

zU
n
i−1(z) if i ≤ 0,

∂ℓ
zU

n+1
i (z) = ∂ℓ

zU
n
i (z)−

l∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ+(z)∂s

zU
n
i (z) +

l∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ−(z)∂s

zU
n
i−1(z) if i = 1,

∂ℓ
zU

n+1
i (z) = ∂ℓ

zU
n
i (z)−

ℓ∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ+(z)∂s

zU
n
i (z) +

l∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ+(z)∂s

zU
n
i−1(z) if i ≥ 2.

We will use the mathematical induction on the index n. When n = 1 which means after the
first step, one has

∂ℓ
zU

1
i (z) = ∂ℓ

zU
0
i (z)−

ℓ∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ−(z)∂s

zU
0
i (z) +

ℓ∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ−(z)∂s

zU
0
i−1(z) if i ≤ 0,

∂ℓ
zU

1
i (z) = ∂ℓ

zU
0
i (z)−

l∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ+(z)∂s

zU
0
i (z)

l∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ−(z)∂s

zU
0
i−1(z) if i = 1,

∂ℓ
zU

1
i (z) = ∂ℓ

zU
0
i (z)−

ℓ∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ+(z)∂s

zU
0
i (z) +

l∑
s=0

(
ℓ

s

)
∂ℓ−s
z λ+(z)∂s

zU
0
i−1(z) if i ≥ 2.
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With Assumption (2.14),

max
i∈N,z∈Ω

|∂s
zU

0
i (z)| = max

i∈N,z∈Ω
|∂s

zu0(xi, z)| ≤ max
D⊗Ω

|∂s
zu0(x, z)| ≤ τ, (2.17)

and
max
z∈Ω

|∂ℓ−s
z λ±(z)| ≤ τ. (2.18)

So one has

max
i∈N,z∈Ω

|∂ℓ
zU

1
i (z)| ≤ max

i∈N,z∈Ω
|∂ℓ

zU
0
i (z)|+

ℓ∑
s=0

(
ℓ

s

)
max
z∈Ω

|∂ℓ−s
z λ±(z)| max

i∈N,z∈Ω
|∂s

zU
0
i (z)|

+
ℓ∑

s=0

(
ℓ

s

)
max
z∈Ω

|∂ℓ−s
z λ±(z)| max

i∈N,z∈Ω
|∂s

zU
0
i−1(z)|

≤τ + 2τ 2
l∑

s=0

(
ℓ

s

)
≤ 2τ(2ℓ + 1)τ,

(2.19)

which satisfies (2.15) for n = 1.
Next we assume when n = p, the derivatives satisfy (2.15):

max
i∈N,z∈Ω

|∂ℓ
zU

p
i (z)| ≤ Cℓ(p)(2τ)

pτ, ∀ℓ ∈ N. (2.20)

Then for index n = p+ 1, using the same procedure as above,

max
i∈N,z∈Ω

|∂ℓ
zU

p+1
i (z)| ≤ max

i∈N,z∈Ω
|∂ℓ

zU
p
i (z)|+

ℓ∑
s=0

(
ℓ

s

)
max
z∈Ω

|∂ℓ−s
z λ±(z)| max

i∈N,z∈Ω
|∂s

zU
p
i (z)|

+
ℓ∑

s=0

(
ℓ

s

)
max
z∈Ω

|∂ℓ−s
z λ±(z)| max

i∈N,z∈Ω
|∂s

zU
p
i−1(z)|

≤Cℓ(p)(2τ)
pτ + 2

ℓ∑
s=0

(
ℓ

s

)
τCℓ−s(p)(2τ)

pτ

≤

(
Cℓ(p) +

ℓ∑
s=0

(
ℓ

s

)
Cℓ−s(p)

)
(2τ)p+1τ

:=Cℓ(p+ 1)(2τ)p+1τ.

(2.21)

From the last equality one gets the recursive relation of Cℓ(p),

Cℓ(n+ 1) = Cℓ(n) +
ℓ∑

s=0

(
ℓ

s

)
Cℓ−s(n), (2.22)

and by the mathematical induction one can find

Cℓ(n) =
n∑

s=0

(
n

s

)
(1 + s)ℓ, (2.23)

which is the desired result.
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Remark 2.1. The coefficient

Cℓ(n) =
n∑

s=0

(
n

s

)
(1 + s)ℓ ≤ 2n(1 + n)ℓ ≤ 2(ℓ+1)n. (2.24)

For a given final time T = n∆t,

Cℓ(n) ≤ 2
T
∆t

(
1 +

T

∆t

)ℓ

≤ 2
(ℓ+1)T

∆t . (2.25)

2.2.2 The spectral convergence of the gPC Galerkin method

Let Un
i (z) be the solution to the linear convection equation (2.4). We define the Kth order

projection operator

PKU
n
i (z) =

K∑
k=0

⟨
Un
i (z), Pk(z)

⟩
Pk(z). (2.26)

The error arisen from the gPC-SG can be split into two parts rni,(K)(z) and eni,(K)(z),

Un
i (z)− Un

i,(K)(z) = Un
i (z)− PKU

n
i (z) + PKU

n
i (z)− Un

i,(K)(z)

:= rni,(K)(z) + eni,(K)(z),
(2.27)

where rni,(K)(z) = Un
i (z)−PKU

n
i (z) is the truncation error, and eni,(K)(z) = PKU

n
i (z)−Un

i,(K)(z)
is the projection error.

For the truncation error rni,(K)(z), we have the following lemma,

Lemma 2.1 (Truncation error). Under Assumption (2.14), for a given final time T = n∆t
and any given integer ℓ ∈ N,

∥rn·,(K)(·)∥H ≤ (b− a)Cρ(2
ℓ+2τ)nτ

Kℓ
, ∀ℓ ∈ N, (2.28)

where Cρ is a constant depends on the orthogonal polynomials {Pk(z)}k∈N .

Proof. By the definition of rni,(K)(z) and the norm ∥ · ∥H ,

∥rn·,(K)(·)∥ = ∥Un
· (·)− PKU

n
· (·)∥H

=

(∫
∥Un

· (z)− PKU
n
· (z)∥2l1(D)ρ(z) dz

)1/2

=

(∫ ( M∑
i=−M

|Un
i (z)− PKU

n
i (z)|∆x

)2
ρ(z) dz

)1/2

≤
M∑

i=−M

(∫
|Un

i (z)− PKU
n
i (z)|2ρ(z) dz

)1/2

∆x

=
M∑

i=−M

∥Un
i (·)− PKU

n
i (·)∥L2(Ω)∆x,

(2.29)

8



here we have used the Minkowski inequality. Then by the standard error estimate for or-
thogonal polynomial approximations [2], we get

∥Un
i (·)− PKU

n
i (·)∥L2(Ω) ≤

Cρ∥∂ℓ
zU

n
i (z)∥L2(Ω)

Kℓ
. (2.30)

By using Theorem 2.1, one obtains

∥∂ℓ
zU

n
i (·)∥L2(Ω) ≤ max

i∈N,z∈Ω

∣∣∂ℓ
zU

n
i (z)

∣∣(∫ ρ(z) dz

)2

≤ Cl(n)(2τ)
nτ ≤ 2(ℓ+1)n(2τ)nτ, (2.31)

for ∀l ∈ N, then

∥Un
i (·)− PKU

n
i (·)∥L2(Ω) ≤ Cρ(2

ℓ+2τ)nτ/Kℓ, ∀ℓ ∈ N, (2.32)

which leads to

∥Un
· (·)− PKU

n
· (·)∥H ≤

M∑
i=−M

Cρ(2
ℓ+2τ)nτ/Kℓ∆x =

(b− a)Cρ(2
ℓ+2τ)nτ

Kℓ
. (2.33)

This completes the proof.

It remains to estimate eni,(K)(z). To this aim, first notice that Un
i,(K)(z) satisfies

Un+1
i,(K)(z) = Un

i,(K)(z)− PK

[
λ−(z)

(
Un
i,(K)(z)− Un

i−1,(K)(z)
)]

if i ≤ 0,

Un+1
i,(K)(z) = Un

i,(K)(z)− PK

[(
λ+(z)Un

i,(K)(z)− λ−(z)Un
i−1,(K)(z)

)]
if i = 1,

Un+1
i,(K)(z) = Un

i,(K)(z)− PK

[
λ+(z)

(
Un
i,(K)(z)− Un

i−1,(K)(z)
)]

if i ≥ 2.

(2.34)

On the other hand, by doing the Kth order projection directly on the scheme (2.4), one
obtains

PKU
n+1
i (z) = PKU

n
i (z)− PK

[
λ−(z)

(
Un
i (z)− Un

i−1(z))
]

if i ≤ 0,

PKU
n+1
i (z) = PKU

n
i (z)− PK

[(
λ+(z)Un

i (z)− λ−(z)Un
i−1(z))

]
if i = 1,

PKU
n+1
i (z) = PKU

n
i (z)− PK

[
λ+(z)

(
Un
i (z)− Un

i−1(z))
]

if i ≥ 2.

(2.35)

(2.35) subtracted by (2.34) gives

en+1
i,(K) = eni,(K) − PK

[
λ−(z)(eni,(K) − eni−1,(K))

]
− PK

[
λ−(z)(rni,(K) − rni−1,(K))

]
if i ≤ 0,

en+1
i,(K) = eni,(K) − PK

[
(λ+(z)eni,(K) − λ−(z)eni−1,(K))

]
− PK

[
(λ+(z)rni,(K) − λ−(z)rni−1,(K))

]
if i = 1,

en+1
i,(K) = eni,(K) − PK

[
λ+(z)(eni,(K) − eni−1,(K))

]
− PK

[
λ+(z)(rni,(K) − rni−1,(K))

]
if i ≥ 2.

(2.36)

where the variable z is omitted for clarity.
Now we can give the following estimate of the projection error eni,(K)(z),
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Lemma 2.2 (Projection error). Under Assumption (2.14), for a given final time T = n∆t
and any given integer ℓ ∈ N that the projection error satisfies the following estimate,

∥en·,(K)(·)∥H ≤ 2τ(b− a)CρC
′
ℓ(n)

Kℓ
, ∀ℓ ∈ N, (2.37)

where C ′
ℓ(n) =

(2ℓ+2τ)n − 3n

2ℓ+2τ − 3
and Cρ is a constant determined only by the orthogonal poly-

nomials {Pk(z)}k∈N .

Proof. First, according to (2.36), one has the following estimate for i ≤ 0,

∥en+1
i,(K)∥L2(Ω) ≤ ∥eni,(K)∥L2(Ω) + ∥PK∥

[
max
z∈Ω

(λ−(z))(∥eni,(K)∥L2(Ω) + ∥eni−1,(K)∥L2(Ω))
]

+ ∥PK∥
[
max
z∈Ω

(λ−(z))(∥rni,(K)∥L2(Ω) + ∥rni−1,(K)∥L2(Ω))
]
.

(2.38)

Note ∥PK∥ ≤ 1 since it is a projection operator and max
z∈Ω

(λ±(z)) ≤ 1, so one gets

∥en+1
i,(K)∥L2(Ω) ≤ ∥eni,(K)∥L2(Ω) + ∥eni,(K)∥L2(Ω) + ∥eni−1,(K)∥L2(Ω)

+ ∥rni,(K)∥L2(Ω) + ∥rni−1,(K)∥L2(Ω).
(2.39)

According to (2.32),

∥rni,(K)∥L2(Ω) ≤ Cρ(2
ℓ+2τ)nτ/Kℓ, ∀i ∈ Z,∀ℓ ∈ N, (2.40)

so
∥en+1

i,(K)∥L2(Ω) ≤ 2∥eni,(K)∥L2(Ω) + ∥eni−1,(K)∥L2(Ω) + Cρ2τ(2
ℓ+2τ)n/Kℓ. (2.41)

Similarly, for i = 1 and i ≥ 2, one has the same estimate as above. Summing over i and
multiplying by ∆x give

∥en+1
(K) ∥H ≤ 3∥en(K)∥H + 2τ(b− a)Cρ(2

ℓ+2τ)n/Kℓ. (2.42)

Using this recursive relation and notice that ∥e0(K)∥H = 0, one obtains

∥en(K)∥H ≤ 2τ(b− a)Cρ

Kℓ

(2ℓ+2τ)n − 3n

2ℓ+2τ − 3
:=

2τ(b− a)CρC
′
ℓ(n)

Kℓ
. (2.43)

This completes the proof of the lemma.

We are now ready to state the convergence theorem of gPC-SG method for the discrete
scheme:

Theorem 2.2. Under Assumption (2.14), for a given final time T = n∆t and any given
integer ℓ ∈ N, the error of the gPC-SG method for the discrete scheme is

∥Un − Un
(K)∥H ≤ (b− a)CρC(ℓ, n)

Kℓ
, ∀ℓ ∈ N, (2.44)

where C(ℓ, n) = (2ℓ+2τ)nτ + 2τC ′
ℓ(n).

10



Proof. From Lemma 2.1 and Lemma 2.2, one has

∥Un−Un
(K)∥H ≤ ∥rn(K)∥H+∥en(K)∥H ≤ (b− a)Cρ(2

ℓ+2τ)nτ

Kℓ
+
2τ(b− a)CρC

′
ℓ(n)

Kℓ
:=

(b− a)CρC(ℓ, n)

Kℓ
,

which completes the proof.

Remark 2.2. The constant C(ℓ, n) = O
(
2(ℓ+1)n

)
= O

(
2

(ℓ+1)T
∆t

)
. This implies a spectral

convergence in gPC order K for every fixed ∆t.

2.2.3 An error estimate of the discrete gPC method

Now we are ready to prove the main result of the error estimate. Part of this estimate uses
the error estimate uses the result of Jin and Qi [11] for the deterministic problem.

Lemma 2.3. Let u0(x, z) be a function of bounded variation for every fixed z. Then the
immersed interface upwind difference scheme (2.4), under the CFL condition 0 < λ±(z) < 1,
has the following ℓ1-error bound:

∥Un(z)− u(·, tn, z)∥ℓ1(D) ≤ C1(z)Γ(c
−(z)) + C2(z)Γ(c

+(z)), for every fixed z, (2.45)

where

Γ(c±(z)) = 2

√
c±(z)∆x(1− c±(z)

∆t

∆x
)tn +∆x, (2.46)

and C1(z), C2(z) are bounded functions with respect to z.

Proof. For every fixed z, this is a deterministic problem thus one can use Theorem 1 in [11].
Note that we have assumed c±(z) are strictly positive and bounded function with respect to
z, so one can get a bounded C1(z) and C2(z).

Next we will prove the following error estimate:

Theorem 2.3. Under Assumption 2.14 and assume u0(x, z) is a function of bounded varia-
tion for every z. Then the following error estimate of the discrete gPC method holds:

∥Un
(K) − u(·, tn, ·)∥H ≤ C(T )(

√
∆x+∆t+∆x) +

(b− a)CρC(ℓ, n)

Kℓ
, ∀l ∈ N, (2.47)

where C(T ) depends only on time T and C(ℓ, n) depends on ∆t and ℓ.

Proof. First we split the error into two parts:

∥Un
(K) − u(·, tn, ·)∥H ≤ ∥Un − u(xi, t

n, z)∥H + ∥Un
(K) − Un∥H . (2.48)
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For the first part, it is the error of numerical scheme (2.4), using Lemma 2.3 one gets

∥Un
(K) − u(·, tn, ·)∥H =

(∫
∥Un(z)− u(·, tn, z)∥2l1(D)ρ(z) dz

)1/2

≤

(∫
(C1(z)Γ(c

−(z)) + C2(z)Γ(c
+(z)))2ρ(z) dz

)1/2

≤

(∫
[(C1(z)Γ(c

−(z))]2ρ(z) dz

)1/2

+

(∫
[(C2(z)Γ(c

+(z))]2ρ(z) dz

)1/2

.

(2.49)

The last inequality is obtained by Minkowski inequality. Notice that C1(z) is bounded and(∫
[Γ(c±(z))]2ρ(z) dz

)1/2

≤ 2

(∫
c±(z)∆x(1− c±(z)

∆t

∆x
)tnρ(z) dz

)1/2

+

(∫
∆x2ρ(z) dz

)1/2

= 2

(
tn∆x

∫
c±(z)ρ(z) dz − tn∆t

∫
(c±(z))2ρ(z) dz

)1/2

+∆x

≤ C(T )
√
∆x+∆t+∆x.

(2.50)

Therefore one gets

∥Un − u(·, tn, ·)∥H ≤ C(T )(
√
∆x+∆t+∆x). (2.51)

For the second part, according to Theorem 2.2 we have

∥Un − Un
(K)∥H ≤ (b− a)CρC(ℓ, n)

Kℓ
, ∀ℓ ∈ N. (2.52)

Then by adding these two parts we complete the proof.

3 A gPC method for the Liouville equation with dis-
continuous potential

In this section we study the Liouville equation in classical mechanics with random uncertain-
ties:

ut + vux − Vxuv = 0, t > 0, x, v ∈ R, (3.1)

with initial condition
u(x, v, 0, z) = u0(x, v, z), (3.2)

where u(x, v, t, z) is the density distribution of a classical particle at position x, time t and
traveling with velocity v. V (x, z) is the potential depending on a random variable z

12



The Liouville equation has bicharacteristics defined by Newton’s second law:
dx

dt
= v,

dv

dt
= −Vx(x, z), (3.3)

which is a Hamiltonian system with the random Hamiltonian

H =
1

2
v2 + V (x, z). (3.4)

If V (x, z) is discontinuous with respect to x which corresponds to a random potential
barrier, then the characteristic speed of the Liouville equation given by (3.3) is infinity at the
discontinuous point and a conventional numerical scheme becomes difficult. On the other
hand, it is known from classical mechanics that the Hamiltonian remains constant across
a potential barrier. Based on this principle, Jin and Wen proposed a framework, called
Hamiltonian preserving scheme in which they build the interface condition into the scheme
according to the behavior of a particle across the potential barrier [12], [10].

As in the previous section, we first discretize equation (3.1) using the Hamiltonian pre-
serving scheme in which we regard the random variable z as a fixed parameter.

Without loss of generality, we employ a uniform mesh with grid points at xi+1/2, i =
0, . . . , N in the x-direction and vj+1/2, j = 0, . . . ,M in the v-direction. The cells are centered
at (xi, vj), i = 1, . . . , N , j = 1, . . . ,M with xi = (xi+1/2 + xi−1/2)/2 and vj = (vj+1/2 +
vj−1/2)/2. The mesh size is denoted by ∆x = xi+1/2 − xi−1/2 and ∆v = vi+1/2 − vi−1/2. Also
we assume that the discontinuous points of potential V are located at some grid points. Let
the left and right limits of V at point xi+1/2 be V +

i+1/2 and V −
i+1/2 respectively. The scheme

reads:

∂tuij(z) + vj
u−
i+1/2,j(z)− u+

i−1/2,j(z)

∆x
−DVi(z)

ui,j+1/2(z)− ui,j−1/2(z)

∆v
= 0, (3.5)

here

DVi(z) :=
V −
i+1/2(z)− V +

i−1/2(z)

∆x
. (3.6)

We also need to determine the numerical fluxes ui,j+1/2(z) and u±
i+1/2,j(z) at each cell interface.

3.1 A first order finite difference approximation
Here we can use the standard first order upwind scheme for the fluxes u±

i+1/2,j(z) since the
wave speed in this direction, which is vj, has nothing to do with the random variable z. So
the characteristic in fact is deterministic. For example we consider the case vj > 0, according
to the Hamilton preserving scheme such fluxes read,

u−
i+1/2,j(z) = uij(z),

u+
i+1/2,j(z) =

{
c1ui+1,k(z) + c2ui+1,k+1(z), when transmission,
ui+1,k(z), when reflection,

(3.7)

Here k is an index determined by the energy conservation across the interface (see [12]),
1

2
(vj)

2 + V −
i+1/2 =

1

2
(v+)2 + V +

i+1/2, (3.8)
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where v+ is the velocity across the barrier. If (vj)2 + 2(V −
j+1/2 − V +

j+1/2) > 0, particle will
transmit, thus

v+ =
√

(vj)2 + 2(V −
j+1/2 − V +

j+1/2), (3.9)

k is the index such that
vk ≤ v+ < vk+1, (3.10)

and c1 and c2 are the coefficients of a linear interpolation,

c1 =
v+ − vk
∆v

, c2 =
vk+1 − v+

∆v
, c1 + c2 = 1. (3.11)

If (vj)2 + 2(V −
j+1/2 − V +

j+1/2) < 0, then particle will reflect, k is the index such that

vk = −vj. (3.12)

When vj < 0, we can determine c1, c2 and k similarly using the Hamilton preserving condi-
tion (3.8).

For the flux ui,j+1/2(z), one should be careful when dealing with it. Unlike the flux in x-
direction, the wave speed in v-direction, DVi(z), depends on the random variable z such that
the characteristic is random. This will make the discontinuity of solution in the physical
space propagate into the random space if we use a characteristic dependent scheme (i.e.
upwind scheme), which results a bad regularity of the solution with respect to z.

Here we use the Lax-Friedrichs flux which is a characteristic independent scheme for the
v-direction flux in general:

ui,j+1/2(z) =
1

2

[
α

DVi(z)

(
ui,j+1(z)− uij(z)

)
−
(
uij(z) + ui,j+1(z)

)]
, (3.13)

where α is a constant satisfying α ≥ max
i,z

|DVi(z)|.
From the discussion above, one can easily see that the fluxes of x-direction and v-direction

are both smooth functions with respect to z. As in Section 2, we can conclude that the
solution of this scheme, which is uij(z), are smooth functions of z for each i, j. Then we
apply the standard gPC-SG method to this discrete system, same as in Section 2, one can
expect a fast convergence of gPC expansion to the discretized solution when the mesh size
∆x and time step ∆t are fixed. The justification is the same as in Section 2.
Remark 3.1. Here any central schemes, such as the local Lax-Friedrichs scheme, can be
used besides the Lax-Friedrichs scheme.

3.2 A formally second order spatial discretization
In previous two sections, we have presented our discrete gPC scheme with a first order spatial
discretization. In the following, we will give the formally second order spatial discretization.
Specifically, the spatial numerical flux used in the Hamilton Preserving scheme [12] is given
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by (consider the case when vj > 0)

u−
i+1/2,j(z) = uij(z) +

∆x

2
sij(z),

u+
i+1/2,j(z) =


c1

(
ui,k(z) +

∆x

2
si,k(z)

)
+ c2

(
ui,k+1(z) +

∆x

2
si,k+1(z)

)
,

ui+1,k(z)−
∆x

2
si+1,k(z),

(3.14)

where sij is the numerical slope, c1, c2, k are determined by the Hamilton preserving scheme
just as the first order case in previous subsection (3.7)–(3.12).

Since the solution contains discontinuities, a second order scheme will necessarily intro-
duce numerical oscillations. In order to suppress these oscillations, one can use the limited
slope, in the spirit of total-variation-diminishing (TVD) framework [16]. Most of the slope
limiteds used in the shock capturing community are non-smooth functions, while in our ap-
proach the regularity in z is essential. To this aim, we use smooth slope limiters called BAP,
introduced in [3]. For the backward and forward differences,

sl(z) = (uij(z)− ui−1,j(z))/∆x,

sr(z) = (ui+1,j(z)− uij(z))/∆x,
(3.15)

at (xi, vj), the BAP slope is given by

sij(z) = B−1

(
B(sl(z)) + B(sr(z))

2

)
. (3.16)

Some examples of smooth B(x) include

B(x) = arctan(x), B−1(x) = tan(x),

B(x) = tanh(x), B−1(x) = tanh−1(x),

B(x) = x√
1 + x2

, B−1(x) =
x√

1− x2
.

(3.17)

3.3 The full discretization
Next we need to define the numerical flux in the v-direction. To this stage, in order to get
a smooth discrete solution (with respect to z), we also need to choose some scheme that
does not depend on characteristic information. Here we use the Lax-Wendroff scheme. The
v-direction flux:

ui,j+1/2(z) =
1

2
(ui,j+1(z) + ui,j(z)) + (DVi(z))

∆t

2∆v
(ui,j+1(z)− uij(z)). (3.18)

So combine (3.5), (3.14) and (3.18), we get a second order scheme in space and velocity,
whose solution is smooth with respect to z, written as

∂tuij(z) = RHS(z). (3.19)
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We now apply the gPC-Galerkin method to this discrete system, for the k-th component
un,k
ij in gPC expansion we have:

∂tu
k
ij(z) = ⟨RHS(z), Pk(z)⟩ , (3.20)

where Pk(z) is the k-th order orthogonal polynomial and ⟨·⟩ is the inner product on the
random space. Due to the complicated nonlinear form of RHS(z), we will use numerical
integration, i.e. , the Gauss-quadrature to calculate the right hand side of (3.20).

⟨RHS(z), Pk(z)⟩ =
M−1∑
m=0

RHS(zm)Pk(zm)wm, (3.21)

where M is the total number of quadrature points we choose and zi, wi are the Gauss
quadrature points and corresponding weights. Here we summarize the algorithm on every
time step:

• First, use the gPC expansion un
ij(z) =

K∑
k=0

un,k
i,j Pk(z) to compute un

ij(zm). Notice that

one only needs to compute Pk(zm), which is independent of time thus can be pre-
computed before time marching.

• Using un
ij(zm) and (3.14), (3.18) to get RHS(zm) for every i, j,m.

• Finally by (3.21) and time marching using the forward Euler or Runge-Kutta methods
to get un+1,k

ij for every i, j, k. This finishes one time step.

Remark 3.2. For the convection equation (2.1), one can simply replace Un
i (z) by Un

i (z) +
si(z)∆x/2 in (2.4) and follow the procedure above to get a second order scheme in spatial
domain.

4 Numerical examples
In this section we will conduct some numerical experiments to show the performance of the
proposed methods and check their numerical accuracy.

4.1 Example 1: the scalar convection equation with discontinuous
coefficient

We consider the initial problem{
ut +

[
(c(x, z)u

]
x
= 0, t > 0, x ∈ R,

u(x, 0) = u0(x), x ∈ R,
(4.1)

with

c(x, z) = 0.3z +

{
c− > 0, if x < 0,

c+ > 0, if x > 0,
(4.2)
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where z is uniformly distributed on [−1, 1] (thus the gPC basis should be the normalized
Legendre polynomials) and we treat the random variable z as a small perturbation such that
(c± + 0.3z) > 0 for any z ∈ [−1, 1].

In this example, we set the initial data as

u0(x) = cos(0.25πx), on [−1, 3], (4.3)

and an interface is located at x = 0 with the condition:

u(0+, t, z) = α(z)u(0−, t, z), (4.4)

where
α(z) =

c− + 0.3z

c+ + 0.3z
, (4.5)

for the conservation of flux.
The analytic solution of this simple model problem can be easily obtained by using the

method of characteristic including the interface condition [12]:

u(x, t, z) =


u0

(
x− (c+ + 0.3z)t

)
, x > (c+ + 0.3z)t,

α(z)u0

(
α(z)[x− (c+ + 0.3z)t]

)
, 0 < x < (c+ + 0.3z)t,

u0

(
x− (c− + 0.3z)t

)
, x < 0.

(4.6)

In the following examples, we set c− = 1, c+ = 2, and final time T = 1. The expectation
and variance of the analytic solution can be obtained using (1.3) and (1.4).

For numerical solutions, we approximate their expectation by

Ei(t
n) := E[u(xi, t

n, z)] =

∫
u(xi, t

n, z)ρ(z) dz = Ûn
i,(0),

and their variance by

Vi(t
n) := E

[
(u− E(u))2

]
=

K∑
k=1

(
Ûn
i,(k)

)2
.

The norm for measuring the error between the analytic solution and the numerical solution
is ℓ1.

Figure 1 shows that the analytic solution (4.6) has a discontinuity at z = 0 when x = 2.
Figure 2 shows that the expectation and variance of the analytic solution. In this case, one
can expect a low convergence rate of the standard gPC-SG method.

4.1.1 The first order finite difference approximation

In this subsection, we will give the numerical results of our discrete gPC-SG method. Figure 3
shows the numerical expectation and variance compared with the analytic solution with
∆x = 0.001, ∆t =

1

4
∆x and gPC order K = 20. The discrepancy on the variance is due

to the poor resolution of the first order spatial discretization, which is improved with the
second order spatial discretization to be used later.
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Figure 1: Example 1. The analytic solution (4.6) at t = 1 and x = 2 is a discontinuous
function of z.
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Figure 2: Example 1. The expectation and variance of the analytic solution.
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Next we conduct the convergence test only for the gPC approximation. We fix ∆x = 0.005

and ∆t =
1

5
∆x in all computations with different K. Figure 4 shows that the ℓ1 error decays

very fast with respect to the gPC order K. When K = 4, it decays to the numerical error
of the finite difference method.
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Analytic expectation
Expectation of the new gPC method
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0.20

Analytic variance
Variance of the new gPC method

Figure 3: Example 1. The analytic solution compared with the new gPC-SG method using
first order finite difference approximation with ∆x = 0.001, ∆t =

1

4
∆x, gPC order K = 20.

However, in Figure 4, since the finite difference error dominates the gPC error, it is
difficult to verify the convergence rate of the gPC method. In order to examine the gPC
error, we fix ∆x and ∆t, and compare the numerical solutions with different K, with the
case of K = 30 serving as the reference solution. We measure the ℓ1 error between each
K = 2, 3, . . . , 20 and K = 30. The result is shown in Figure 5, in which an exponential
convergence in the gPC approximation can be observed by using the log-log plot. Note that
if the convergence order is algebraic, the curve should be a line. Here the curve shape shows
the exponential decay of the gPC error.

4.1.2 The second order finite difference approximation

For the second order scheme, we use the same set up as in the first order case. Figure 6
shows the expectation and variance compared with the analytic solution, which gives a more
accurate solution than the first order approximation especially for the variance around x = 2.

Figure 7 and Figure 8 show the convergence of the numerical method in the gPC order
from which one can observe the fast convergence. Comparing Figure 7 with Figure 4, we can
see that the second scheme has a better total ℓ1 error. But the rate of the gPC convergence
shown in Figure 8 is not as fast as the first order scheme. This is hardly surprising since our
spectral convergence depends on the smoothness of the discrete solutions, and the smoothness
is given by the numerical viscosity which is larger for the first order spatial discretization.
The second order spatial discretization offers better accuracy away from the discontinuities
and better resolutions at discontinuities, but because it is closer to the analytic solution
(which is not smooth) thus less smooth than the first order one, and smoothness of the
discrete solution is what our spectral convergence relies upon, thus its gPC congerence rate,
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Figure 4: Example 1. The first order finite difference approximation with ∆x = 0.005,
∆t =
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∆x: the ℓ1 error versus the gPC order.
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Figure 5: Example 1. The first order finite difference approximation ∆x = 0.005, ∆t =
1

5
∆x:

the gPC error versus the gPC order by a log-log plot (with other numerical parameters fixed).
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compared with the first order one, should be slower. However this does not mean that
the second order method is inferior to the first one, since one has to consider the overall
error, including the contributions of error from the spatial discretization in this problem. By
comparing Figure 6 with Figure 3, and Figure 7 with Figure 4, it is obvious that the second
order scheme outperforms the first order one.
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Figure 6: Example 1. The analytic solution compared with the new gPC-SG method using
the second order finite difference approximation with ∆x = 0.001, ∆t =

1

4
∆x, gPC order

K = 20.

4.2 Example 2: the Liouville equation with a discontinuous po-
tential

Recall the Liouville equation

ut + vux − Vxuv = 0, t > 0, x, v ∈ R, (4.7)

with the random potential given by

V (x, y) = V0(x) + 0.1xz, (4.8)

where z is uniformly distributed on (−1, 1) and

V0(x) =

{
0.2, x < 0,

0, x > 0.
(4.9)

For the given initial data, one cannot get an analytic solution for this problem. Instead
we will use the collocation method as a comparison. In collocation method, one solves the Li-
ouville equation (1.2) at a discrete set of {zi}1≤i≤M called sample points in the corresponding
random space. For every fixed zi, we only need to solve a deterministic Liouville equation
with discontinuous potential using Hamilton preserving scheme [12]. Then the expectation
and variance can be obtained by the quadrature rules of (1.3) and (1.4). In the following
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Figure 7: Example 1. The second order finite difference approximation ∆x = 0.005, ∆t =
1
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Figure 8: Example 1. The second order finite difference approximation ∆x = 0.005, ∆t =
1

5
∆x: the gPC error versus the gPC order by a log-log plot (with other numerical parameters

fixed).
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examples, we choose {zi}1≤i≤M as the roots of Mth order Legendre polynomials and use the
Gauss-Legendre quadrature to obtain the expectation and variance.

For the gPC method we need to evaluate
∫ 1

−1
V0(z)Pj(z)Pk(z)ρ(z) dz, which, for this

simple case, is given by

∫ 1

−1

V0(z)Pj(z)Pk(z)ρ(z) dz =


j + 1√

(2j + 1)(2j + 3)
, k = j + 1,

V ′
0(x), k = j,

j√
4j2 − 1

, k = j − 1.

(4.10)

Here one has a symmetric tridiagonal matrix.
As an illustration of the singularity of the solution caused by the discontinuous potential

, we use a continuous initial data:

u(x, v, 0) =

{
sin[2π(0.25− (x2 + v2))], x2 + v2 < 0.25,

0, otherwise.
(4.11)

The expectation of the solution by using the collocation method with M = 20 sample points
and our new gPC-SG method with gPC order K = 4 are shown in Figure 9. Although the ini-
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Figure 9: Example 2 with initial data (4.11). Expectation of the solution. Left: the col-
location method with 20 sample points. Right: the new gPC-SG method with gPC order
K = 4.

tial data is continuous, due to the interface condition, the solution may still be discontinuous.
This singularity will have a big impact on the convergence of gPC method.

4.2.1 The first order finite difference approximation

In this example we set the initial data as

u(x, v, 0) =


1, x ≥ 0, v < 0, x2 + v2 < 1,

1, x ≤ 0, v > 0, x2 + v2 < 1,

0, otherwise.
(4.12)
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Figure 10: The deterministic case of Example 2 with initial data (4.12). Left: analytic
solution of the deterministic problem with z = 0 and t = 1. Right: numerical solution using
the first order Hamiltonian preserving scheme with ∆x = ∆v = 0.015, ∆t = 0.001

Notice that the solution has singularity due to both the initial data and the discontinuous
potential. The deterministic version of this example was used in [12] and the analytic solution
can be obtained by using the method of characteristics. We first plot the analytic solution and
numerical solution (using the first order flux) with a fixed z = 0 in Figure 10 corresponding
to the deterministic example in [12].

Then we compare the solution computed by the collocation method with M = 20 sample
points (Figures 11 and 12 left). Figures 11 and 12 right show the solutions by our new gPC-
SG method with gPC order K = 10. Here the mesh size is ∆x = ∆v = 0.03 and time step
is ∆t = 0.002. One can see the difference between the expectation of the stochastic solution
and the deterministic case when z = 0 and this differences can be easily seen on the variance
plots as well. The expectation of the stochastic solution is expected to be smoother since it
integrates over the z variable, thus gains on order of regularity (see examples in [4, 9]). For
the computation cost, our new gPC-SG method runs much faster than collocation method.
The collocation method takes about 20 times cost of the deterministic version due to 20
sample points we choose, however, our new gPC-SG, with K = 10, takes about 10 times the
cost of the deterministic problem.

In Figure 13 we plot the ℓ1 error of the discrete gPC-SG method as the gPC order K
increases. This figure shows the spectral convergence.

4.2.2 The second finite difference approximation

Here for the second finite difference approximation we still use the same set up as in previous
subsection for the first order case.

First as in the first order case, we will show the numerical solution of the deterministic
case when z = 0 using the second order flux in Figure 14. The second order method clearly
gives a much sharper resolution for the discontinuities than the first order method (compare
the right figures of Figure 10 and Figure 15). But due to the Lax-Wendroff scheme we use
in the v-direction (3.18), there exists some oscillations due to numerical dispersion.

Then we will show the expectation and variance of the solution calculated by the colloca-
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Figure 11: Example 2 with initial data (4.12) by the first order finite difference approximation
with ∆x = ∆v = 0.03 and ∆t = 0.002. The expectation of the solution. Left: the collocation
method with M = 20 samples points. Right: the new gPC-SG method using first order finite
difference approximation.
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Figure 12: Example 2 with initial data (4.12) by the first order finite difference approximation
with ∆x = ∆v = 0.03 and ∆t = 0.002. The variance of the solution. Left: the collocation
method. Right: the new gPC-SG method.
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Figure 13: Example 2 with initial data (4.12). Convergence of the new gPC-SG method using
the first order finite difference approximation. Left: the ℓ1 error versus gPC order. Right:
the gPC error versus the gPC order by a log-log plot (with other numerical parameters
fixed).
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Figure 14: The deterministic case of Example 2 with initial data (4.12). Left: analytic
solution of the deterministic problem with z = 0 and t = 1. Right: numerical solution using
the second order Hamiltonian preserving scheme with ∆x = ∆v = 0.015, ∆t = 0.001

26



1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

Figure 15: Example 2 with initial data (4.12) by the second order finite difference approxi-
mation with ∆x = ∆v = 0.03, ∆t = 0.002. Reference solution by the collocation method
with 20 sample points at t = 1. Left: expectation. Right: variance.
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Figure 16: Example 2 with initial data (4.12) by the second order finite difference approxi-
mation with ∆x = ∆v = 0.03, ∆t = 0.002. Solution at t = 1 computed by the new gPC-SG
method. Left: expectation. Right: variance.

tion method with M = 20 sample points and our new gPC-SG method (for the calculation
of ⟨RHS(z)⟩ we also use 20 Gauss-Legendre quadrature points). See Figure 15 and Figure 16.
One can find no difference between these two methods, both giving sharper resolutions at

discontinuities than their first order counterparts shown in Figures 11 and 12. Here for the
computation cost, we point out that unlike in the first order case, our new gPC-SG method
runs only slightly faster than the collocation method since in the calculation of ⟨RHS(z)⟩ we
use a similarly technique as the collocation method.

Finally, we test the convergence rate of our new gPC-SG method. To do this, we first
fix our mesh size: ∆x = ∆v = 0.03, ∆t = 0.02, and output the result at t = 1. We use 20
Gauss-Legendre quadrature points to compute the inner product in (3.20). We choose the
gPC order K = 10 as our reference solution, and see how the error changes when increasing
K from 3 to 10. From Figure 17, an exponential convergence can be observed.
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Figure 17: Example 2 with initial data (4.12). Convergence of the new gPC-SG method
using second order finite difference approximation. Left: the ℓ1 error versus the gPC order.
Right: the gPC error versus the gPC order by a log-log plot (with other numerical parameters
fixed).

References
[1] H. Bijl, D. Lucor, S. Mishra, C. Schwab, Uncertainty Quantification in Computational

Fluid Dynamics, Springer, Cham, 2013. doi:10.1007/978-3-319-00885-1.

[2] C. Canuto, A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev
spaces, Math. Comp. 38 (1982) 67-86. doi:10.1090/S0025-5718-1982-0637287-3.

[3] H. Choi, J.G. Liu, The reconstruction of upwind fluxes for conservation laws: its be-
havior in dynamic and steady state calculations, J. Comput. Phys. 144 (1998) 237-256.
doi:10.1006/jcph.1998.5970.

[4] B. Despres, G. Poette, and D. Lucor. Robust uncertainty propagation in systems of
conservation laws with the entropy closure method. In Uncertainty Quantication in
Computational Fluid Dynamics, Volume 92 of Lect. Notes Comput. Sci. Eng., 105-149.
Springer, Heidelberg, 2013

[5] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach.
Springer Verlag, New York, 1991.

[6] D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients,
Comm. Comp. Phys. 3, 505-518, 2008.

[7] Max D. Gunzburger, Clayton G. Webster, and Guannan Zhang. Stochastic finite element
methods for partial differential equations with random input data. Acta Numer., 23
(2014), 521-650.

[8] S. Jin, Numerical methods for hyperbolic systems with singular coefficients: well-
balanced scheme, Hamiltonian preservation and beyond, Proc. of the 12th International
Conference on Hyperbolic Problems: Theory, Numerics, Applications, Univeristy of

28



Maryland, College Park. Proceedings of Symposia in Applied Mathematics Vol 67-1,
93-104, 2009, American Mathematical Society.

[9] J. Hu, S. Jin, and D. Xiu, A stochastic Galerkin method for Hamilton-Jacobi equations
with uncertainty, SIAM J. Sci. Comput. 37, A2246-A2269, 2015.

[10] S. Jin, K.A. Novak, A Semiclassical Transport Model for Thin Quantum Barriers, Mul-
tiscale Model. Simul. 5 (2006) 1063-1086. doi:10.1137/060653214.

[11] S. Jin, P. Qi, ℓ1-error estimates on the immersed interface upwind scheme for linear
convection equations with piecewise constant coefficients: A simple proof, Science China
Mathematics 56 (2013), 2773-2782. doi:10.1007/s11425-013-4738-2.

[12] S. Jin, X. Wen, Hamiltonian-preserving schemes for the Liouville equation with discon-
tinuous potentials, Commun. Math. Sci. 3 (2005) 285-315.

[13] S. Jin and X. Wen, Hamiltonian-preserving schemes for the Liouville equation of geomet-
rical optics with partial transmissions and reflections, SIAM J. Num. Anal. 44 (2006),
1801-1828.

[14] A. Kurganov, E. Tadmor, New High-Resolution Central Schemes for Nonlinear Con-
servation Laws and Convection Diffusion Equations, J. Comput. Phys. 160, 241-282,
(2000). doi:10.1006/jcph.2000.6459.

[15] O. P. Le Maitre and O. M. Knio. Spectral Methods for Uncertainty Quantification,
Scientific Computation, with Applications to Computational Fluid Dynamics. Springer,
New York, 2010.

[16] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University
Press, 2002.

[17] M. Motamed, F. Nobile, R. Tempone, A stochastic collocation method for the second
order wave equation with a discontinuous random speed, Numer. Math. 123 (2012)
493-536. doi:10.1007/s00211-012-0493-5.

[18] M. P. Pettersson, G. Iaccarino and J. Nordström, Polynomial Chaos Methods for Hy-
perbolic Differential Equations, Springer, Switzerland, 2015.

[19] H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation
laws, J. Comput. Phys. (1990).

[20] T. Tang, T. Zhou, Convergence Analysis for Stochastic Collocation Methods to Scalar
Hyperbolic Equations with a Random Wave Speed, Commun. Comput. Phys, 8.1 (2010)
226-248. doi:10.4208/cicp.060109.130110a.

[21] J. Tryoen, O. Le Maitre, M. Ndjinga, A. Ern, Intrusive Galerkin methods with upwind-
ing for uncertain nonlinear hyperbolic systems, J. Comput. Phys. 229 (2010) 6485-6511.
doi:10.1016/j.jcp.2010.05.007.

29



[22] D. Xiu, Fast numerical methods for stochastic computations: a review, Comun. Comput.
Phys, 5.2-4 (2009) 242-272. doi:10.1016/j.adhoc.2013.06.001.

[23] D. Xiu, Numerical Methods for Stochastic Computations, Princeton University Press,
2010.

[24] D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic dif-
ferential equations. SIAM J. Sci. Comput., 24(2002), 619-644.

[25] D. Xiu, J.S. Hesthaven, High-Order Collocation Methods for Differential Equations with
Random Inputs, SIAM J. Sci. Comput. 27 (2005) 1118-1139. doi:10.1137/040615201.

[26] T. Zhou, T. Tang, Convergence Analysis for Spectral Approximation to a Scalar Trans-
port Equation with a Random Wave Speed, J. Comput. Math. 30 (2012) 643-656.
doi:10.4208/jcm.1206-m4012.

[27] T. Zhou and T. Tang, Galerkin methods for stochastic hyperbolic problems using bi-
orthogonal polynomials, J. Sci. Comput. 51 (2012) 274-292.

30


