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Abstract. The radiation magnetohydrodynamics (RMHD) system couples the ideal magnetohydrodynam-

ics equations with a gray radiation transfer equation. The main challenge is that the radiation travels at the

speed of light while the magnetohydrodynamics changes with fluid. The time scales of these two processes

can vary dramatically. In order to use mesh sizes and time steps that are independent of the speed of light,

asymptotic preserving (AP) schemes in both space and time are desired. In this paper, we develop an AP

scheme in both space and time for the RMHD system. Two different scalings are considered, one results in

an equilibrium diffusion limit system, while the other results in a non-equilibrium system. The main idea is

to decompose the radiative intensity into three parts, each part is treated differently. The performances of

the semi-implicit method are presented, for both optically thin and thick regions, as well as for the radiative

shock problem. Comparisons with the semi-analytic solution are given to verify the accuracy and asymptotic

properties of the method.

1. Introduction

Radiation magnetohydrodynamics (RMHD) is concerned about the dynamical behaviors of magnetized

fluids that have nonnegligible exchange of energy and momentum with radiation, which is important in high

temperature flow systems, solar and space physics and astrophysics. The radiation transfer equation (RTE)

for the radiative intensity I and the fluid temperature T in the mixed frame is governed by

∂I

∂t
+ Cn · ∇I = Cσa

(
arT

4

4π
− I
)

+ Cσs(J − I) + 3n · vσa
(
arT

4

4π
− J

)
+ n · v(σa + σs)(I + 3J)

− 2σsv ·H − (σa − σs)
v · v
C

J − (σa − σs)
v · (v ·K)

C
,

(1.1)

where σa and σs represent absorption and scattering opacities respectively, n ∈ V is the angular variable,

ar is the radiation constant and C is the speed of light [7]. The ideal MHD equations with radiation energy

and momentum source terms are

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)

∂t
+∇ · (ρvv −BB + P ∗) = −Srp,

∂E

∂t
+∇ · [(E + P ∗)v −B(B · v)] = −CSre,

∂B

∂t
+∇× (v ×B) = 0 ,

(1.2)

where

Sre = σa(arT
4 − Er) + (σa − σs)

v

C2
· [Fr − (vEr + v · Pr)] ,

Srp = −σs + σa
C

[Fr − (vEr + v · Pr)] +
v

C
σa(arT

4 − Er),
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with the energy density

Er = 4πJ =
4π

|V |

∫
V

Idn = 4π 〈I〉 ,

the radiation flux

Fr = 4πCH =
4πC

|V |

∫
V

nIdn = 4πC 〈nI〉 ,

and the radiation pressure

Pr = 4πK =
4π

|V |

∫
V

n2Idn = 4π
〈
n2I

〉
.

In particular, the operators 〈·〉 , 〈n·〉 and
〈
n2·
〉

are respectively 1
|V |
∫
V
·dn, 1

|V |
∫
V
n · dn and 1

|V |
∫
V
n2 · dn

in context. Moreover, ρ is fluid density, v is fluid velocity, B is magnetic flux density, p is static pressure,

P ∗ is full pressure of fluid, P ∗ ≡ (p+B2/2)M (with M the unit tensor), and the total fluid energy density is

E = Eg +
1

2
ρv2 +

B2

2
,

where Eg is the internal energy density, v2 = v · v and B2 = B ·B. The radiation MHD system is closed by

the perfect gas equation of state:

Eg = p/(γ − 1), T = p/(Ridealρ),

where γ is adiabatic index for an ideal gas, and Rideal is the ideal gas constant.

Numerical approximations to RTE have been extensively studied in [12,14,15,21,24,30] and for ideal MHD

see for example [2,18,29]. The RMHD coupled system has been investigated lately [1,6,7,13,27,28,31]. Since

the transport term in the RTE and the advection term in the MHD equations are at different time scales,

the RMHD system can be stiff, as can been seen more clearly after nondimensionalization [19]. To solve the

RMHD system, classical numerical discretizations require the space and time steps resolve the speed of light,

which leads to very expensive computational cost. Asymptotic-Preserving (AP) schemes provide a generic

framework for such multiscale problems [8, 9]. AP schemes were first studied for steady neutron transport

problems in diffusive regimes [16, 17] and then [5, 10] for boundary value problems, and unsteady transport

problems [11,14]. In the discrete setting, from the microscopic scale to the macroscopic, AP schemes preserve

the asymptotic limit. When the scaling parameter ε in the multiscale system can not be resolved numerically,

AP schemes should automatically become a good solver for the macroscopic models.

AP schemes for RMHD have been proposed in the literature but since most of them are based on operator

splitting, they are only AP in space. In [1], Simon et al. have developed a second-order scheme in both space

and time for the Euler equations coupled with a gray radiation S2 model. The scheme in [1] uses MUSCL-

Hancock method to solve the Euler equations and the lumped linear-discontinuous Galerkin method for the

radiation S2 model. For the time discretization, the TR/BDF2 time integration method is employed. Jiang

et al. devised an Implicit/Explicit (IMEX) scheme for the splitting system that treats the transport term in

the RTE and convective term in the fluid equations explicitly, and the source term implicitly [7]. Recently,

another method by Sun etc. [31] uses the gas-kinetic scheme (GKS) to deal with Euler equations and the

unified gas-kinetic scheme (UGKS) for the RTE. However, all the aforementioned methods either require a

time step that satisfies a hyperbolic constraint with CFL number proportional to the light speed [1, 7], or

use nonlinear iterations involving (1.1) in order to get rid of the time step constraint [31]. Both approaches

are expensive. It is desired to design a scheme that can use a time step that is independent of the light

speed and employs nonlinear iterations that involve only macroscopic quantities, i.e. the ρ, v, E, B or the

moments of radiative intensity.

In this paper, we aim at developing a scheme for RMHD that is AP in both space and time. Two

different parameter regimes are considered. One is for σa small and σs large, which results in the non-

equilibrium diffusion limit system. The other is for σa large, which gives the equilibrium diffusion limit
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system. The proposed scheme preserves both limits. The main idea is to decompose the intensity into three

parts, two parts correspond to the zeroth and first order moments, while the third part is the residual. The

two macroscopic moments are treated implicitly while the residual is explicit. Thanks to the properties of

residual term, one can update the macroscopic quantities first. For the space discretization, we use Roe’s

method in the Athena code to solve the convective part in the ideal MHD equations and the UGKS for the

RTE. AP property of both semi-discretized and fully discretizad are proved.

This paper is organized as follows. Section 2 gives the asymptotic limit of the coupled system, and the

equilibrium and non-equilibrium diffusion limit systems under different scalings are obtained. The semi-

discretization and one dimensional fully discretized scheme for RMHD are illustrated in Sections 3 and 4

respectively. Their capability of capturing both diffusion limits are proved. In Section 5, performances of

our AP method are presented in both optically thin and thick regions. The radiative shock problems are

tested. By comparing with the semi-analytic solutions in [20], we observe that the scheme is accurate and

stable using large time step and meshes that are independent of the light speed. Finally, we conclude in

Section 6.

2. The diffusion limit of RMHD

As presented in [19], the dimensionless form for the coupled system can give a better insight on the relative

importance of different terms. Consider the following nondimensionalization:

x = x̂`∞, t = t̂`∞/a∞, ρ = ρ̂ρ∞, v = v̂a∞, p = p̂ρ∞a
2
∞, T = T̂ T∞, I = arT

4
∞Î ,

Er = arT
4
∞Êr, Fr = CarT

4
∞F̂r, Pr = arT

4
∞P̂r, σa = λaσ̂a, σs = λsσ̂s,

where variables with a hat denote nondimensional quantity and variables with ∞−subscript are the char-

acteristic value with unit. More precisely, `∞, a∞, ρ∞ and T∞ are respectively the reference length, sound

speed, density and temperature. Moreover, λa and λs are respectively the characteristic value of absorbing

and scattering coefficients. Then the full dimensionless radiation MHD system becomes

∂I

∂t
+ Cn · ∇I = LaCσa

(
T 4

4π
− I
)

+ LsC(J − I) + 3Lan · vσa
(
T 4

4π
− J

)
+ n · v (Laσa + Lsσs) (I + 3J)

− 2Lsσsv ·H − (Laσa −Lsσs)
v · v
C

J − (Laσa −Lsσs)
v · (v ·K)

C
, CS,

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)

∂t
+∇ · (ρvv −BB + P ∗) = −P0Srp,

∂E

∂t
+∇ · [(E + P ∗)v −B(B · v)] = −CP0Sre,

∂B

∂t
+∇× (v ×B) = 0 ,

(2.1)

where C = C
a∞

, P0 =
arT

4
∞

ρ∞a2∞
, La = `∞λa, Ls = `∞λs, Sre = 4π 〈S〉 and Srp = 4π 〈nS〉. In (2.1), P0

is a nondimensional constant, which measures the influence of radiation on the flow dynamics. In [4], the

authors considered the equilibrium diffusion regime and non-equilibrium diffusion regime for a simplified

coupled system. In the subsequent part, we consider the equilibrium diffusion limit and non-equilibrium

diffusion limit of the RMHD system by using the same scaling assumptions as in [4].

2.1. The non-equilibrium diffusion limit. In the simulation of radiation-hydrodynamics in [1], the speed

of light C = 29.98 cm ns−1, in nonrelativistic flows the sound speed is 0.001386 cm ns−1, the radiation

constent ar = 0.001372 Jk cm−3 KeV −4, the typical computational domain is 0.04 cm, and the units of the



4 SHI JIN, MIN TANG, AND XIAOJIANG ZHANG

length, time, temperature and energy are respectively cm, ns, KeV and Jk. Therefore 1/C = O(ε), P0 =

O(1). In non-equilibrium regime, we assume La = ε,Ls = 1/ε, and the radiation intensity I tends to a

state which can be characterized by a temperature which is different from the material temperature T . In

summary, we consider the following scaling

La = ε, Ls = 1/ε, P0 = O(1), C = c/ε.

The RMHD system (2.1) becomes (after dropping the hat):

∂I

∂t
+
c

ε
n · ∇I = cσa

(
T 4

4π
− I
)

+
cσs
ε2

(J − I) + 3εn · vσa
(
T 4

4π
− J

)
+ n · v

(
εσa +

σs
ε

)
(I + 3J)

−2
σs
ε
v ·H − (ε2σa − σs)

v · v
c
J − (ε2σa − σs)

v · (v ·K)

c
, (2.2a)

∂ρ

∂t
+∇ · (ρv) = 0, (2.2b)

∂(ρv)

∂t
+∇ · (ρvv −BB + P ∗) = −P0Srp, (2.2c)

∂E

∂t
+∇ · [(E + P ∗)v −B(B · v)] = − c

ε
P0Sre, (2.2d)

∂B

∂t
+∇× (v ×B) = 0 , (2.2e)

where

Sre = εσa

(
T 4 − 4π

|V |

∫
V

Idn

)
+ (ε3σa − εσs)

4πv

c2|V |
·
[
c

ε

∫
V

nIdn−
(
v

∫
V

Idn + v

∫
V

n2Idn

)]
,

Srp = −4π(σs + ε2σa)

c|V |

[
c

ε

∫
V

nIdn−
(
v

∫
V

Idn + v

∫
V

n2Idn

)]
+

v

c
ε2σa

(
T 4 − 4π

|V |

∫
V

Idn

)
.

When ε→ 0, we show that the solution to (2.2) can be approximated by the solution to a nonlinear diffusion

equation coupled with a MHD system. We assume that the radiation intensity I and temperature T have

the following Chapman-Enskog expansion such that

I = I(0) + εI(1) + ε2I(2) + · · · ,

T = T (0) + εT (1) + ε2T (2) + · · · .
(2.3)

By substituting ansatz (2.3) into equation (2.2a) and collecting the terms of the same order in ε, we have

O
(

1

ε2

)
: I(0) = J (0), (2.4a)

O
(

1

ε

)
: cn · ∇I(0) = cσs

(
J (1) − I(1)

)
+ n · vσs

(
I(0) + 3J (0)

)
. (2.4b)

Multiplying both sides of (2.2a) by n, taking its integral with respect to n and combining the obtained

equation with (2.2c), one can get the following momentum conservation equation:

∂t

(
ρv

P0
+

4πε

c
〈nI〉

)
+∇ ·

(
ρvv −BB + P ∗

P0
+ 4π

〈
n2I

〉)
= 0. (2.5)

By using (2.4a) and
〈
n2
〉

= 1
3 , when ε→ 0, (2.5) gives

∂t(ρ
(0)v(0)) +∇ ·

(
ρ(0)v(0)v(0) −B(0)B(0) + (P ∗)(0)

)
= −4πP0

3
∇J (0). (2.6)

By taking the integral with respect to n on both sides of (2.2a), and combining it with (2.2d), one can obtain

the energy conservation equation

∂t

(
E

P0
+ 4π 〈I〉

)
+∇ ·

[
(E + P ∗)v −B(B · v)

P0
+

4πc 〈nI〉
ε

]
= 0. (2.7)
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By using (2.4a), when ε→ 0, (2.7) gives

∂t

(
E(0)

P0
+ 4π

〈
I(0)

〉)
+∇ ·

[
(E(0) + (P ∗)(0))v(0) −B(0)(B(0) · v(0))

P0
+ 4πc

〈
nI(1)

〉]
= 0.

Noting (2.4b), we find

∂t

(
E(0) + 4πP0J

(0)
)

+∇ ·
[
(E(0) + (P ∗)(0))v(0) −B(0)(B(0) · v(0)) +

16πP0

3
v(0)J (0) − 4πcP0

3σs
∇J (0)

]
= 0.

(2.8)

(2.2b), (2.6), (2.8) and (2.2e) give four equations for ρ, ρv, E, J, B, to obtain a closed system, we need

one more equation for J . Taking 〈·〉 on both sides of equation (2.2a), yields:

∂t 〈I〉+
c

ε
∇ · 〈nI〉 =

c

4πε
Sre.

By using the expansion in (2.3) and (2.4a), the leading order terms are

4π∂t

〈
I(0)

〉
+4πc∇·

〈
nI(1)

〉
= cσa

(
(T (0))4 − 4π

〈
I(0)

〉)
−4πσs

v(0)

c

[
c
〈
nI(1)

〉
− v(0)

(〈
I(0)

〉
+
〈
n2I(0)

〉)]
,

then from (2.4b), one gets

4π∂tJ
(0) +∇ ·

(
16π

3
v(0)J (0) − 4πc

3σs
∇J (0)

)
= cσa

(
(T (0))4 − 4πJ (0)

)
+

4π

3
v(0)∇J (0). (2.9)

Therefore, when ε → 0 in (2.2), the solution can be approximated by the solution of the following non-

equilibrium system:



∂tρ+∇ · (ρv) = 0, (2.10a)

∂t(ρv) +∇ · (ρvv −BB + P ∗) = −4πP0

3
∇J, (2.10b)

∂t (E + 4πP0J) +∇ ·
[
(E + P ∗)v −B(B · v) +

16πP0

3
vJ

]
= ∇ ·

(
4πcP0

3σs
∇J
)
, (2.10c)

4π∂tJ +∇ ·
(

16π

3
vJ − 4πc

3σs
∇J
)

= cσa
(
T 4 − 4πJ

)
+

4π

3
v∇J, (2.10d)

∂tB +∇× (v ×B) = 0. (2.10e)

Here, the non-equilibrium system indicates that J is away from T 4

4π , while we will see in section 2.2 that the

equilibrium diffusion limit indicates that J ≈ T 4

4π .

2.2. The equilibrium diffusion limit. The setting of P0 and C in this regime are the same with the

non-equilibrium regime. Moreover, we assume La = 1/ε,Ls = ε, and the radiation intensity I adapt to the

material temperature. In summary, we consider the following scaling

La = 1/ε, Ls = ε, P0 = O(1), C = c/ε.
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This is called the equilibrium diffusion regime, which will give the classical equilibrium diffusion limit [19,

23,25]. The RMHD system (2.1) becomes (after dropping the hat):

∂I

∂t
+
c

ε
n · ∇I =

cσa
ε2

(
T 4

4π
− I
)

+ cσs(J − I) + 3n · vσa
ε

(
T 4

4π
− J

)
+ n · v

(σa
ε

+ εσs

)
(I + 3J)

−2εσsv ·H − (σa − ε2σs)
v · v
c
J − (σa − ε2σs)

v · (v ·K)

c
, (2.11a)

∂ρ

∂t
+∇ · (ρv) = 0, (2.11b)

∂(ρv)

∂t
+∇ · (ρvv −BB + P ∗) = −P0Srp, (2.11c)

∂E

∂t
+∇ · [(E + P ∗)v −B(B · v)] = − c

ε
P0Sre, (2.11d)

∂B

∂t
+∇× (v ×B) = 0 , (2.11e)

where

Sre =
σa
ε

(
T 4 − 4π

|V |

∫
V

Idn

)
+ (εσa − ε3σs)

4πv

c2|V |
·
[
c

ε

∫
V

nIdn−
(
v

∫
V

Idn + v

∫
V

n2Idn

)]
,

Srp = −4π(ε2σs + σa)

c|V |

[
c

ε

∫
V

nIdn−
(
v

∫
V

Idn + v

∫
V

n2Idn

)]
+

v

c
σa

(
T 4 − 4π

|V |

∫
V

Idn

)
.

Using the same expansion as in (2.3), one has

T 4 = (T (0) + εT (1) + ε2T (2) + · · · )4

= (T (0))4 + 4ε(T (0))3T (1) + · · · .
(2.12)

Then substituting (2.12) into (2.11a) and collecting the terms of the same order of ε, one gets

O
(

1

ε2

)
: I(0) =

(T (0))4

4π
, (2.13a)

O
(

1

ε

)
: cn · ∇I(0) = cσa

(
4(T (0))3T (1)

4π
− I(1)

)
+ n · vσa

(
I(0) +

3(T (0))4

4π

)
, (2.13b)

by similar calculations in section 2.1, one can get the following equilibrium diffusion limit:

∂tρ+∇ · (ρv) = 0, (2.14a)

∂t(ρv) +∇ · (ρvv −BB + P ∗) = −P0

3
∇T 4, (2.14b)

∂t
(
E + P0T

4
)

+∇ ·
[
(E + P ∗)v −B(B · v) +

4P0

3
vT 4

]
= ∇ ·

(
cP0

3σa
∇T 4

)
, (2.14c)

∂tB +∇× (v ×B) = 0. (2.14d)

As we can see, when J = T 4

4π in (2.10), the non-equilibrium diffusion system (2.10) is the same as the

equilibrium diffusion system (2.14), which indicates J is close to T 4

4π in the equilibrium system (2.11).

3. Time discretization for the RMHD

In this section, based on a decomposition for radiation intensity I, we will present a semi-discretization

for the RMHD and show its AP property for any dimensions in space and angular variables.
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3.1. A decomposition. To preserve the asymptotic limit of (2.1) while keeping the computational com-

plexity under control, the intensity I will be decomposed into three parts, and each of them is treated in a

different way. More precisely, we decompose I(t, x, n) as follows:

I(t, x,n) = 〈I〉+ 3n 〈nI〉+ εQ(t, x,n), (3.1a)

:= J(t, x) + εnR(t, x) + εQ(t, x,n), (3.1b)

with 3〈nI〉 = εR. Then taking 〈n·〉 on both sides of (3.1a) and using the condition
〈
n2
〉

= 1
3 yields

〈nI〉 = 〈nI〉+ ε 〈nQ〉 ,

which gives

〈nQ〉 = 0. (3.2)

Moreover, taking 〈·〉 on (3.1b), yields

〈I〉 = 〈J + εnR+ εQ〉 = 〈J + εQ〉 = 〈I〉+ ε 〈Q〉 ,

which implies

〈Q〉 = 0. (3.3)

Substituting the decomposition (3.1) into system (2.2) leads to

∂t (J + ε (nR+Q)) +
c

ε
n∇ · (J + ε (nR+Q)) = cσa

(
T 4

4π
− J

)
−
(
cεσa +

cσs
ε

)
(nR+Q)

−2

3
σsvR+ nv

(
εσa +

σs
ε

)
(4J + ε(nR+Q)) + 3εσanv

(
T 4

4π
− J

)
− (ε2σa − σs)v · v

c

(
4

3
J + εKQ

)
, (3.4a)

∂ρ

∂t
+∇ · (ρv) = 0, (3.4b)

∂(ρv)

∂t
+∇ · (ρvv −BB + P ∗) = −P0Ŝrp, (3.4c)

∂E

∂t
+∇ · [(E + P ∗)v −B(B · v)] = − c

ε
P0Ŝre, (3.4d)

∂B

∂t
+∇× (v ×B) = 0 , (3.4e)

where KQ =
〈
n2Q

〉
and

Ŝre = εσa(T 4 − 4πJ) + 4π(ε3σa − εσs)
v

c2
·
[
c

3
R− v

(
4

3
J + εKQ

)]
,

Ŝrp = −4π(σs + ε2σa)

c

[
c

3
R− v

(
4

3
J + εKQ

)]
− ε2v

c
σa(T 4 − 4πJ).

(3.4a) has three unknown functions, J,R and Q. Thanks to the properties of Q in (3.2),(3.3), the zeroth and

first moment equations of (3.4a) have no time derivatives with respect to Q. Therefore, instead of solving

the RMHD system (3.4) directly, we take the zeroth and first moments of (3.4a), and then couple them

together with (3.4b)–(3.4e) to solve variables ρ, J,R,v, T,B. More precisely, we have
∂tJ +

c

3
∇ ·R =

c

4πε
Ŝre,

ε

3
∂tR+

c

3ε
∇ · J + c∇ ·KQ =

c

4πε
Ŝrp,

(3.5)

coupled with (3.4b)–(3.4e) and by treating KQ explicitly, one can update the macroscopic quantities first.

Then Q can be updated implicitly by the first equation in system (3.4a), and the new I can be given by

(3.1). The details are illustrated in the next two subsections.
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3.2. The time discretization for the non-equilibrium regime. Let

ts = s∆t, s = 0, 1, 2, · · · ,

and

Is ≈ I(x, ts, n), ρs ≈ ρ(x, ts, n), vs ≈ v(x, ts, n),

T s ≈ T (x, ts, n), Bs ≈ B(x, ts, n).

We use the following semi-discrete scheme in time for (3.4), which reads:

Js+1 − Js

∆t
+ εn

Rs+1 −Rs

∆t
+ ε

Qs+1 −Qs

∆t
+
c

ε
n∇ · Js+1 + cn∇ · (nRs+1 +Qs)

= cσa

(
(T s+1)4

4π
− Js+1

)
−
(
cεσa +

cσs
ε

)
(nRs+1 +Qs+1)− 2

3
σsv

s+1Rs+1

+3εσanv
s+1

(
(T s+1)4

4π
− Js+1

)
+ nvs+1

(
εσa +

σs
ε

)
(4Js+1 + ε(nRs+1 +Qs))

−(ε2σa − σs)
vs+1 · vs+1

c

(
4

3
Js+1 + εKs

Q

)
, (3.6a)

ρs+1 − ρs

∆t
+∇ · (ρsvs) = 0, (3.6b)

(ρv)s+1 − (ρv)s

∆t
+∇ · (ρsvsvs −BsBs + (P s)∗) = −P0(Ŝrp)s+1, (3.6c)

a
(ρT )s+1 − (ρT )s

∆t
+
ρs+1(vs+1)2 − ρs(vs)2

2∆t
+

(Bs+1)2 − (Bs)2

2∆t

+∇ · [(Es + (P ∗)s)vs −Bs(Bs · vs)] = − c
ε
P0(Ŝre)

s+1, (3.6d)

Bs+1 −Bs

∆t
+∇× (vs ×Bs) = 0. (3.6e)

where Ks
Q =

〈
n2Qs

〉
and

(Ŝre)
s+1 = εσa((T s+1)4 − 4πJs+1) + 4π(ε3σa − εσs)

vs+1

c2

[
c

3
Rs+1 − vs+1

(
4

3
Js+1 + εKs

Q

)]
,

(Ŝrp)s+1 = −4π(σs + ε2σa)

c

[
c

3
Rs+1 − vs+1

(
4

3
Js+1 + εKs

Q

)]
− ε2vs+1

c
σa((T s+1)4 − 4πJs+1).

The zeroth and first moment equations of (3.6a) are
Js+1 − Js

∆t
+
c

3
∇ ·Rs+1 =

c

4πε
(Ŝre)

s+1, (3.7a)

ε2

3c

Rs+1 −Rs

∆t
+

1

3
∇ · Js+1 + ε∇ ·Ks

Q =
(Ŝrp)s+1

4π
. (3.7b)

We first update ρ,B by (3.6b), (3.6e) and then solve (3.6c), (3.6d) and (3.7) to get J,R,v, T . Qs+1 can then

be updated implicitly by equation (3.6a), and we get the Is+1 by using (3.1).

The diffusion limit of (3.7): Then we will show the AP property of the semi-discretization (3.7). From

(3.7b),

Rs+1 =
4vs+1Js+1

c
− ∇ · J

s+1

σs
+O(ε) . (3.8)
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Multiplying equation (3.7a) by 4πP0, and adding it up with equation (3.6d), the terms on the right hand

sides cancel. By using (3.8), and sending ε→ 0 in 4πP0 × (3.7a) + (3.6d) yields

a
(ρT )s+1 − (ρT )s

∆t
+
ρs+1(vs+1)2 − ρs(vs)2

2∆t
+

(Bs+1)2 − (Bs)2

2∆t
+ 4πP0

Js+1 − Js

∆t

+∇ ·
[
(Es + (P s)∗)vs −Bs(Bs · vs) +

16πP0

3
vs+1Js+1

]
= ∇ ·

(
4πcP0

3σs
∇Js+1

)
.

(3.9)

This is a semi-discretization for (2.10c). Then multiplying equation (3.7b) by 4πP0, and adding it to equation

(3.6c), sending ε→ 0, formally one gets

(ρv)s+1 − (ρv)s

∆t
+∇ · (ρsvsvs −BsBs + (P ∗)s) = −4πP0

3
∇ · Js+1 . (3.10)

This is a semi-discretization for (2.10b). Sending ε→ 0 in equation (3.7a), yields

4π
Js+1 − Js

∆t
+

4πc

3
∇ ·Rs+1 = cσa((T s+1)4 − 4πJs+1)− 4πσs

vs+1

c

(
c

3
Rs+1 − 4

3
vs+1Js+1

)
, (3.11)

using (3.8) in (3.11), we get

4π
Js+1 − Js

∆t
+

16π

3
∇ · (vs+1Js+1)−∇ ·

(
4πc

3σs
∇Js+1

)
= cσa((T s+1)4 − 4πJs+1) +

4π

3
vs+1∇ · Js+1 ,

(3.12)

which is a semi-discretization (2.10d).

3.3. The time discretization for the equilibrium regime. We substitute the decomposition in (3.1)

into the RMHD system (2.11), and the time discretization of (2.11) is same with (3.6) except the RTE and

source terms (Ŝre)
s+1 and (Ŝrp)s+1, which read:

Js+1 − Js

∆t
+ εn

Rs+1 −Rs

∆t
+ ε

Qs+1 −Qs

∆t
+
c

ε
n∇ · Js+1 + cn∇ · (nRs+1 +Qs) =

cσa
ε2

(
(T s+1)4

4π
− Js+1

)
−
(cσa
ε

+ cεσs

)
(nRs+1 +Qs+1)− 2

3
ε2σsv

s+1Rs+1 − (σa − ε2σs)
vs+1 · vs+1

c

(
4

3
Js+1 + εKs

Q

)
+ 3

σa
ε
nvs+1

(
(T s+1)4

4π
− Js+1

)
+ nvs+1

(σa
ε

+ εσs

)
(4Js+1 + ε(nRs+1 +Qs)),

(3.13)

and

(Ŝre)
s+1 =

σa
ε

((T s+1)4 − 4πJs+1) + 4π(εσa − ε3σs)
vs+1

c2

[
c

3
Rs+1 − vs+1

(
4

3
Js+1 + εKs

Q

)]
, (3.14)

(Ŝrp)s+1 = −4π(ε2σs + σa)

c

[
c

3
Rs+1 − vs+1

(
4

3
Js+1 + εKs

Q

)]
− vs+1

c
σa((T s+1)4 − 4πJs+1). (3.15)

Moreover, the procedure of solving the equilibrium case is the same as for (3.6).

The diffusion limit of the equilibrium regime: The derivation of the equilibrium diffusion limit is

similar to the non-equilibrium case, but requires additional analysis for the zeroth moment of equation

(3.13). Sending ε→ 0 in the zeroth moment equation of (3.13), one gets

σa((T s+1)4 − 4πJs+1) +O(ε2) = 0,

which implies

4πJs+1 = (T s+1)4 +O(ε2).
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Therefore, (3.9) and (3.10) in the equilibrium regime become

a
(ρT )s+1 − (ρT )s

∆t
+
ρs+1(vs+1)2 − ρs(vs)2

2∆t
+

(Bs+1)2 − (Bs)2

2∆t
+ P0

(T s+1)4 − (T s)4

∆t

+∇ ·
[
(Es + (P s)∗)vs −Bs(Bs · vs) +

4P0

3
vs+1(T s+1)4

]
= ∇ ·

(
4πcP0

3σa
∇(T s+1)4

)
,

(ρv)s+1 − (ρv)s

∆t
+∇ · (ρsvsvs −BsBs + (P ∗)s) = −P0

3
∇ · (T s+1)4 ,

which gives a semi-discretization of system (2.14).

4. The full discretization for the non-equilibrium regime

For the ease of exposition, we will explain our spatial discretion in 1D. That is, x ∈ [0, L], n ∈ [−1, 1],

and 〈f(n)〉 = 1
2

∫ 1

−1
f(n)dn. Recall the RMHD for the non-equilibrium case in the slab geometry:

∂tI +
c

ε
n∂xI = cσa

(
T 4

4π
− I
)

+
cσs
ε2

(J − I) + 3εnvxσa

(
T 4

4π
− J

)
+ nvx

(
εσa +

σs
ε

)
(I + 3J)

−2
σs
ε
vx ·H − (ε2σa − σs)

vx · vx
c

J − (ε2σa − σs)
vx · (vx ·K)

c
, (4.1a)

∂tρ+ ∂x(ρvx) = 0, (4.1b)

∂t(ρvx) + ∂x
(
ρv2
x + p+B2/2 +B2

x

)
= −P0Srp, (4.1c)

∂t(ρvy) + ∂x (ρvxvy −BxBy) = 0, (4.1d)

∂t(ρvz) + ∂x (ρvxvz −BxBz) = 0, (4.1e)

∂t

(
aρT +

ρv2 +B2

2

)
+ ∂x[(E + P ∗)vx − (B · v)Bx] = − c

ε
P0Sre, (4.1f)

∂tBy + ∂x(Byvx −Bxvy) = 0, (4.1g)

∂tBz + ∂x(Bzvx −Bxvz) = 0, (4.1h)

where

Sre = εσa

(
T 4 − 2π

∫ 1

−1

Idn

)
+ 2π(ε3σa − εσs)

vx
c2

[
c

ε

∫ 1

−1

nIdn−
(
vx

∫ 1

−1

Idn+ vx

∫ 1

−1

n2Idn

)]
,

Srp = −2π(σs + ε2σa)

c

[
c

ε

∫ 1

−1

nIdn−
(
vx

∫ 1

−1

Idn+ vx

∫ 1

−1

n2Idn

)]
+
vx
c
ε2σa

(
T 4 − 2π

∫ 1

−1

Idn

)
,

and vx, vy and vz are fluid velocity in the x−, y−, and z−directions, respectively. Bx, By and Bz are magnetic

flux in the x−, y−, and z−directions, respectively. The boundary condition becomes

I(t, 0, n) = bL(t, n), for n > 0; I(t, L, n) = bR(t, n), for n < 0 . (4.2)

Higher dimensions can be treated in the dimension by dimension manner. Let [a, b] be the computational

domain, ∆x = (b− a)/Nx, and we consider the uniform mesh as follows

xi− 1
2

= a+ (i− 1)∆x, i = 1, 2 · · · , Nx + 1,

and let

x 1
2

= a < x1 < x 3
2
< · · · < xi− 1

2
< xi < xi+ 1

2
< · · · < xNx < xNx+ 1

2
= b,

xi =
(
xi− 1

2
+ xi+ 1

2

)
/2, for i = 1, · · · , Nx.

To get a consistent stencil in spatial discretization, we use the unified gas kinetic scheme (UGKS) for

spatial discretization [22]. Other space discretization that is AP can be applied as well. The most crucial

point is that the space discretization of the MHD system has to be consistent with that of RTE.
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4.1. A finite volume approach. UGKS is a finite volume method, integrating RMHD system (4.1) over

[ts, ts+1] and [xi− 1
2
, xi+ 1

2
] gives

Js+1
i − Jsi

∆t
+ εn

Rs+1
i −Rsi

∆t
+ ε

Qs+1
i −Qsi

∆t
+

1

∆x
(ζi+ 1

2
− ζi− 1

2
) =

cσa

(
(T s+1
i )4

4π
− Js+1

i

)
−
(
cεσa +

cσs
ε

)
(nRs+1

i +Qs+1
i ) +Gi, (4.3a)

ρs+1
i − ρsi

∆t
+

1

∆x
(F s1,i+ 1

2
− F s1,i− 1

2
) = 0, (4.3b)

(ρvx)s+1
i − (ρvx)si

∆t
+

1

∆x
(F s2,i+ 1

2
− F s2,i− 1

2
) = −P0(Ŝrp)

s+1
i , (4.3c)

(ρvy)s+1
i − (ρvy)si

∆t
+

1

∆x
(F s3,i+ 1

2
− F s3,i− 1

2
) = 0, (4.3d)

(ρvz)
s+1
i − (ρvz)

s
i

∆t
+

1

∆x
(F s4,i+ 1

2
− F s4,i− 1

2
) = 0, (4.3e)

a
(ρT )s+1

i − (ρT )si
∆t

+
(ρv2 +B2)s+1

i − (ρv2 +B2)si
2∆t

+
1

∆x
(F s5,i+ 1

2
− F s5,i− 1

2
) = − c

ε
P0(Ŝre)

s+1
i , (4.3f)

Bs+1
y,i −Bsy,i

∆t
+

1

∆x
(F s6,i+ 1

2
− F s6,i− 1

2
) = 0, (4.3g)

Bs+1
z,i −Bsz,i

∆t
+

1

∆x
(F s7,i+ 1

2
− F s7,i− 1

2
) = 0, (4.3h)

where G, (Ŝre)
s+1
i and (Ŝrp)

s+1
i are

Gi =3εσa,inv
s+1
x,i

(
(T s+1
i )4

4π
− Js+1

i

)
+ nvs+1

x,i

(
εσa,i +

σs,i
ε

) (
4Js+1
i + ε(nRs+1

i +Qsi )
)

− 2

3
σs,iv

s+1
x,i R

s+1
i −

(ε2σa,i − σs,i)(vs+1
x,i )2

c

(
4

3
Js+1
i + εKs

Q,i

)
,

(Ŝre)
s+1
i = 4πεσa,i

(
(T s+1
i )4

4π
− Js+1

i

)
+

4π(ε3σa,i − εσs,i)vs+1
x,i

c2

[
c

3
Rs+1
i − vs+1

x,i

(
4

3
Js+1
i + εKs

Q,i

)]
,

(Ŝrp)
s+1
i = −4π(σs,i + ε2σa,i)

c

[
c

3
Rs+1
i − vs+1

x,i

(
4

3
Js+1
i + εKs

Q,i

)]
+

4πε2σa,iv
s+1
x,i

c

(
(T s+1
i )4

4π
− Js+1

i

)
.

Here the numerical fluxes F s·,i± 1
2

at the interfaces use Roe’s Riemann solver [29], based on the piecewise

linear reconstruction. At last, we discuss the microscopic flux ζ defined at the interface xi+ 1
2

in (4.3a). In

[22], all the terms of the microscopic flux are treated explicitly, in this paper all the terms except the initial

value and KQ are treated implicitly , and the processes of UGKS are detailed in Appendix A.

With the expressions (A.3), (A.4) and (A.6), the numerical flux ζi+ 1
2

is

ζi+ 1
2

= Ai+ 1
2
n
(
Is,+
i+ 1

2

1n>0 + Is,−
i+ 1

2

1n<0

)
+ C1

i+ 1
2
nJs+1

i+ 1
2

+
C2
i+ 1

2

4π
n(T s+1

i+ 1
2

)4 + Fi+ 1
2
nĜi+ 1

2

+D1
i+ 1

2
n2
(
δxJ

s+1,+

i+ 1
2

1n>0 + δxJ
s+1,−
i+ 1

2

1n<0

)
+
D2
i+ 1

2

4π
n2
(
δx(T s+1,+

i+ 1
2

)41n>0 + δx(T s+1,−
i+ 1

2

)41n<0

)
,

(4.4)

where 1n≶0 is the indicator function. Here the two approximations for I, from the left and from the right,

at the interface xi+ 1
2

are given by:

Is,+
i+ 1

2

= Isi +
∆x

2
δxI

s
i , Is,−

i+ 1
2

= Isi+1 −
∆x

2
δxI

s
i+1. (4.5)
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Moreover, the coefficients in the numerical flux are given by:

A =
c

∆tεµ
(1− e−µ∆t),

C1 =
c2σs

∆tε3µ

(
∆t− 1

µ
(1− e−µ∆t)

)
, C2 =

c2σa
∆tεµ

(
∆t− 1

µ
(1− e−µ∆t)

)
,

D1 = − c3σs
∆tε4µ2

(
∆t
(
1 + e−µ∆t

)
− 2

µ

(
1− e−µ∆t

))
,

D2 = − c3σa
∆tε2µ2

(
∆t
(
1 + e−µ∆t

)
− 2

µ

(
1− e−µ∆t

))
,

F =
c

∆tεµ

(
∆t− 1

µ

(
1− e−µ∆t

))
,

(4.6)

with µ = ε2cσa+cσs
ε2 . For reader’s convenience, the processes of UGKS are detailed in Appendix A.

To obtain a scheme that can update the quantities J ,R, T and vx, the zeroth moment and first moment

of velocity field n for (4.3a) are needed. Integrating equation (4.3a) for n from -1 to 1, and multiplying the

both sides by 4π, one can obtain

4π
Js+1
i − Jsi

∆t
+

2π

∆x

∫ 1

−1

ζ̂i+ 1
2
− ζ̂i− 1

2
dn =

c

ε
(Ŝre)

s+1
i , (4.7)

where

∫ 1

−1

ζ̂i+ 1
2
dn =

∫ 1

−1

Ai+ 1
2
n
(
Is,+
i+ 1

2

1n>0 + Is,−
i+ 1

2

1n<0

)
dn+

2D1
i+ 1

2

3

Js+1
i+1 − J

s+1
i

∆x
+
D2
i+ 1

2

6π

(T s+1
i+1 )4 − (T s+1

i )4

∆x

+ Fi+ 1
2

2εσa,i+ 1
2
vs+1
x,i+ 1

2

 (T s+1
i+ 1

2

)4

4π
− Js+1

i+ 1
2

+ vs+1
x,i+ 1

2

σs,i+ 1
2

+ ε2σa,i+ 1
2

ε

(
8

3
Js+1
i+ 1

2

+ 2εKs
Q,i+ 1

2

) .
Multiplying equation (4.3a) by n, then integrating it for n from -1 to 1, and multiplying the both sides by

4π, one can obtain

4πε

3

Rs+1
i −Rsi

∆t
+

2π

∆x

∫ 1

−1

n
(
ζ̂i+ 1

2
− ζ̂i− 1

2

)
dn =

c

ε
(Ŝrp)

s+1
i , (4.8)

where

∫ 1

−1

nζ̂i+ 1
2
dn =

∫ 1

−1

Ai+ 1
2
n2
(
Is,+
i+ 1

2

1n>0 + Is,−
i+ 1

2

1n<0

)
dn+

C1
i+ 1

2

3
(Js+1
i+1 + Js+1

i ) +
C2
i+ 1

2

12π
((T s+1

i+1 )4 + (T s+1
i )4)

+ Fi+ 1
2

[
vs+1
x,i+ 1

2

(
ε2σa,i+ 1

2
+ σs,i+ 1

2

)(2

5
Rs+1
i+ 1

2

+

∫ 1

−1

n3Qsi+ 1
2
dn

)
− 4

9
σs,i+ 1

2
vs+1
x,i+ 1

2

Rs+1
i+ 1

2

−
2(ε2σa,i+ 1

2
− σs,i+ 1

2
)(vs+1

x,i+ 1
2

)2

3c

(
4

3
Js+1
i+ 1

2

+ εKs
Q,i+ 1

2

) .
Coupling equations (4.7), (4.8), (4.3c) and (4.3f) as a system and solving the system, quantities J , T , R and

vx can be updated. Finally, quantity Q can be updated by equation (4.3a), and the new I can be given by

using (3.1).
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4.2. The diffusion limit of (4.3c)–(4.8). Firstly, assuming σa and σs are positive, as ε → 0, the leading

order of the coefficients in the numerical flux (4.4) are

A(∆t, ε, c, σa, σs) = 0 +O(ε),

εC1(∆t, ε, c, σa, σs) = c+O(ε), εC2 = 0 +O(ε),

D1 = − c

σs
+O(ε), D2 = 0 +O(ε),

1

ε
F =

1

σs
+O(ε).

This means the zero moment and the first moment of the numerical flux, as ε→ 0, have the following limit:∫ 1

−1

ζ̂i+ 1
2
dn→ 8

3
vs+1
x,i+ 1

2

Js+1
i+ 1

2

− 2c

3σs,i+ 1
2

Js+1
i+1 − J

s+1
i

∆x
, (4.9)

ε

∫ 1

−1

nζ̂i+ 1
2
dn→ c

3
(Js+1
i+1 + Js+1

i ). (4.10)

Multiplying equation (4.7) by P0, and adding it up with equation (4.3f), the terms on the right hand sides

cancel. By sending ε→ 0 and using (4.9) yields

a
(ρT )s+1

i − (ρT )si
∆t

+
(ρv2 +B2)s+1

i − (ρv2 +B2)si
2∆t

+ 4πP0
Js+1
i − Jsi

∆t
+

1

∆x
(F s5,i+ 1

2
− F s5,i− 1

2
)

+
16πP0

3

vs+1
x,i+ 1

2

Js+1
i+ 1

2

− vs+1
x,i− 1

2

Js+1
i− 1

2

∆x
=

4πP0c

3σs,i+ 1
2
∆x

Js+1
i+1 − J

s+1
i

∆x
− 4πP0c

3σs,i− 1
2
∆x

Js+1
i − Js+1

i−1

∆x
.

(4.11)

This is a fully discretization for (2.10c). Then multiplying equation (4.8) by ε
cP0, and adding it to equation

(4.3c), sending ε→ 0 and using (4.10), one obtains

(ρvx)s+1
i − (ρvx)si

∆t
+

1

∆x
(F s2,i+ 1

2
− F s2,i− 1

2
) +

2πP0

3

Js+1
i+1 − J

s+1
i−1

∆x
= 0. (4.12)

This is a fully discretization for (2.10b). Sending ε→ 0 in equation (4.8) and using (4.10) gives

Rs+1
i =

4

c
vs+1
x,i J

s+1
i −

Js+1
i+1 − J

s+1
i−1

2∆xσs,i
, (4.13)

using (4.13) in (4.7) and sending ε→ 0, one gets

4π
Js+1
i − Jsi

∆t
− 4π

∆x

[
c

3σs,i+ 1
2

Js+1
i+1 − J

s+1
i

∆x
− c

3σs,i− 1
2

Js+1
i − Js+1

i−1

∆x

]

+
16π

3

vs+1
x,i+ 1

2

Js+1
i+ 1

2

− vs+1
x,i− 1

2

Js+1
i− 1

2

∆x
= cσa,i

(
(T s+1
i )4 − 4πJs+1

i

)
− 2π

3
vs+1
x,i

Js+1
i+1 − J

s+1
i−1

∆x
, (4.14)

which is a fully discretization for (2.10d).

4.3. Boundary conditions. In this section, the numerical fluxes in the system (4.3c)–(4.8) under the

boundary condition (4.2) are considered. The construction of the flux on the right boundary is similar to the

construction on the left boundary, for which we only consider the left boundary case. At the left boundary,

the integral representation of the radiative intensity I (A.3) reads:

I 1
2
(t) =


bL, if n > 0,

e
−µ 1

2
(t−ts)

I
(
ts, x 1

2
+ cn

ε (t− ts)
)

+ 1−e
−µ 1

2
(t−ts)

µ 1
2

Ĝ 1
2

+
t∫
ts

e
−µ 1

2
(t−ts)

( cσ
s, 1

2

ε2 J
(
z, x 1

2
− cn

ε (t− z)
)

+
cσ
a, 1

2

4π T 4
(
z, x 1

2
− cn

ε (t− z)
))

dz, if n < 0.

(4.15)
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According to the approximation (A.4) and (A.6) , the reconstruction of I for n < 0 and x > x 1
2

at the left

boundary can be written as:

I(ts, x, n) = Is1 ,

and the reconstruction of J for t in the interval [ts, ts+1]:

J(t, x) = Js+1
1
2

+ δxJ
s+1,−
1
2

(x− x 1
2
),

where Js+1
1
2

= 1
2 (〈bL〉 + Js+1

1 ) and δxJ
s+1,−
1
2

=
Js+1
1 −Js+1

1
2

∆x/2 . Then the numerical flux at the left boundary

reads:

ζ 1
2

=
cn

ε
bL1n>0 +A 1

2
nIs11n<0 + C1

1
2
nJs+1

1
2

1n<0 +
C2

1
2

4π
n(T s+1

1
2

)41n<0 + F 1
2
nĜ 1

2
1n<0

+D1
1
2
n2δxJ

s+1,−
1
2

1n<0 +
D2

1
2

4π
n2δx(T s+1,−

1
2

)41n<0,

which indicates∫ 1

−1

ζ̂ 1
2
dn =

∫ 1

−1

(cn
ε
bL1n>0 +A 1

2
nIs11n<0

)
dn− 1

2

(
C1

1
2

2

(
Js+1

1 + 〈bL〉
)

+
C2

1
2

8π
((T s+1

1 )4 + (T s+1
L )4)

)

−
F 1

2
Ĝ 1

2

2
+

1

3∆x

(
D1

1
2
(Js+1

1 − 〈bL〉) +
D2

1
2

4π
((T s+1

1 )4 − (T s+1
L )4)

)
,

here T s+1
L is the material temperature at the left boundary, and∫ 1

−1

nζ̂ 1
2
dn =

∫ 1

−1

(
cn2

ε
bL1n>0 +A 1

2
n2Is11n<0

)
dn+

1

3

(
C1

1
2

2

(
Js+1

1 + 〈bL〉
)

+
C2

1
2

8π
((T s+1

1 )4 + (T s+1
L )4)

)

+
F 1

2
Ĝ 1

2

3
− 1

4∆x

(
D1

1
2
(Js+1

1 − 〈bL〉) +
D2

1
2

4π
((T s+1

1 )4 − (T s+1
L )4)

)
.

To summarize, we have the following one time step update of the fully discrete version of RMHD.

Algorithm 1: one step of fully discrete update for RMHD

Input: ρsi , v
s
x,i, v

s
y,i, v

s
z,i, T

s
i , Bsy,i, B

s
z,i, I

s
i ,Jsi (Jsi = 〈Isi 〉)

Output: ρs+1
i , vs+1

x,i , vs+1
y,i , vs+1

z,i , T s+1
i , Bs+1

y,i , Bs+1
z,i , Is+1

i ,Js+1
i (Js+1

i =
〈
Is+1
i

〉
)

1 obtain ρs+1
i , vs+1

y,i , vs+1
z,i , Bs+1

y,i , Bs+1
z,i from (4.3b), (4.3d), (4.3e), (4.3g) and (4.3h);

2 obtain Rsi , Q
s
i from (3.2) and (3.1);

3 get Js+1
i , T s+1

i ,vs+1
x,i and Rs+1

i from the system coupled by (4.3c), (4.3f), (4.7) and (4.8);

4 get Qs+1
i from equation (4.3a) and Qsi replaced by Qs+1

i and Ks
Q,i replaced by Ks+1

Q,i ;

5 obtain Is+1
i from (3.1).

5. Numerical Examples

In this section, we conduct numerical experiments to test the performance of our proposed method. The

examples cover both optically thin ε ∼ O(1) and optically thick ε� 1 cases, as well as the radiation shock

problem. In all the numerical examples, we use S8 discrete ordinate method in the angle space.
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5.1. Example 1. In this example, we will test an ideal MHD shock tube problem as in Section V in [2],

where P0=0 in (2.2). In this case, the radiation does not affect the fluid, but the fluid provides source for

radiation. The computational domain is [−1, 1] and the initial data is given by

(ρ, vx, vy, vz, By, Bz, p)(x, 0) =

{
(1, 0, 0, 0, 1, 0, 1), x < 0,

(0.125, 0, 0, 0,−1, 0, 0.1), x > 0.
(5.1)

The magnetic intensity in the x direction Bx = 0.75, the ideal gas constant Rideal = 1 and adiabatic index

for an ideal gas γ = 2, the absorption collision cross-section σa(x) = 1/3, the scatter collision cross-section

σs(x) = 1/3, c = 0.1 and ε = 10−5 in the RMHD system (2.2). The exact solutions at time t > 0 involve

two fast rarefaction waves, a slow compound wave, a contact discontinuity, and a slow shock. Fig. 1 displays

the numerical solutions at t = 0.2 obtained by our method using 800 uniform grids. The reference solution

is computed by Roe’s method shown in [29] with 4000 uniform grids. Moreover, the reference solution of J

is solved using the diffusion limit equation (2.10) by the semi-implicit scheme (B.7) and (B.8). For all the

schemes, the time step is ∆t = 0.2∆x.

5.2. Example 2. The uniform accuracy and stability of the AP method at the equilibrium regime are tested

in this example. The initial data is the same as in (5.1) in example 1, and the initial temperature and density

fluxes are

T (0, x) = p/(Ridealρ), I(0, x, n) =
T (0, x)4

4π
. (5.2)

Moreover, we assume that P0 = 0.001, c = 0.1 in this example. The absorption collision cross-section σa

and the scatter collision cross-section σs are chosen as σa(x) = σs(x) = 1/3.

Accuracy. The uniform convergence order of the diffusion limit system (2.14) and the RMHD system (2.11)

of our AP scheme are given. In Fig. 3, we plot

errorρ = ‖ρ∆x(·, tmax)− ρ∆x/2(·, tmax)‖l1 , errorp = ‖p∆x(·, tmax)− p∆x/2(·, tmax)‖l1 ,

errorvx = ‖(vx)∆x(·, tmax)− (vx)∆x/2(·, tmax)‖l1 , errorvy = ‖(vy)∆x(·, tmax)− (vy)∆x/2(·, tmax)‖l1 ,

errorBy = ‖(By)∆x(·, tmax)− (By)∆x/2(·, tmax)‖l1 , errorT = ‖T∆x(·, tmax)− T∆x/2(·, tmax)‖l1 ,
(5.3)

for the diffusion limit system (2.14) with decreasing ∆x and tmax = 0.2. Then in Figs. 4, we plot the same

errors for RMHD system (2.11) with decreasing ∆x and tmax = 0.2 for different values of ε = 1,10−1, 10−3,

10−5.

Stability condition. To check the stability, we choose ∆t = C∆x with C being constant, and record the

largest possible choice of C in Table 1 for different ε and ∆x. Uniform hyperbolic stability is observed

numerically.

Table 1. Stability test for the RMHD system (2.11). Here we use ∆t = C∆x and the

largest possible C that stabilize the scheme are displayed.

ε

∆x 1
100

1
200

1
400

1
800

1
1600

1 0.2 0.2 0.2 0.2 0.2

0.1 0.2 0.2 0.2 0.2 0.2

1e-03 0.2 0.2 0.2 0.2 0.2

1e-05 0.2 0.2 0.2 0.2 0.2
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Figure 1. The numerical results at time t = 0.2 using our method with 800 grids points

in space (squares) and the Roe solver with 4,000 grids points in space (solid line). For both

schemes, ∆t = 0.2∆x.

Comparison with reference solutions. We consider two cases with ε = 1 and ε = 10−5 as in [3]. To

compute the reference solution with ε = 1, use a fully resolved explicit finite volume solver. For ε � 1, we

solve the diffusion limit equation (2.10) by the semi-implicit scheme (B.7) and (B.8). The results are shown

in Fig. 5 and Fig. 6. We can see that our results agree well with the reference solutions.

5.3. Example 3. In the simulation of RMHD, it is a challenging task to produce accurate radiative shocks,

especially in the optically thick regime. We test a range of the radiation-hydrodynamic shock problems

presented in [20] in which several shocks are presented in the solution. For each of these shocks, we set

P0 = 10−4, adiabatic index for an ideal gas γ = 5/3, absorption collision cross-section σa = 1/3, scatter
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Figure 2. Comparison of J of our AP scheme and the reference solution obtained by semi-

implicit solver (B.7)–(B.8) for RMHD system (2.2). Here P0 = 0, ε = 10−5, t = 0.2,

∆x = 1/800, ∆t = 0.2∆x for both two schemes.

10-3 10-2

 x

10-3

10-2

10-1

slope=1

error in 

error in v
x

error in v
y

error in p

error in B
y

error in T

Figure 3. Plot of errors (5.3) for diffusion limit system (2.14) with decreasing ∆x = 1
100 ,

1
200 , 1

400 , 1
800 , 1

1600 . Here ∆t = 0.2∆x.

collision cross-section σs = 106, c = 3 × 106, ε = 1 in RMHD system (2.2), and the radiation temperature

Tr ≡ (4πJ)0.25. Moreover, the computational domain is [−0.02, 0.02] and the results at t = 0.04 are displayed.

In this example, ∆x = 1/800, ∆t = 0.2∆x. In [20], the authors have obtained some semi-analytic solutions

for the non-equilibrium diffusion limit system (2.10) at different Mach numbers, we compare the numerical

results with the semi-analytic solutions obtained [20].

(ρ, vx, vy, vz, By, Bz, T, Tr)(x, 0) =

{
(1, 1.2, 0, 0, 0, 0, 1, 1), x < 0,

(1.298088, 0.9244363, 0, 0, 0, 0, 1.194888, 1.194888), x > 0,
(5.4)

(ρ, vx, vy, vz, By, Bz, T, Tr)(x, 0) =

{
(1, 2, 0, 0, 0, 0, 1, 1), x < 0,

(2.287066, 0.874482876, 0, 0, 0, 0, 2.077223, 2.077223), x > 0.
(5.5)

First of all, a Mach 1.2 shock is considered, which has no isothermal sonic point (ISP) but a hydrodynamic

shock. The initial conditions are shown in (5.4). Fig. 7 compares our numerical results with the semi-analytic
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Figure 4. Plot of errors (5.3) for RMHD system (2.11) with decreasing ∆x = 1
100 , 1

200 ,
1

400 , 1
800 , 1

1600 . Here ∆t = 0.2∆x, ε = 1, 0.1, 10−3 and 10−5.

solutions, in which we can see good agreement for all quantities, including density, velocity, material and

radiation temperature. Due to the hydrodynamic shock, there exhibits discontinuities in the solution profiles

of density, velocity and material temperature, and the maximum material temperature is bounded, since there

is no ISP to drive it further.

At Mach 2, there are both a hydrodynamic shock and an ISP. The initial conditions are given in (5.5).

Fig. 8 compares our numerical results with the semi-analytic solutions. One can see that our numerical results

are in good agreement with the semi-analytic solutions. In Fig. 8, discontinuities can be seen in material

density, velocity and material temperature due to the hydrodynamic shock. Moreover, the Zel’dovich spike

can be observed in material temperature as in Fig. 8(c). The Zel’dovich spike is caused by the ISP embedded

within the hydrodynamic shock, which drives up the material temperature at the shock front.

6. Conclusion and discussions

In this paper, we have introduced an AP scheme in both space and time for the RMHD system that

couples the ideal MHD equations with a gray RTE, and two different scalings are considered, one results

in an equilibrium diffusion limit system, while the other results in nonequilibrium. The main idea is to

decompose the intensity into three parts, two parts correspond to the zeroth and first order moments, while
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Figure 5. Comparison of the results of our AP scheme and the reference solution obtained

by fully explicit scheme for RMHD system (2.11). Here ε = 1, t = 0.2, ∆x = 1/800,

∆t = 0.2∆x for the AP scheme, and ∆x = 1/4000, ∆t = 0.001∆x for the explicit solver.
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Figure 6. Comparison of the results of our AP scheme and the reference solution obtained

by the semi-implicit solver (B.7)–(B.8) for RMHD system (2.11). Here ε = 10−5, t = 0.2,

∆x = 1/800, ∆t = 0.2∆x for both two schemes.
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Figure 7. Comparison of the results using our AP scheme at time t = 0.04 and the semi-

analytic solution for Mach number M = 1.2. For AP scheme, we use ∆x = 1/800 and

∆t = 0.2∆x.

the third part is the residual. The two macroscopic moments are treated implicitly while the residual is

explicit. For the space discretization, we use Roe’s method in the Athena code to solve the convective part

in the ideal MHD equations and the UGKS for the RTE. Numerical results are presented in the optically

thick region and the radiative shock problem, which are compared to the semi-analytic solution to verify

accuracy and asymptotic properties of our method.

It would be worthwhile to construct a second-order AP method for the radiation magnetohydrodynamics

system. In the semi-implicit scheme, a simple time-integration method has been used. To obtain a second

scheme, higher order IMEX time-integration method can be considered.
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Figure 8. Comparison of the results using our AP scheme at time t = 0.04 and the semi-

analytic solution for Mach number M = 2. For AP scheme, we use ∆x = 1/800 and

∆t = 0.2∆x.

Appendix A. The processes of UGKS for the non-equilibrium regime

Recall the RTE (4.1a) in the slab geometry, and integrating it over [ts, ts+1] and [xi− 1
2
, x1+ 1

2
] gives

Is+1
i − Isi

∆t
+

1

∆x
(ζi+ 1

2
− ζi− 1

2
) = cσa,i

(
(T s+1
i )4

4π
− Is+1

i

)
+
cσs,i
ε2

(Js+1
i − Is+1

i ) +G.

The microscopic flux ζ is computed by solving the following initial value problem at the cell boundary

x = xi+ 1
2
: 

Is+1
i − Isi

∆t
+

1

∆x
(ζi+ 1

2
− ζi− 1

2
) = cσa,i

(
(T s+1
i )4

4π
− Is+1

i

)
+
cσs,i
ε2

(Js+1
i − Is+1

i ) +G,

I(t, x, n)|t=ts = I(ts, x, n).

(A.1)

In the UGKS scheme, we firstly assume the coefficients σa and σs in space and time are piecewise constant,

thus the radiative transfer equation in RMHD system (4.1) is equivalent to

d

dt
eµtI

(
t, x+

cn

ε
t, n
)

= eµt
(cσs
ε2
J
(
t, x+

cn

ε
t, n
)

+
cσa
4π

T 4
(
t, x+

cn

ε
t, n
)

+G
)
, (A.2)
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with µ = ε2cσa+cσs
ε2 . Solving the equivalent equation (A.2) with the initial value in the system (A.1), which

gives the solution

I(t, xi+ 1
2
, n) ≈ e−µi+1

2
(t−ts)

I
(
ts, xi+ 1

2
+
cn

ε
(t− ts)

)
+

1− e−µi+1
2

(t−ts)

µi+ 1
2

Ĝi+ 1
2

+

t∫
ts

e
−µ

i+1
2

(t−ts)
(
cσs,i+ 1

2

ε2
J
(
z, xi+ 1

2
− cn

ε
(t− z)

)
+
cσa,i+ 1

2

4π
T 4
(
z, xi+ 1

2
− cn

ε
(t− z)

))
dz,

(A.3)

with µi+ 1
2
, σa,i+ 1

2
and σs,i+ 1

2
being the constant value at the corresponding cell boundary for µ, σa and

σs respectively. In solution (A.3), there remains three terms that need to approximate: the first one is the

initial condition I(ts) around xi+ 1
2
, namely the function I

(
ts, xi+ 1

2
+ cn

ε (t− ts)
)

; the second one is the two

functions J, T 4 localized in the time interval [ts, ts+1] and around the boundary xi+ 1
2
, i.e., the functions

J
(
z, xi+ 1

2
− cn

ε (t− z)
)

and T 4
(
z, xi+ 1

2
− cn

ε (t− z)
)

; the last one is the term Ĝi+ 1
2
.

The first term: For the first term, a piecewise linear reconstruction function is used to approximate the

initial function I(ts) around xi+ 1
2
:

I(ts, x, n) =

{
Isi + δxI

s
i (x− xi), if x < xi+ 1

2
,

Isi+1 + δxI
s
i+1(x− xi+1), if x > xi+ 1

2
.

(A.4)

Here δxI
s
i is the limited slope determined by the minmod limiter [26]:

δxI
s
i =


min{ I

s
i+1−I

s
i

∆x ,
Isi+1−I

s
i−1

2∆x ,
Isi−I

s
i−1

∆x }, if all are positive,

max{ I
s
i+1−I

s
i

∆x ,
Isi+1−I

s
i−1

2∆x ,
Isi−I

s
i−1

∆x }, if all are negative,

0, otherwise.

(A.5)

The second term: For the second term, the approximations of two functions J and T 4 between ts and ts+1

and around xi+ 1
2

are constructed in the same manner, so only the approximation of J is introduced in detail.

The function J is treated implicitly in time by using piecewise linear polynomials, so the reconstruction for

J reads:

J(t, x) =

J
s+1
i+ 1

2

+ δxJ
s+1,+

i+ 1
2

(x− xi+ 1
2
), if x < xi+ 1

2
,

Js+1
i+ 1

2

+ δxJ
s+1,−
i+ 1

2

(x− xi+ 1
2
), if x > xi+ 1

2
,

(A.6)

with the interface value of J defined by

Js+1
i+ 1

2

=
〈
Is+1
i+ 1

2

(n)
〉

=
1

2

〈
Is+1
i + Is+1

i+1

〉
,

and with the spatial derivatives given by

δxJ
s+1,+

i+ 1
2

=
Js+1
i+ 1

2

− Js+1
i

∆x/2
, δxJ

s+1,−
i+ 1

2

=
Js+1
i+1 − J

s+1
i+ 1

2

∆x/2
.

The third term: At last, the approximation for the term Ĝ is discussed. Recall the definition of Gi:

Gi =3εσa,inv
s+1
x,i

(
(T s+1
i )4

4π
− Js+1

i

)
+ nvs+1

x,i

(
εσa,i +

σs,i
ε

) (
4Js+1
i + ε(nRs+1

i +Qsi )
)

− 2

3
σs,iv

s+1
x,i R

s+1
i −

(ε2σa,i − σs,i)(vs+1
x,i )2

c

(
4

3
Js+1
i + εKs

Q,i

)
,
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The upwind scheme is used to determine Ĝ, i.e., the value of Ĝ at the center of the interval [xi, xi+1] is

determined by the velocity field v at the both sides boundary,



If vs+1
x,i ≥ v

s+1
x,i+1 :

Ĝi+ 1
2

= Gi, if (Gi+1 −Gi) /
(
vs+1
x,i+1 − v

s+1
x,i

)
> 0,

Ĝi+ 1
2

= Gi+1, if (Gi+1 −Gi) /
(
vs+1
x,i+1 − v

s+1
x,i

)
≤ 0;

If vs+1
x,i < vs+1

x,i+1 :

Ĝi+ 1
2

= Gi, if vs+1
x,i > 0,

Ĝi+ 1
2

= Gi+1, if vs+1
x,i+1 < 0,

Ĝi+ 1
2

= 0, if vs+1
x,i ≤ 0 ≤ vs+1

x,i+1.

(A.7)

Appendix B. The full discretization for the equilibrium regime

Here, we will show the full discretization for system (2.11). Applying semi-implicit finite volume scheme

in system (2.11), the fully discretization of (2.11) is same with (4.3) except the RTE and source terms Sre

and Srp, which read:

Js+1
i − Jsi

∆t
+ ε

nRs+1
i +Qs+1

i − nRsi −Qsi
∆t

+
1

∆x
(ζ̃i+ 1

2
− ζ̃i− 1

2
) =

cσa,i
ε2

(
(T s+1
i )4

4π
− Js+1

i

)
−
(cσa,i

ε
+ cεσs,i

)
(nRs+1

i +Qs+1
i ) + G̃i,

with the source term:

G̃i =3
σa,i
ε
nvs+1

x,i

(
(T s+1
i )4

4π
− Js+1

i

)
+ nvs+1

x,i

(σa,i
ε

+ εσs,i

) (
4Js+1
i + ε(nRs+1

i +Qsi )
)

− 2

3
ε2σs,iv

s+1
x,i R

s+1
i −

(σa,i − ε2σs,i)(v
s+1
x,i )2

c

(
4

3
Js+1
i + εKs

Q,i

)
,

and
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s+1
i = 4π

σa,i
ε

(
(T s+1
i )4

4π
− Js+1

i

)
+

4π(εσa,i − ε3σs,i)v
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[
c

3
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(
4

3
Js+1
i + εKs

Q,i

)]
,

(S̃rp)
s+1
i = −4π(ε2σs,i + σa,i)

c

[
c

3
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x,i

(
4

3
Js+1
i + εKs

Q,i

)]
+

4πσa,iv
s+1
x,i

c

(
(T s+1
i )4

4π
− Js+1

i

)
.

Moreover, the numerical flux ζ̃i+ 1
2

is defined by

ζ̃i+ 1
2

= Ai+ 1
2
n
(
Is,+
i+ 1

2

1n>0 + Is,−
i+ 1

2

1n<0

)
+ C1

i+ 1
2
nJs+1

i+ 1
2

+
C2
i+ 1

2

4π
n(T s+1

i+ 1
2

)4 + Fi+ 1
2
nĞi+ 1

2

+D1
i+ 1

2
n2
(
δxJ

s+1,+

i+ 1
2

1n>0 + δxJ
s+1,−
i+ 1

2

1n<0

)
+
D2
i+ 1

2

4π
n2
(
δx(T s+1,+
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2

)41n>0 + δx(T s+1,−
i+ 1

2

)41n<0

)
,

(B.1)
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where the coefficients in the numerical flux are given by:

A =
c

∆tεµ
(1− e−µ∆t),

C1 =
c2σs
∆tεµ

(
∆t− 1

µ
(1− e−µ∆t)

)
, C2 =

c2σa
∆tε3µ

(
∆t− 1

µ
(1− e−µ∆t)

)
,

D1 = − c3σs
∆tε2µ2

(
∆t
(
1 + e−µ∆t

)
− 2

µ

(
1− e−µ∆t

))
,

D2 = − c3σa
∆tε4µ2

(
∆t
(
1 + e−µ∆t

)
− 2

µ

(
1− e−µ∆t

))
,

F =
c

∆tεµ

(
∆t− 1

µ

(
1− e−µ∆t

))
,

(B.2)

with µ = cσa+ε2cσs
ε2 , and Ği+ 1

2
is defined in the same way with Ĝi+ 1

2
. Moreover, the zeroth and first moments

of (B.1) are:

4π
Js+1
i − Jsi

∆t
+

2π

∆x

∫ 1

−1

ζ̃i+ 1
2
− ζ̃i− 1

2
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c

ε
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i , (B.3)

where∫ 1

−1

ζ̃i+ 1
2
dn =

∫ 1
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Ai+ 1
2
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i , (B.4)

where∫ 1

−1

nζ̃i+ 1
2
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∫ 1
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2
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1n>0 + Is,−
i+ 1

2

1n<0

)
dn+

C1
i+ 1

2

3
(Js+1
i+1 + Js+1

i ) +
C2
i+ 1

2

12π
((T s+1

i+1 )4 + (T s+1
i )4)

+ Fi+ 1
2

[
vs+1
x,i+ 1

2

(
ε2σs,i+ 1

2
+ σa,i+ 1

2

)(2

5
Rs+1
i+ 1

2

+

∫ 1

−1

n3Qsi+ 1
2
dn

)
− 4

9
ε2σs,i+ 1

2
vs+1
x,i+ 1

2

Rs+1
i+ 1

2

−
2(σa,i+ 1

2
− ε2σs,i+ 1

2
)(vs+1

x,i+ 1
2

)2

3c

(
4

3
Js+1
i+ 1

2

+ εKs
Q,i+ 1

2

) .
At last, we will give the diffusion limit of the full discretization of the equilibrium case. Firstly, assuming

σa and σs are positive, as ε→ 0, the leading order of the coefficients in the numerical flux (B.1) are

A(∆t, ε, c, σa, σs) = 0 +O(ε),

εC1(∆t, ε, c, σa, σs) = 0 +O(ε), εC2 = c+O(ε),

D1 = 0 +O(ε), D2 = − c

σa
+O(ε),

1

ε
F =

1

σa
+O(ε).

which means the zero moment and the first moment of the numerical flux, as ε→ 0, have the following limit:∫ 1

−1

ζ̂i+ 1
2
dn→ 8

3
vs+1
x,i+ 1

2

Js+1
i+ 1

2

− 2c

3σa,i+ 1
2

Js+1
i+1 − J

s+1
i

∆x
, (B.5)
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ε

∫ 1

−1

nζ̂i+ 1
2
dn→ c

3
(Js+1
i+1 + Js+1

i ). (B.6)

In equation (B.3), letting ε→ 0 , one can obtain

4πσa,i

(
(T s+1
i )4

4π
− Js+1

i

)
= 0.

Multiplying equation (B.3) by P0, adding it to energy equation and substituting limit (B.5) into the equation,

then multiplying equation (B.4) by ε
cP0, adding it to momentum equation and substituting limit (B.6) into

the equation, at last letting ε→ 0 in the two equations, one can obtain

a
(ρT )s+1

i − (ρT )si
∆t

+
(ρv2 +B2)s+1

i − (ρv2 +B2)si
2∆t
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+
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∆x
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,

(B.7)

(ρvx)s+1
i − (ρvx)si

∆t
+

1

∆x
(F s2,i+ 1

2
− F s2,i− 1

2
) +
P0

6

(T s+1
i+1 )4 − (T s+1

i−1 )4

∆x
= 0, (B.8)

which are fully discretization for (2.14c) and (2.14b).
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