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Abstract. In this paper, we study an agent-based interacting particle system with attrac-
tive and singular repulsive forces. We prove the collision avoidance between particles from
different groups due to repulsive forces. Moreover, we provide a sufficient condition for the
emergence of asymptotic consensus in the same group and separation for different groups.
We consider the one-dimensional and multi-dimensional cases separately since they ex-
hibit different dynamics. Numerical simulations are performed to support our theoretical
results.
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1. Introduction

During the last decade, there have been many studies on the consensus of multi-agent
first order interacting particle systems [1, 2, 3, 4, 7, 8, 9, 12, 13, 14]. In this article, our
interest lies in the dynamics of opposing groups [9], where particles in the same group
attract each other while particles from different groups are repulsive. Here, the attraction
force between particles from the same group is given by a communication weight function
depending on the distance between particles and the repulsion force between particles from
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different groups is given by a singular kernel to ensure the collision avoidance between two
groups. For these opposing groups, we study both the consensus in the same group and
separation of inter-groups. Specifically, we consider the following Cauchy problem:

ẋi =
1

N1

N1∑
k=1

φ(xk − xi)(xk − xi)−
1

N2

N2∑
`=1

(y` − xi)
|y` − xi|β

, 1 ≤ i ≤ N1, xi, yj ∈ Rd,

ẏj =
1

N2

N2∑
`=1

ψ(y` − yj)(y` − yj)−
1

N1

N1∑
k=1

(xk − yj)
|xk − yj |β

, 1 ≤ j ≤ N2,

(1.1) A-1

where φ and ψ are communication weight functions between particles of the same group
satisfying

φ(x) = φ̃(‖x‖), ψ(y) = ψ̃(‖y‖),
and φ̃, ψ̃ : [0,∞) → R+ are bounded, monotonically decreasing and Lipschitz continuous:
For r, s ≥ 0,

0 < φ̃(r) ≤ φ̃(0), (r − s)(φ̃(r)− φ̃(s)) ≤ 0, sup
r 6=s

|φ̃(r)− φ̃(s)|
|r − s|

<∞,

0 < ψ̃(r) ≤ ψ̃(0), (r − s)(ψ̃(r)− ψ̃(s)) ≤ 0, sup
r 6=s

|ψ̃(r)− ψ̃(s)|
|r − s|

<∞.

Note that our model (1.1) is a natural generalization of the aggregation model and was
already considered in previous literature [1, 3, 4, 7]. However, we also note that these pre-
vious works considered the mean-field limit of (1.1) and did not fully address the emergent
behaviors observed in (1.1). In [6], attractive and repulsive forces were considered but the
consensus and separations were proved for special or simplified communication functions.
For the emergent behavior in the first-order model with singular kernel, we refer to [8].
Now, our goal is to obtain the following estimates:

• Collision avoidance between two groups {xi}N1
i=1 and {yj}N2

j=1,

• Lower bound for minimal distances between two groups which is uniform in time,

• (Asymptotic) consensus and separation estimates,

where the notions for asymptotic consensus and separation are given in Definition 2.1.

The main results are two-fold. Since there is a noticeable difference between the dynam-
ics of the system (1.1) in one dimension and multi-dimension, we separately provide the
asymptotic estimates for system (1.1) depending on the dimension.

For the multi-dimensional case, we first consider the collision avoidance between two
groups. If the singularity exponent β in the repulsive force between groups is greater than
or equal to 2, we prove that particles from different groups can not collide with each other
in a finite time. Moreover, under suitable conditions on communication weight functions,
we can show that each group reaches an asymptotic consensus while the distance between
the two groups grows to infinity. This can be fulfilled if we exploit the structure of system
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(1.1) that is similar to a gradient flow (see Section 3 for detail).

Next, we discuss the one-dimensional case. First, we may relax the condition for the
collision avoidance from β ≥ 2 to β > 1. Since particles are in a real line, collision avoid-
ance between two groups implies the following situation. If there is a particle that particles
from the other group surround, particles in each group are separated into several clusters.
Moreover, we can observe the preservation of the ordering among these clusters along time
(see Lemma 4.1). Here, although each group can not reach an asymptotic consensus, nor
asymptotic separation, we show that each cluster reaches a consensus at an exponential
rate. If the singularity exponent β is greater than 2, we can use the estimates from multi-
dimensional case to get the uniform lower and upper bounds for the distance between the
two groups. Moreover, we show that each particle converges to its asymptotic limit.

The rest of this paper is organized as follows. In Section 2, we present basic estimates
for system (1.1) and our main results. In Section 3, we consider the multi-dimensional case.
First, we address the collision avoidance between two groups in system (1.1) to obtain the
well-posedness. Second, we present a sufficient condition such that each group reaches a
consensus while the distance between the two groups increases to infinite as time grows.
In Section 4, we focus on the one-dimensional case. First, we prove the collision avoidance
under a weaker condition on the parameter than the multi-dimensional case and consensus
results in each group. Moreover, we provide a condition that yields the lower and upper
bound estimates for distances between two groups and also the existence of asymptotic
position for each particle. In Section 5, we present several results from numerical simulations
regarding our system. Finally, in Section 6, we summarize our results and discuss some
possible future works.

Notation We write Mm×n(R) as the set of m×n real matrices. Without further mention, a
vector v ∈ Rm is sometimes regarded as m×1 matrix. We denote Im by the m×m identity
matrix and 1n be the vector in Rn whose components are all 1, i.e. 1n := (1, 1, · · · , 1)T ∈ Rn.
For A = (aij) ∈ Mm×n(R) and B = (brs) ∈ Mp×q(R), we write the Kronecker product of
two matrices A and B as A⊗B:

A⊗B :=

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 , or (A⊗B)p(i−1)+r,q(j−1)+s = aijbrs.

We set the following set of indices

N1 := {1, · · · , N1}, N2 := {1, · · · , N2},
and let X and Y be as follows:

X = (x1, · · · , xN1)T ∈ RN1d, Y = (y1, · · · , yN2)T ∈ RN2d.

We use ‖ · ‖ to denote the standard `2-norm in the Euclidean space. We define the diameter
of each group and minimal `2-distance between two groups as

D(X) := max
i,i′∈N1

‖xi − xi′‖, D(Y ) := max
j,j′∈N2

‖yj − yj′‖, δ(X,Y ) := min
i∈N1,j∈N2

‖xi − yj‖,

and also the mean position for each group:
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xc :=
1

N1

N1∑
i=1

xi, yc :=
1

N2

N2∑
j=1

yj .

We denote ∇X := (∇x1 , · · · ,∇xN1
), ∇Y := (∇y1 , · · · ,∇yN2

) by gradient operators with

respect to xi’s and yj ’s, respectively, and let ∇ := (∇X ,∇Y ).

2. Preliminaries
?〈sec:2〉?

In this section, we provide some basic estimates for system (1.1) and present our main
results. First, we present several notions to be used throughout the paper.

〈D2.1〉Definition 2.1. Let (X,Y ) be a solution to system (1.1).

(1) The pair (X,Y ) reaches an asymptotic consensus if

lim
t→∞
D(X) = lim

t→∞
D(Y ) = 0.

(2) The pair (X,Y ) fulfills a separation if

inf
t≥0

δ(X,Y ) > 0,

and it fulfills an asymptotic separation if

lim
t→∞

δ(X,Y ) =∞.

Next, we consider a conserved quantity in system (1.1).

〈L2.1〉Lemma 2.1. Let (X,Y ) be a solution to system (1.1). Then one has

xc(t) + yc(t) = xc(0) + yc(0), ∀t > 0.

Proof. Direct computation yields

d

dt
xc =

1

(N1)2

∑
i,k∈N1

φ(xk − xi)(xk − xi)−
1

N1N2

∑
i∈N1,j∈N2

(yj − xi)
|yj − xi|β

= − 1

N1N2

∑
i∈N1,j∈N2

(yj − xi)
|yj − xi|β

,

where we used the antisymmetry i↔ k. Similarly,

d

dt
yc =

1

(N2)2

∑
j,m∈N2

ψ(y` − yj)(y` − yj)−
1

N1N2

∑
i∈N1,j∈N2

(xi − yj)
|xi − yj |β

= − 1

N1N2

∑
i∈N1,j∈N2

(xi − yj)
|xi − yj |β

.

Thus, combining two estimates gives the desired result.
�

Next, we introduce the  Lojasiewicz inequality for later use, which was constructed by
 Lojasiewicz in the sixties [10, 11] (see also [5]) last century.
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〈L2.2〉Lemma 2.2. Suppose that f : D ⊆ Rn → R is analytic in the open set D. Let x̄ be a
critical point of f , i.e., ∇f(x̄) = 0. Then there exist r > 0, c > 0, and η ∈ [12 , 1) such that

‖∇f(x)‖ ≥ c|f(x)− f(x̄)|η, ∀x ∈ B(x̄, r),

where B(x̄, r) denotes the ball of radius r in Rn centered at x̄.

Now, we provide our main results. First, we address the dynamics of system (1.1) for
multi-dimensional cases. For this, we set several functionals that give a gradient flow-like
structure to system (1.1):

WX(t) :=
1

2N2
1

∑
i,k∈N1

Φ(|xi − xk|), WY (t) :=
1

2N2
2

∑
j,`∈N2

Ψ(|yj − y`|),

Dβ(t) :=
1

N1N2


1

β−2
∑

i∈N1,j∈N2

1
|xi−yj |β−2 , if β 6= 2,

∑
i∈N1,j∈N2

− log |xi − yj |, if β = 2,

W = W (X,Y ) := WX +WY +Dβ,
where

Φ(z) :=

∫ z

0
φ(r)rdr, and Ψ(z) :=

∫ z

0
ψ(u)u du, z ∈ R+.

Note that if β > 2, the existence of an upper bound to the functional Dβ implies the
distance between two groups is positive, while Dβ → 0 implies the distance between two
groups increases to infinity.

Then, our main result is as follows.

〈T2.1〉Theorem 2.1. Let (X,Y ) be a solution to system (1.1) with d ≥ 2. Assume that the initial
configuration, the parameter β and communication weights φ and ψ satisfy

(C1) δ(X,Y )(0) > 0, β > 2.

(C2) There exist D∞X and D∞Y > 0 which depend on the initial configuration such that

W (0) =
1

N2
1

∫ D∞X
0

φ(r)r dr =
1

N2
2

∫ D∞Y
0

ψ(u)u du.

(C3) There exist κ1, κ2 > 0 such that

max{(κ1 − φm)2, (φ(0)− κ1)2} < 4κ1φm,

max{(κ2 − ψm)2, (ψ(0)− κ2)2} < 4κ2ψm,

where φm := φ (D∞X ) and ψm := ψ (D∞Y ).

Then, we can observe both the asymptotic consensus and separation:

D(X(t)), D(Y (t))→ 0, δ(X,Y )(t)→∞, as t→∞.

Remark 2.1. The condition (C3) requires φ and ψ to be small perturbations of certain
constants κ1 and κ2, respectively, i.e. φ ≈ κ1 and ψ ≈ κ2. We also remark that if φ ≡ κ1
and ψ ≡ κ2, then the conditions (C2) and (C3) automatically hold.
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Next, we consider the one-dimensional case. Since the particles lie in the real line, the
collision avoidance between two groups implies the preservation of ordering between two
groups. To be precise, if we consider non-collisional initial data for system (1.1), then the
initial configuration should be one of the following four types:

(1) x01 < · · · < x0i1 < y01 < · · · < y0j1 < x0i1+1 < · · · < x0i2 < · · · < y0jp < x0ip+1 < · · · < x0ip+1
,

(2) x01 < · · · < x0i1 < y01 < · · · < y0j1 < x0i1+1 < · · · < x0i2 < · · · < y0jp ,

(3) y01 < · · · < y0j1 < x01 < · · · < x0i1 < y0j1+1 < · · · < y0j2 < · · · < x0ip < y0jp+1 < · · · < y0jp+1
,

(4) y01 < · · · < y0j1 < x01 < · · · < x0i1 < y0j1+1 < · · · < y0j2 < · · · < x0ip .

(2.1) init_1d

Here, we let i0 = 1, j0 = 1 and define sets of indices as

Xr := {ir−1 + 1, · · · , ir}, Yr := {jr−1 + 1, · · · , jr},

which denote the sets of indices of the r-th cluster of the X group and the Y group,
respectively. In addition, we let

Xr := {xi | i ∈ Xr}, Yr := {yj | j ∈ Yr}.

Once the collision avoidance is guaranteed, each cluster contains the same particles for any
finite time, i.e. the sets of indices Xr and Yr remain unchanged for any finite time. Now,
we are ready to present our results on one-dimensional case.

〈T2.2〉Theorem 2.2. Let (X,Y ) be a solution to system (1.1) with d = 1 and communication
weights φ and ψ and initial configuration satisfy

(A) δ(X,Y )(0) > 0, and φ(x)x, ψ(y)y are monotonically increasing on R.

(1) If β > 1, we have δ(X,Y ) > 0 for all t ≥ 0 and each sub-group in (1)-(4) of (2.1)
accumulate to one point.

(2) Moreover, if β > 2 and two groups are not initially separated(see Remark 4.1), we
get

inf
t≥0

δ(X,Y )(t) > 0, sup
t≥0
D(X)(t) + sup

t≥0
D(Y )(t) <∞,

and there exists a pair (X∞, Y∞) such that

lim
t→∞

X(t) = X∞, lim
t→∞

Y (t) = Y∞.

3. Dynamics of the opposing groups : multi-dimensional case

In this section, we provide the estimates regarding the dynamics of system (1.1) with
d ≥ 2. First, we show the collision avoidance in system (1.1) and then, we use a gradient
flow-like structure in the system to show the asymptotic dynamics. Here, we note that
several estimates can also be applied to one-dimensional case.

3.1. Collision avoidance in the system. Here, we provide the collision avoidance be-
tween two groups involved in the dyanmics of system (1.1), which also implies the well-
posedness of the Cauchy problem.



EMERGENT BEHAVIORS IN THE OPPOSING GROUPS 7

〈L3.1〉Lemma 3.1. Let (X,Y ) be a solution to system (1.1) satisfying

δ(X,Y )(0) > 0, β ≥ 2.

Then for any t > 0, there is no collision between two groups X and Y , i.e.

xi(t) 6= yj(t), for any (i, j) ∈ N1 ×N2, ∀t > 0.

Proof. We argue by contradiction, i.e. assume that there exists T ∗ > 0 such that

xi(T
∗) = yj(T

∗), for some (i, j) ∈ N1 ×N2.

Without loss of generality, we let T ∗ be the first collision time, i.e.

xi(t) 6= yj(t), for any (i, j) ∈ N1 ×N2, ∀t < T ∗.

Then, we fix a particle xi∗ that is involved in the collision at t = T ∗ and consider the indices
of particles in X and Y that collides with xi∗ at position xi∗(T

∗) and time t = T ∗:

I := {i∗1, · · · , i∗r}, J := {j∗1 , · · · , j∗s},
lim

t→(T ∗)−
xi∗(t) = lim

t→(T ∗)−
xi(t) = lim

t→(T ∗)−
yj(t), i ∈ I, j ∈ J,

lim
t→(T ∗)−

xi∗(t) 6= lim
t→(T ∗)−

xi(t), lim
t→(T ∗)−

xi∗(t) 6= lim
t→(T ∗)−

yj(t), i ∈ (N1 \ I), j ∈ (N2 \ J).

Then, one can find two positive constants η1 and η2 satisfying

inf
t<T ∗

min{|xi(t)− yj(t)| : i ∈ I, j ∈ N2 \ J} =: η1,

inf
t<T ∗

min{|xi(t)− yj(t)| : i ∈ N1 \ I, j ∈ J} =: η2.
(3.1) C-0

Here, we set the functional X that measures the distance between particles involved in the
collision at x = xi∗(T

∗):

X (t) :=

 N2

4N1

∑
i,i′∈I

|(xi − xi′)(t)|2 +
N1

4N2

∑
j,j′∈J

|(yj − yj′)(t)|2 +
1

2

∑
i∈I,j∈J

|(xi − yj)(t)|2
1/2

.

Clearly, by definition, X (t) > 0 for t < T ∗. Before estimating X , note that there exists a
constant C = C(T ∗) such that

(3.2) C-0-1 sup
0≤t<T ∗

max
i∈N1

|xi(t)|+ sup
0≤t<T ∗

max
j∈N2

|yj(t)| ≤ C.

since the solution (X,Y ) is continuous up to t = T ∗. Now, we have

1

2

d

dt

∑
i,i′∈I

|xi − xi′ |2

=
1

N1

∑
i,i′∈I
k∈N1

φ(xk − xi)(xk − xi)(xi − xi′)−
1

N2

∑
i,i′∈I
`∈N2

(y` − xi)
|y` − xi|β

(xi − xi′)
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− 1

N1

∑
i,i′∈I
k∈N1

φ(xk − xi′)(xk − xi′)(xi − xi′) +
1

N2

∑
i,i′∈I
`∈N2

(y` − xi′)
|y` − xi′ |β

(xi − xi′)

=
2

N1

∑
i,i′∈I
k∈N1

φ(xk − xi)(xk − xi)(xi − xi′)−
2

N2

∑
i,i′∈I
`∈N2

(y` − xi)
|y` − xi|β

(xi − xi′)

≥ −2φ(0)C

N1

∑
i,i′∈I
k∈N1

|xi − xi′ | −
2

N2

∑
i,i′∈I

`∈(N2\J)

|xi − xi′ |
ηβ−11

− 2

N2

∑
i,i′∈I
`∈J

(y` − xi)
|y` − xi|β

(xi − xi′)

≥ −C(T ∗)X − 2

N2

∑
i,i′∈I
`∈J

(y` − xi)
|y` − xi|β

(xi − xi′),

where we used (3.1), (3.2), the boundedness of φ and the change of index i↔ i′. Similarly,
one obtains

1

2

d

dt

∑
j,j′∈J

|yj − yj′ |2

=
1

N2

∑
j,j′∈J
`∈N2

ψ(y` − yj)(y` − yj)(yj − yj′)−
1

N1

∑
j,j′∈J
k∈N1

(xk − yj)
|xk − yj |β

(yj − yj′)

− 1

N2

∑
j,j′∈J
`∈N2

ψ(y` − yj′)(y` − yj′)(yj − yj′) +
1

N1

∑
j,j′∈J
k∈N1

(xk − yj′)
|xk − yj′ |β

(yj − yj′)

=
2

N2

∑
j,j′∈J
`∈N2

ψ(y` − yj)(y` − yj)(yj − yj′)−
2

N1

∑
j,j′∈J
k∈N1

(xk − yj)
|xk − yj |β

(yj − yj′)

≥ −C(T ∗)X − 2

N1

∑
k∈I
j,j′∈J

(xk − yj)
|xk − yj |β

(yj − yj′).

Moreover,

1

2

d

dt

∑
i∈I,j∈J

|xi − yj |2

=
1

N1

∑
i∈I,j∈J
k∈N1

φ(xk − xi)(xk − xi)(xi − yj)−
1

N2

∑
i∈I,j∈J
`∈N2

(y` − xi)
|y` − xi|β

(xi − yj)

− 1

N2

∑
i∈I,j∈J
`∈N2

ψ(y` − yj)(y` − yj)(xi − yj) +
1

N1

∑
i∈I,j∈J
k∈N1

(xk − yj)
|xk − yj |β

(xi − yj)

≥ −C(T ∗)X − 1

N2

∑
i∈I,j∈J
`∈N2

(y` − xi)
|y` − xi|β

(xi − yj) +
1

N1

∑
i∈I,j∈J
k∈N1

(xk − yj)
|xk − yj |β

(xi − yj)



EMERGENT BEHAVIORS IN THE OPPOSING GROUPS 9

= −C(T ∗)X + I1 + I2.

For I1, we have

I1 = − 1

N2

∑
i∈I
j,`∈J

(y` − xi)
|y` − xi|β

(xi − yj)−
1

N2

∑
i∈I,j∈J
`∈(N2\J)

(y` − xi)
|y` − xi|β

(xi − yj)

≥ −C(T ∗)X − 1

N2

∑
i∈I
j,`∈J

(y` − xi)
|y` − xi|β

(xi − yj)

= −C(T ∗)X +
1

N2

∑
i∈I
j,`∈J

1

|y` − xi|β−2
− 1

N2

∑
i∈I
j,`∈J

(y` − xi)
|y` − xi|β

(y` − yj).

For I2, one obtains

I2 =
1

N1

∑
i,k∈I
j∈J

(xk − yj)
|xk − yj |β

(xi − yj) +
1

N1

∑
i∈I,j∈J
k∈(N1\I)

(xk − yj)
|xk − yj |β

(xi − yj)

≥ −C(T ∗)X +
1

N1

∑
i,k∈I
j∈J

(xk − yj)
|xk − yj |β

(xi − yj)

= −C(T ∗)X +
1

N1

∑
i,k∈I
j∈J

1

|xk − yj |β−2
+

1

N1

∑
i,k∈I
j∈J

(xk − yj)
|xk − yj |β

(xi − xk).

Hence, we combine all the previous estimates to get

d

dt
X 2(t)

=
N2

4N1

d

dt

∑
i,i′∈I

|xi − xi′ |2 +
N1

4N2

d

dt

∑
j,j′∈J

|yj − yj′ |2 +
1

2

d

dt

∑
i∈I,j∈J

|xi − yj |2

≥ −ĈX +
|J |
N2

∑
i∈I,j∈J

1

|yj − xi|β−2
+
|I|
N1

∑
i∈I,j∈J

1

|xi − yj |β−2
,

where Ĉ = Ĉ(T ∗) is a positive constant. Since β ≥ 2 and X → 0 as t→ (T ∗)−, there exists
t∗ < T ∗ such that

|J |
N2

∑
i∈I,j∈J

1

|yj − xi|β−2
+
|I|
N1

∑
i∈I,j∈J

1

|xi − yj |β−2
≥ ĈX + X 2, t ∈ (t∗, T

∗).

Thus, we get

d

dt
X 2(t) ≥ X 2, t ∈ (t∗, T

∗),

and hence,
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d

dt
(e−tX 2) ≥ 0, t ∈ (t∗, T

∗).

This yields

e−T
∗X 2(T ∗)− e−t∗X 2(t∗) = −e−t∗X 2(t∗) ≥ 0,

which is a contradiction to our assumption that X 2(t) > 0 for t < T ∗.
�

3.2. Asymptotic consensus and separation for β > 2. In this subsection, we provide
the proof for Theorem 2.1. First, we prove that particles in each group stay within a certan
distance from the mean positions in each group, while the distance between two groups has
a positive lower bound when β > 2.

〈L3.2〉
Lemma 3.2. Let (X,Y ) be a solution to system (1.1). Assume that the conditions (C1)
and (C2) hold. Then,

sup
t≥0
D(X)(t) ≤ D∞X , sup

t≥0
D(Y )(t) ≤ D∞Y ,

inf
t≥0

δ(X,Y )(t) ≥ ((β − 2)N1N2W (0))1/(β−2) .

Proof. Direct computation gives

(3.3) ?C-1?
1

N1

dX

dt
= −∇XW,

1

N2

dY

dt
= −∇YW.

Thus, we directly get

d

dt
W = ∇XW ·

dX

dt
+∇YW ·

dY

dt

= −N1‖∇XW‖2 −N2‖∇YW‖2 ≤ 0,
(3.4) C-1-1

which implies

sup
t≥0

W (t) ≤W (0).

Since functionals WX , WY and Dβ are non-negative for β > 2, one may obtain

1

N2
1

∫ D∞X
0

φ(r)r dr = W (0)

≥W (t) ≥ 1

2N2
1

∑
i,k∈N1

∫ |xi−xk|
0

φ(r)r dr

≥ 1

N2
1

∫ D(X)(t)

0
φ(r)r dr,

and since φ is positive, this implies the uniform boundedness of D(X) and the similar anal-
ysis can be applied to D(Y ).

For the uniform lower bound estimate for δ, we have
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W (0) ≥W (t) ≥ 1

β − 2

1

N1N2

∑
i∈N1,j∈N2

|xi − yj |2−β

≥ 1

β − 2

1

N1N2
δ2−β,

and this directly implies our desired result.
�

Remark 3.1. Note that relation (3.4) still holds when β ≥ 2. However, the functional W
may not be positive if β = 2 and hence, we can not obtain any useful information from
(3.4).

As a corollary, we can obtain the asymptotic velocity alignment in each group from the
estimates in Lemma 3.2.

?〈C3.1〉?
Corollary 3.1. Let (X,Y ) be a solution to system (1.1) satisfying the conditions (C1) and
(C2). Then, one gets

lim
t→∞

dX

dt
= lim

t→∞

dY

dt
= 0.

Proof. From (3.4), we get

d

dt
W + ‖∇W‖2 ≤ 0,

and we integrate this relation with respect to time to get

(3.5) C-1-2 W (t) +

∫ t

0
‖∇W‖2ds ≤W (0).

Here, for each i ∈ N1 and j ∈ N2,

|ẋi| =

∣∣∣∣∣∣ 1

N1

∑
k∈N1

φ(xk − xi)(xk − xi)−
1

N2

∑
m∈N2

(y` − xi)
|y` − xi|β

∣∣∣∣∣∣ ≤ φ(0)D(X) + δ1−β,

|ẏj | =

∣∣∣∣∣∣ 1

N2

∑
`∈N2

φ(y` − yj)(y` − yj)−
1

N1

∑
k∈N1

(xk − yj)
|xk − yj |β

∣∣∣∣∣∣ ≤ ψ(0)D(Y ) + δ1−β,

and we use the uniform upper and lower bounds guaranteed in Lemma 3.2 to get

(3.6) C-1-3 sup
t≥0

∥∥∥∥dXdt
∥∥∥∥+ sup

t≥0

∥∥∥∥dYdt
∥∥∥∥ <∞.

Next, we also have

|ẍi| =

∣∣∣∣∣ 1

N1

∑
k∈N1

[
(Dφ(xk − xi) · (ẋk − ẋi)) (xk − xi) + φ(xk − xi)(ẋk − ẋi)

]
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+
β

N2

∑
`∈N2

((y` − xi) · (ẏ` − ẋi)) (y` − xi)
|y` − xi|β+2

− 1

N2

∑
`∈N2

ẏ` − ẋi
|y` − xi|β

∣∣∣∣∣
≤ 2φLip

∥∥∥∥dXdt
∥∥∥∥D(X) + 2φ(0)

∥∥∥∥dXdt
∥∥∥∥+ (β + 1)δ−β

(∥∥∥∥dYdt
∥∥∥∥+

∥∥∥∥dXdt
∥∥∥∥) ,

where Dφ denotes the gradient of φ and φLip denotes the Lipschitz constant of φ. Similarly,

|ÿj | ≤ 2ψLip

∥∥∥∥dYdt
∥∥∥∥D(Y ) + 2ψ(0)

∥∥∥∥dYdt
∥∥∥∥+ (β + 1)δ−β

(∥∥∥∥dXdt
∥∥∥∥+

∥∥∥∥dYdt
∥∥∥∥) ,

where ψLip denotes the Lipschitz constant of ψ. Thus, one may use (3.6) to get

(3.7) C-1-4 sup
t≥0

∥∥∥∥d2Xdt2
∥∥∥∥+ sup

t≥0

∥∥∥∥d2Ydt2
∥∥∥∥ <∞.

Thus, one combines (3.6) with (3.7) to get

sup
t≥0

∣∣∣∣ ddt‖∇W‖2
∣∣∣∣ = sup

t≥0

∣∣∣∣ ddt (‖∇XW‖2 + ‖∇YW‖2
)∣∣∣∣

= sup
t≥0

∣∣∣∣∣ ddt
(∥∥∥∥ 1

N1

dX

dt

∥∥∥∥2 +

∥∥∥∥ 1

N2

dY

dt

∥∥∥∥2
)∣∣∣∣∣

= sup
t≥0

∣∣∣∣ 2

N2
1

dX

dt
· d

2X

dt2
+

2

N2
2

dY

dt
· d

2Y

dt2

∣∣∣∣
≤ 2

N2
1

sup
t≥0

∥∥∥∥dXdt
∥∥∥∥ · sup

t≥0

∥∥∥∥d2Xdt2
∥∥∥∥+

2

N2
2

sup
t≥0

∥∥∥∥dYdt
∥∥∥∥ · sup

t≥0

∥∥∥∥d2Ydt2
∥∥∥∥ <∞.

Thus, by the integrability (3.5) of ‖∇W‖2 and the uniform upper bound for d
dt(‖∇W‖

2),
we may use Barbalat’s lemma to yield

‖∇W‖2 = ‖∇XW‖2 + ‖∇YW‖2 =

∥∥∥∥ 1

N1

d

dt
X

∥∥∥∥2 +

∥∥∥∥ 1

N2

d

dt
Y

∥∥∥∥2 → 0, as t→∞,

which implies our desired result.
�

3.2.1. Proof of Theorem 2.1. Now, we proceed to the proof of Theorem 2.1. First, we set

C(t) = C(X,Y )(t) :=
κ1

2N1

∑
i∈N1

|xi − xc|2 +
κ2

2N2

∑
j∈N2

|yj − yc|2

=
κ1

2N1
|X − (1N1 ⊗ Id)xc|2 +

κ2
2N2
|Y − (1N2 ⊗ Id)yc|2.

• (Step A: Asymptotic consensus): We differentiate the functional C with respect to t to
get
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d

dt
C =

κ1
N1

(X − (1N1 ⊗ Id)xc) ·
(
dX

dt
− (1N1 ⊗ Id)

dxc
dt

)
+
κ2
N2

(Y − (1N2 ⊗ Id)yc) ·
(
dY

dt
− (1N2 ⊗ Id)

dyc
dt

)
,

and note that

(X − (1N1 ⊗ Id)xc) · (1N1 ⊗ Id)
dxc
dt

=
∑
i∈N1

(xi − xc) ·
dxc
dt

= 0,

(Y − (1N2 ⊗ Id)yc) · (1N2 ⊗ Id)
dyc
dt

=
∑
j∈N2

(yj − yc) ·
dyc
dt

= 0.

Thus,

d

dt
C =

κ1
N1

dX

dt
· (X − (1N1 ⊗ Id)xc) +

κ2
N2

dY

dt
· (Y − (1N2 ⊗ Id)yc)

= −κ1(∇XWX +∇XDβ) · (X − (1N1 ⊗ Id)xc)

− κ2(∇YWY +∇YDβ) · (Y − (1N2 ⊗ Id)yc).

On the other hand, we have

d

dt
Dβ = ∇XDβ ·

dX

dt
+∇YDβ ·

dY

dt

= −N1∇XDβ · ∇XWX −N1‖∇XDβ‖2

−N2∇YDβ · ∇YWY −N2‖∇YDβ‖2.

Then, one obtains

d

dt

(
C +Dβ

)
= −κ1∇XWX · (X − (1N1 ⊗ Id)xc)

−N1

(
∇XDβ +

κ1
N1

(X − (1N1 ⊗ Id)xc)
)
−N1‖∇XDβ‖2

− κ2∇YWY · (Y − (1N2 ⊗ Id)yc)

−N2

(
∇YDβ +

κ2
N2

(Y − (1N2 ⊗ Id)yc)
)
−N2‖∇YDβ‖2

=:

4∑
r=1

I3r.

We separately estimate I3r’s as follows.

� (Step A-1: Estimates for I31): We use the change of indices i↔ k to get

I31 = −κ1∇XWX · (X − (1N1 ⊗ Id)xc)
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=
κ1
N2

1

∑
i,k∈N1

φ(xk − xi)(xi − xk)(xi − xc)

= − κ1
2N2

1

∑
i,k∈N1

φ(xk − xi)|xk − xi|2

≤ −κ1φm
2N2

1

∑
i,k∈N1

|xk − xi|2 = −κ1φm
N1
|X − (1N1 ⊗ Id)xc|2.

� (Step A-2: Estimates for I32): First, we use Young’s inequality to yield

I32 = −N1∇XDβ ·
( κ1
N1

(X − (1N1 ⊗ Id)xc) +∇XWX

)
−N1‖∇XDβ‖2

≤ N1

4

∥∥∥( κ1
N1

(X − (1N1 ⊗ Id)xc) +∇XWX

)∥∥∥2.(3.8) C-2

Here, we get

∥∥∥( κ1
N1

(X − (1N1 ⊗ Id)xc) +∇XWX

)∥∥∥2
=

1

N4
1

∑
i∈N1

∣∣∣∣∣∣
∑
k∈N1

(φ(xk − xi)− κ1)(xk − xi)

∣∣∣∣∣∣
2

=
1

N4
1

d∑
n=1

∑
i∈N1

∣∣∣∣∣∣
∑
k∈N1

(φ(xk − xi)− κ1)(xkn − xin)

∣∣∣∣∣∣
2

=
1

N2
1

d∑
n=1

∑
i∈N1

∣∣∣∣∣∣
∑
k∈N1

Pik(xkn − xin)

∣∣∣∣∣∣
2

,

where xkn denotes the n-th component of xk and P = P(X) ∈ MN1×N1(R) is a matrix
whose components are given as

P(X)ik :=

 −
1
N1

∑
i′∈N1,i′ 6=i

(φ(xi′ − xi)− κ1), if i = j,

1
N1

(φ(xk − xi)− κ1), if i 6= j.

Note that if {en}dn=1 is a standard orthonormal basis in Rd, then for each n = 1, · · · , d,
(eTn⊗IN1)X is a vector in RN1 whose k-th component is xkn. Here, we recall that (eTn⊗IN1) ∈
MN1×N1d(R) is written as

(eTn ⊗ IN1) =

 eTn 0
. . .

0 eTn

 ∈MN1×N1d(R).

Now, since the sum of each row in P is zero, one gets
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∥∥∥( 1

N1
(X − (1N1 ⊗ Id)xc) +∇XWX

)∥∥∥2
=

1

N2
1

d∑
n=1

∑
i∈N1

∣∣∣∣∣∣
∑
k∈N1

Pik(xkn − xin)

∣∣∣∣∣∣
2

=
1

N2
1

d∑
n=1

∑
i∈N1

∣∣∣∣∣∣
∑
k∈N1

Pikxkn

∣∣∣∣∣∣
2

=
1

N2
1

d∑
n=1

∑
i∈N1

∣∣∣∣∣∣
∑
k∈N1

Pik(xkn − xcn)

∣∣∣∣∣∣
2

=
1

N2
1

d∑
n=1

∣∣P(eTn ⊗ IN1)(X − (1N1 ⊗ Id)xc)
∣∣2

≤ λ(P)2

N2
1

d∑
n=1

∣∣(eTn ⊗ IN1)(X − (1N1 ⊗ Id)xc)
∣∣2

=
λ(P)2

N2
1

|X − (1N1 ⊗ Id)xc|2,

where λ(P) is the largest eigenvalue of P in (1N1)⊥. Note that

(eTn ⊗ IN1)(X − (1N1 ⊗ Id)xc) · 1N1 =
∑
k∈N1

(xkn − xcn) = 0,

i.e. (eTn ⊗ IN1)(X − (1N1 ⊗ Id)xc) ∈ (1N1)⊥. To estimate λ(P), consider any U ∈ (1N1)⊥.
Then, once we notice that P is symmetric and the sum of each row in P is zero, we have

〈PU,U〉 =

N1∑
i,k=1

Pikuiuk =

N1∑
i,k=1

Pik(ui − uk)uk +

N1∑
i,k=1

Piku2k︸ ︷︷ ︸
=0

= −1

2

∑
i 6=k
Pik|ui − uk|2

≤ 1

2N1
max{|φ(0)− κ1|, |κ1 − φm|}

∑
i 6=k
|ui − uk|2

= max{|φ(0)− κ1|, |κ1 − φm|}|U |2,

which implies

λ(P) ≤ max{|φ(0)− 1|, |1− φm|}.
Thus, we apply this result to (3.8) and get

I32 ≤
N1

4

∥∥∥( κ1
N1

(X − (1N1 ⊗ Id)xc) +∇XWX

)∥∥∥2
≤ λ(P)2

4N1
|X − (1N1 ⊗ Id)xc|2
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≤ max{|φ(0)− κ1|2, |κ1 − φm|2}
4N1

∣∣X − (1N1 ⊗ Id)xc
∣∣2.

� (Step A-3: Estimates for I33): Similar to the estimates for I33, one can obtain

I33 ≤ −
κ2ψm
N2
|Y − (1N1 ⊗ Id)yc|2.

� (Step A-4: Estimates for I34): We employ the same analysis for I32 to get

I34 ≤
max{|ψ(0)− κ2|2, |κ2 − ψm|2}

4N2

∣∣Y − (1N2 ⊗ Id)yc
∣∣2.

Hence, we combine all the estimates for I3r’s to yield

d

dt
(C +Dβ)

≤ − 1

4N1

(
4κ1φm −max{|φ(0)− κ1|2, |κ1 − φm|2}

) ∣∣X − (1N1 ⊗ Id)xc
∣∣2

− 1

4N2

(
4κ2ψm −max{|ψ(0)− κ2|2, |κ2 − ψm|2}

) ∣∣Y − (1N2 ⊗ Id)yc
∣∣∣2

≤ −εC,

where ε > 0 is defined as

ε := min

(
4κ1φm −max{|φ(0)− 1|2, |1− φm|2}

2κ1
,
4κ2ψm −max{|ψ(0)− 1|2, |1− ψm|2}

2κ2

)
.

Thus,

C +Dβ + ε

∫ t

0
C(s)ds ≤ C(0) +Dβ(0),

which gives ∫ ∞
0
C(s)ds <∞,

and since the uniform bounds in Lemma 3.2 imply the uniform boundedness of
∣∣ d
dtC
∣∣, we

can use Barbalat’s lemma to conclude C(t)→ 0 as t→∞.

• (Step B: Separation results): First, we let

C̃ = C̃(X,Y ) :=
1

2N1

∑
i∈N1

|xi − xc|2 +
1

2N2

∑
j∈N2

|yj − yc|2.

Then, one has
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d

dt
C̃ = − 1

2N2
1

∑
i,k∈N1

φ(xk − xi)|xk − xi|2 −
1

2N2
2

∑
j,`∈N2

ψ(y` − yj)|y` − yj |2

− 1

N1N2

∑
i∈N1,j∈N2

(yj − xi)
|yj − xi|β

(xi − xc)−
1

N1N2

∑
i∈N1,j∈N2

(xi − yj)
|xi − yj |β

(yj − yc)

= − 1

2N2
1

∑
i,k∈N1

φ(xk − xi)|xk − xi|2 −
1

2N2
2

∑
j,`∈N2

ψ(y` − yj)|y` − yj |2

− 1

4

d

dt
‖xc − yc‖2 + (β − 2)Dβ.

(3.9) C-6

Here, we assume for a contradiction that
∑

i∈N1,j∈N2

|xi − yj |2 is bounded. Now, we note the

following identity holds:

(3.10) C-7
1

N1N2

∑
i∈N1,j∈N2

|xi − yj |2 =
1

N1

∑
i∈N1

|xi − xc|2 + ‖xc − yc‖2 +
1

N2

∑
j∈N2

|yj − yc|2.

Then, one uses (3.9) and (3.10) to get

1

4N1N2

∑
i∈N1,j∈N2

|xi − yj |2

≥ 1

2N1N2

∑
i∈N1,j∈N2

|xi − yj |2 −
1

4
‖xc − yc‖2

= C̃(t) +
1

4
‖xc − yc‖2

≥ C̃(0) +
1

4
‖(xc − yc)(0)‖2 − 2 max{φ(0), ψ(0)}

∫ t

0
C̃(s)ds+ (β − 2)

∫ t

0
Dβ(s)ds.

(3.11) C-8

Since we know
∫∞
0 C(s)ds <∞ from Step A, we also have∫ ∞

0
C̃(s)ds <∞,

and hence
∫∞
0 D

β(s)ds < ∞. However, if we use the uniform bounds in Lemma 3.2, we

easily obtain that
∣∣ d
dtD

β
∣∣ is uniformly bounded and hence, by Barbalat’s lemma, Dβ → 0

as t→∞, which is a contradiction to the boundedness of
∑

i∈N1,j∈N2

|xi−yj |2. Thus, we find

out that
∑

i∈N1,j∈N2

|xi − yj |2 is unbounded.

It remains to show that
∑

i∈N1,j∈N2

|xi − yj |2 grows to infinity as t → ∞. Now, since C̃ is

uniformly bounded, we deduce from (3.10) that ‖xc − yc‖ is unbounded. Then, we use
relation (3.9) again to obtain



18 JUNG AND JIN

C̃(t) +
1

4
‖xc − yc‖2 + 2 min{φm, ψm}

∫ t

0
C̃(s)ds

≤ C̃(0) +
1

4
‖(xc − yc)(0)‖2 + (β − 2)

∫ t

0
Dβ(s)ds.

and we can deduce that ∫ t

0
Dβ(s)ds→∞, as t→∞.

Thus, we use relation (3.11) again to conclude that
∑

i∈N1,j∈N2

|xi − yj |2 → ∞, and hence

from (3.10), ‖xc − yc‖ → ∞ as t → ∞. Since we already have the asymptotic consensus
result in Step A, we find out that δ(X,Y )(t)→∞ as t→∞. This completes the proof.

4. Dynamics of the opposing groups: the one-dimensional case
?〈sec:4〉?

In this section, we focus on the dynamics of system (1.1) for one-dimensional case. First,
we prove the collision avoidance result when β > 1.

〈L4.1〉Lemma 4.1. Let (X,Y ) be a solution to system (1.1) with d = 1 satisfying

δ(X,Y )(0) > 0, β > 1.

Then for any t > 0, there is no collision between two groups X and Y :

δ(X,Y )(t) > 0, ∀t > 0.

Proof. As we did in Lemma 3.1, we use a contradiction argument. Assume that there exists
T ∗ > 0 such that

xi(T
∗) = yj(T

∗), for some (i, j) ∈ N1 ×N2.

Without loss of generality, we may let T ∗ be the first collision time. Then, we fix a particle
xi∗ that collides with others at t = T ∗ and consider particles in X and Y that collide with
xi∗ at position xi∗(T

∗) and time t = T ∗. Then, we can find the clusters {X̃k}rk=1, {Ỹ`}s`=1
of X-particles and Y -particles, respectively, such that particles in each cluster collide with
xi∗ at t = T ∗ and for each k and `,

X̃k = {xak−1+1, · · · , xak}, Ỹ` = {yb`−1+1, · · · , yb`}, a0, b0 ∈ N ∪ {0},

X̃k = {ak−1 + 1, · · · , ak}, Ỹ` = {b`−1 + 1, · · · , b`}, I :=

r⋃
k=1

X̃k, J :=

s⋃
`=1

Ỹ`.

and the initial ordering among clusters does not change up to t = T ∗, i.e. either one of the
following four settings holds on t ∈ [0, T ∗):

(1) X̃1 < Ỹ1 < · · · < X̃p < Ỹp,

(2) X̃1 < Ỹ1 < · · · < X̃p < Ỹp < X̃p+1,

(3) Ỹ1 < X̃1 < · · · < Ỹp < X̃p,

(4) Ỹ1 < X̃1 < · · · < Ỹp < X̃p < Ỹp+1.
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Here, the relation X̃r < Ỹr is defined as

X̃r < Ỹr ⇐⇒ max
i∈X̃r

xi < min
j∈Ỹr

yj ,

and Ỹr < X̃r+1 is defined in a similar way. Due to the symmetry in system (1.1), it suffices
to consider the cases (1) and (2) without loss of generality. Before we move on, note that
there exist positive constants η > 0 and C = C(T ∗) > 0 such that

η := min

{
inf
t<T ∗

|xi − yj | : i ∈ I, j ∈ N2 \ J or i ∈ N1 \ I, j ∈ J
}
,

sup
0≤t<T ∗

max
i∈N1

|xi(t)|+ sup
0≤t<T ∗

max
j∈N2

|yj(t)| ≤ C(T ∗),

and we set notation for maximal, minimal indices in each cluster: for each r,

xrm := min
i∈X̃r

xi, xrM := max
i∈X̃r

xi,

and we set yrm and yrM similarly.

� Case (1): Here, for a.e. t ∈ (0, T ∗),

ẏpM − ẋ1m ≥ −C(T ∗)− 1

N1

∑
k∈N1

xk − ypM
|xk − ypM |β

+
1

N2

∑
`∈N2

y` − x1m
|y` − x1m|β

≥ −C(T ∗) +
1

N1

∑
k∈I

ypM − xk
|xk − ypM |β

+
1

N2

∑
`∈J

y` − x1m
|y` − x1m|β

≥ −C(T ∗) +
2|I|
N1

(ypM − x1m)1−β,

where we used

0 < ypM − xk ≤ ypM − x1m, ∀k ∈ I, ∀t ∈ [0, T ∗),

0 < y` − x1m ≤ ypM − x1m, ∀` ∈ J , ∀t ∈ [0, T ∗).

Since ypM − x1m → 0 as t→ T ∗, we can easily obtain a contradiction.

� Case (2): In this case, we have for each r = 1, · · · , p and a.e. t > 0,

ẏrm − ẋrM ≥ −C(T ∗)− 1

N1

∑
k∈I

xk − yrm
|xk − yrm|β

+
1

N2

∑
`∈J

y` − xrM
|y` − xrM |β

ẋ(r+1)m − ẏrM ≥ −C(T ∗)− 1

N2

∑
`∈J

y` − x(r+1)m

|y` − x(r+1)m|β
+

1

N1

∑
k∈I

xk − yrM
|xk − yrM |β

.

(4.1) D-1

Then, we sum the relations in (4.1) for r = 1, · · · p to obtain

p∑
r=1

(ẋ(r+1)m − ẏrM + ẏrm − ẋrM )
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≥ −C(T ∗) +
1

N1

p∑
r=1

∑
k∈I

(
xk − yrM
|xk − yrM |β

− xk − yrm
|xk − yrm|β

)

− 1

N2

p∑
r=1

∑
`∈J

(
y` − x(r+1)m

|y` − x(r+1)m|β
− y` − xrM
|y` − xrM |β

)

= −C(T ∗) +
1

N1

p∑
r=1

∑
k∈I

(
xk − yrM
|xk − yrM |β

− xk − yrm
|xk − yrm|β

)

+
1

N2

p∑
r=2

∑
`∈J

(
y` − xrM
|y` − xrM |β

− y` − xrm
|y` − xrm|β

)
− 1

N2

∑
`∈J

(
y` − x(p+1)m

|y` − x(p+1)m|β
− y` − x1M
|y` − x1M |β

)
.

Here, if xk (k ∈ I) is ahead of the cluster Ỹr, i.e. xk > yrM , then

xk − yrM
|xk − yrM |β

− xk − yrm
|xk − yrm|β

= (xk − yrM )1−β − (xk − yrm)1−β

= (1− β)(x∗k)
−β(yrm − yrM ) > 0,

where we used mean-value theorem and x∗k ∈ (xk − yrM , xk − yrm). Similarly, for the case
xk < yrm,

xk − yrM
|xk − yrM |β

− xk − yrm
|xk − yrm|β

> 0,

Moreover, similar estimates give

y` − xrM
|y` − xrM |β

− y` − xrm
|y` − xrm|β

> 0, ` ∈ J .

Thus,

p∑
r=1

(ẋ(r+1)m − ẏrM + ẏrm − ẋrM )

≥ −C(T ∗) +
1

N2

∑
`∈J

(
x(p+1)m − y`
|y` − x(p+1)m|β

+
y` − x1M
|y` − x1M |β

)
≥ −C(T ∗) +

|J |
N2

(
(x(p+1)m − y1m)1−β + (ypM − x1M )1−β

)
,

and this again leads to a contradiction, which implies our desired result. �

〈R4.1〉Remark 4.1. Consider the case when two groups are initially separated:

(4.2) D-2 x01 < · · · < x0N1
< y01 < · · · < y0N2

, or y01 < · · · < y0N2
< x01 < · · · < x0N2

.

Without loss of generality, we assume the first case in (4.3) and let δ(X,Y )(0) > 0 and
β > 1. Then, due to the collision avoidance from Lemma 4.1, we have
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xM (t) := max
1≤i≤N1

xi(t) < ym(t) := min
1≤j≤N2

yj(t),

and moreover, for a.e. t > 0,

ẏm − ẋM =
1

N2

N2∑
`=1

ψ(y` − ym)(y` − ym)− 1

N1

N1∑
k=1

(xk − ym)

|xk − ym|β

− 1

N1

N1∑
k=1

φ(xk − xM )(xk − xM ) +
1

N2

N2∑
`=1

(y` − xM )

|y` − xM |β

≥
(

1

N1
+

1

N2

)
1

|ym − xM |β−1
.

Then, we multiply both sides by |ym − xM |β−1 to obtain

d

dt
|ym − xM |β ≥ β

(
1

N1
+

1

N2

)
,

and hence, we obtain the asymptotic separation result:

(ym − xM ) ≥
(

(y0m − x0M )β + β

(
1

N1
+

1

N2

)
t

)1/β

, t ≥ 0.

〈R4.2〉Remark 4.2. Thanks to Lemma 4.1, we can separate particles into several clusters {Xk}rk=1,
{Y`}s`=1 of X-particles and Y -particles, respectively, depending on the initial configuration:
If we set

Xk = {xak−1+1, · · · , xak}, Y` = {yb`−1+1, · · · , yb`}, a0, b0 ∈ N ∪ {0},

Xk = {ak−1 + 1, · · · , ak}, Y` = {b`−1 + 1, · · · , b`},
and hence,

N1 =

r⋃
k=1

Xk, N2 =

s⋃
`=1

Y`.

Then Lemma 4.1 implies that the initial ordering among clusters does not change up to any
finite time and those orderings are one of the following four settings:

(1) X1 < Y1 < · · · < Xp < Yp,
(2) X1 < Y1 < · · · < Xp < Yp < Xp+1,
(3) Y1 < X1 < · · · < Yp < Xp,
(4) Y1 < X1 < · · · < Yp < Xp < Yp+1.

From now on, due to the symmetry in system (1.1), we only consider the cases (1) and (2)
without loss of generality.

We know from Lemma 4.1 that asymptotic consensus in each group can not be obtained
in general. Instead, we can observe that asymptotic consensus emerges in each cluster.
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〈L4.2〉Lemma 4.2. Let (X,Y ) be a solution to system (1.1) satisfying (A) and the following
assumptions:

δ(X,Y )(0) > 0, β > 1.

Then, we obtain

D(Xr(t)) ≤ D(Xr(0))e
−−φ

0
r |Xr |
N1

t
, D(Yr(t)) ≤ D(Yr(0))e

−ψ
0
r |Yr |
N2

t
, t > 0,

where φ0r and ψ0
r are given by

φ0r := φ(D(Xr(0))), ψ0
r := ψ(D(Yr(0))).

Proof. For the r-th cluster Xr in X-group, we set

xrM := max
i∈Xr

xi, xrm := min
i∈Xr

xi.

Then, for a.e. t > 0,

ẋrM − ẋrm =
1

N1

N1∑
k=1

(φ(xk − xrM )(xk − xrM )− φ(xk − xrm)(xk − xrm))

− 1

N2

N2∑
`=1

(
y` − xrM
|y` − xrM |β

− y` − xrm
|y` − xrm|β

)
=: I31 + I32.

For I31, since xrM > xrm, we get xk − xrM ≤ xk − xrm for each 1 ≤ k ≤ N1 and hence,

φ(xk − xrM )(xk − xrM )− φ(xk − xrm)(xk − xrm) ≤ 0,

due to the monotonicity of φ(x)x. Thus, we obtain

I31 ≤
1

N1

∑
k∈Xr

φ(xk − xrM )(xk − xrM )− φ(xk − xrm)(xk − xrm)

≤ −|Xr|
N1

φ(D(Xr(t)))(xrM − xrm).

For I32, if ` ∈ Ys such that Xr < Ys, i.e. if y` is in front of X-particles in the cluster Xr,
then one gets

y` − xrM
|y` − xrM |β

− y` − xrm
|y` − xrm|β

=
1

(y` − xrM )β−1
− 1

(y` − xrm)β−1

= (1− β)(x∗r)
−β(xrm − xrM ) > 0,

where we used the mean-value theorem and x∗r ∈ (y` − xrM , y` − xrm).

On the other hand, if ` ∈ Ys such that Ys < Xr, i.e. if y` is behind the X-particles in the
cluster Xr,

y` − xrM
|y` − xrM |β

− y` − xrm
|y` − xrm|β
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= − 1

(xrM − y`)β−1
+

1

(xrm − y`)β−1

= −(1− β)(x∗∗r )−β(xrM − xrm) > 0,

where we again used the mean-value theorem and x∗∗r ∈ (xrm− y`, xrM − y`). Thus, we can
conclude that

I32 ≤ 0.

Therefore, we combine the estimates for I31 and I32 to get

(4.3) D-2 ẋrM − ẋrm ≤ −
|Xr|
N1

φ(D(Xr(t)))(xrM − xrm).

Then, we have

D(Xr(t)) ≤ D(Xr(0)), ∀t > 0,

and hence, we apply the monotonicity of φ and Grönwall’s lemma to (4.3) to obtain the
desired estimate. Since the estimates for D(Yr) are similar, we omit the proof.

�

Next, we show that if two groups are not initially separated (i.e. the case of Remark 4.1),
then they are confined in a finite interval.

〈L4.4〉Lemma 4.3. Let (X,Y ) be a solution to system (1.1) satisfying (A) and the following
assumptions:

δ(X,Y )(0) > 0, β > 2.

Moreover, assume that the initial configuration (4.3) is excluded. Then,

sup
t≥0
D(X) + sup

t≥0
D(Y ) <∞.

Proof. Here, we may use Lemma 3.2 to obtain that

W (t) ≤W (0),

which yields inf
t≥0

δ(X,Y )(t) > 0 and

W (0) ≥ 1

2N2
1

∑
i,k∈N1

Φ(|xi − xk|) +
1

2N2
2

∑
j,`∈N2

Ψ(|yj − y`|)

≥ 1

2N2
1

Φ(D(X)) +
1

2N2
2

Ψ(D(Y )).

Since we have assumed φ(x)x and ψ(x)x are monotonically increasing in x, it is obvious that
Φ(x) and Ψ(x) monotonically increases to infinity. Thus, this implies the desired result.

�
?〈C4.1〉?

Corollary 4.1. Let (X,Y ) be a solution to system (1.1) satisfying (A1)-(A2) and the
following assumptions:

δ(X,Y )(0) > 0, β > 2.

Moreover, assume that the initial configuration (4.3) is excluded. Then, there exists a
bounded interval K such that

xi(t), yj(t) ∈ K, for any (i, j) ∈ N1 ×N2 and any t > 0.
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Proof. We argue by contradiction. Since the other cases are similar, we only consider case
(1) in Remark 4.2. In this case, the following inequality holds for all t ≥ 0:

(4.4) C4-1.1 2x1m(t) ≤ xc(t) + yc(t) ≤ 2ypM (t).

Together with the results in Lemma 4.3, the nonexistence of such an interval K implies
either one of the followings hold:

either lim inf
t→∞

xpM (t) = −∞, or lim sup
t→∞

x1m(t) =∞.

Here, due to the collision avoidance between the two groups X and Y , we have{
lim inf
t→∞

xpM (t) = −∞ =⇒ lim inf
t→∞

yj(t) = −∞, ∀j ∈ Yr (1 ≤ r < p)

lim sup
t→∞

x1m(t) =∞ =⇒ lim sup
t→∞

yj(t) =∞, ∀j ∈ Yr (1 ≤ r ≤ p).

Moreover, since D(Y ) is uniformly bounded,

lim inf
t→∞

xpM (t) = −∞ =⇒ lim inf
t→∞

ypM (t) = −∞.

Thus, the inequality (4.4) yields lim inf
t→∞

xpM (t) = −∞ =⇒ lim inf
t→∞

(
xc(t) + yc(t)

)
= −∞,

lim sup
t→∞

x1m(t) =∞ =⇒ lim sup
t→∞

(
xc(t) + yc(t)

)
=∞.

However, this contradicts Lemma 2.1, since xc(t)+yc(t) is a conserved quantity along time.
Therefore, such a finite interval K exists.

�

4.0.1. Proof of Theorem 2.2. Thanks to Lemma 3.2 and Lemma 4.2, it suffices to show the
convergence toward asymptotic limits. For simplicity, we set W (t) := W (X(t), Y (t)). First,
we recall from Lemma 3.2 that

d

dt
W (t) = −N1‖∇XW (t)‖2 −N2‖∇YW (t)‖2 ≤ −‖∇W (t)‖2.

Since W (X(t), Y (t)) is nonnegative and monotonically decreasing, we can find W∞ ≥ 0
satisfying

lim
t→∞

W (t) = W∞.

Moreover, we have∫ ∞
t0

‖∇W (t)‖2dt ≤ −
∫ ∞
t0

d

dt
W (t)dt = W (t0)−W∞.

Together with inft≥0 δ(X(t), Y (t)) > 0 and Corollary 4.1, we have ∇W (t) is uniformly
continuous. Thus,

lim
t→∞
∇W (X(t), Y (t)) = 0.
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On the other hand, since (X(t), Y (t)) is uniformly bounded, we can find a sequence tn ↗∞
and (X∞, Y∞) ∈ RN1 × RN2 such that

lim
n→∞

(X(tn), Y (tn)) = (X∞, Y∞).

Hence, we have

0 = lim
n→∞

‖∇W (tn)‖ = ‖∇W (X∞, Y∞)‖.

Here, note that the potential W is analytic on the following region:

O := {(x1, · · · , xN1 , y1, · · · , yN2) ∈ RN1 × RN2 | xi 6= yj for all (i, j) ∈ N1 ×N2}.
So, Lemma 2.2 guarantees the existence of positive constants η ∈ [1/2, 1), c, r > 0 such that

(4.5) D-4 ‖∇W (X,Y )‖ ≥ c|W (X,Y )−W∞|η, ∀(X,Y ) ∈ B((X∞, Y∞), r),

where B((X,Y ), r) denotes the ball of radius r in RN1×RN2 centered at (X,Y ) ∈ RN1×RN2 .

Our claim is to show that, for any 0 < ε < r, there exists tε > 0 such that

(X(t), Y (t)) ∈ B((X∞, Y∞), ε), ∀t ≥ tε,
which implies the desired result. Now, we fix ε < r and let g(t) := |W (t)−W∞|1−η. Since
g(t)↘ 0 as t→∞ and g is uniformly continuous, we can choose tε > 0 satisfying

N1N2

c(1− η)
(g(t)− g(tε)) <

ε

2
, ∀t ≥ tε,

where c is given in (4.5). Due to the sequence {tn}n∈N, we may choose tε sufficiently large
so that

|(X(tε), Y (tε))− (X∞, Y∞)| < ε

2
.

Now, we set

T ε := sup{t ≥ tε | (X(t), Y (t)) ∈ B((X∞, Y∞), ε)}.
We claim that T ε =∞. Assume for a contradiction that T ε <∞. Then, we note that

(4.6) D-5
d

dt
g(t) = (1− η)|W (t)−W∞|−η d

dt
W (t) ≤ −c(1− η)|W (t)−W∞|−η‖∇W (t)‖2.

Then, for t ∈ [tε, T ε], we use (4.5) to get

‖∇W (t)‖ ≤ −dg
dt

(
1

(1− η)|W (t)−W∞|−η‖∇W‖

)
≤ − 1

c(1− η)

dg

dt
.

Thus, we obtain

∫ T ε

tε

∣∣∣∣ ddt
(
X(t)
Y (t)

)∣∣∣∣ dt =

∫ T ε

tε

∣∣∣∣( N1∇XW (t)
N2∇YW (t)

)∣∣∣∣ dt
≤ N1N2

∫ T ε

tε
‖∇W (t)‖dt ≤ N1N2

c(1− η)
(g(tε)− g(T ε)) <

ε

2
.
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This implies

ε = |(X(T ε), Y (T ε))− (X∞, Y∞)|
≤ |(X(T ε), Y (T ε))− (X(tε), Y (tε))|+ |(X(tε), Y (tε))− (X∞, Y∞)|

≤
∫ T ε

tε

∣∣∣∣ ddt
(
X(t)
Y (t)

)∣∣∣∣ dt+
ε

2
< ε,

which is a contradiction. Thus T ε =∞ and hence, we can obtain our desired convergence:

lim
t→∞

(X(t), Y (t)) = (X∞, Y∞).

Remark 4.3. The same argument as the proof of Theorem 2.2 implies that there exists
t∗ > 0 such that

N1N2

c(1− η)
(g(t)− g(t∗)) <

r

2
, ∀t ≥ t∗, and |(X(t∗), Y (t∗))− (X∞, Y∞)| < r

2
.

Then, the contradiction argument yields

T := sup{t ≥ t∗ | (X(t), Y (t)) ∈ B((X∞, Y∞), r)} =∞,
and hence, we can combine (4.5) with (4.6) to get

dg

dt
≤ −(1− η)|W (t)−W∞|−η‖∇W (t)‖2

≤ −c2(1− η)|W (t)−W∞|η = −c2(1− η)g
η

1−η , t ≥ t∗,
where c is given in (4.5).

If η = 1/2, then we may use Grönwall’s lemma to obtain

g(t) ≤ g(t∗)e−c
2(1−η)(t−t∗), t ≥ t∗.

If η ∈ (1/2, 1), we can get

g
− η

1−η
dg

dt
=

1− η
1− 2η

d

dt
g

1−2η
1−η ≤ −c2(1− η), t ≥ t∗,

which implies

g(t) ≤
(
g(t∗)

− 2η−1
1−η + c2(2η − 1)(t− t∗)

)− 1−η
2η−1

, t ≥ t∗.

In either case, we have g(t)→ 0 as t→∞ at least at an algebraic rate. Thus,

|(X(t), Y (t))− (X∞, Y∞)| ≤
∫ ∞
t

∣∣∣∣ dds
(
X(s)
Y (s)

)∣∣∣∣ ds
≤ N1N2

∫ ∞
t
‖∇W (s)‖ds ≤ N1N2

c(1− η)
g(t), t ≥ t∗,

which implies that after some time, the convergence rate toward the asymptotic limits is at
least algebraic.
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5. Numerical simulations
?〈sec:5〉?

In this section, we present several results from numerical simulations concerning system
(1.1). Since the dynamics observed in (1.1) appears different depending on the dimension,
we provide the results for numerical simulations separately. For any dimension, we em-
ployed the fourth-order Runge-Kutta method.

5.1. The one-dimensional case. In this subsection, we provide the results of numerical
simulations for the one-dimensional case. Notable situations in the one-dimensional case are
the order preservation between clusters and the existence of asymptotic limits. We would
like to observe such phenomena varying the choice of communication weight functions φ and
ψ, and the singularity exponent β. For our numerical simulations, we choose the following
type of communication weight functions:

φ(x) =
1

(1 + x2)α1
, ψ(x) =

1

(1 + x2)α2
, α1, α2 > 0.

Note that if β > 1 and α1, α2 ∈ (0, 1/2], they satisfy all the conditions in (1) of Theorem
2.2, while β > 2 and α1, α2 ∈ (0, 1/2] coincide with the conditions in (2).

Now, we consider the case that satisfies our sufficient framework given in Theorem 2.2
and the cases that do not. Note that the red line denotes the position of particles in X-
group, while the blue line denotes the position of particles in Y -group. In Figure 1(a),
the coefficients satisfy the condition and we observe both the consensus in each cluster and
convergence toward asymptotic limits. However, even for the case β = 1.5 (see Figure 1(b)),
we can observe both phenomena, where only the consensus in each cluster is guaranteed.
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(a) α1 = α2 = 0.25, β = 2.5
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(b) α1 = α2 = 0.25, β = 1.5

Figure 1. Consensus in each cluster and convergence toward the asymptotic
limits under the sufficient and non-sufficient conditions

?〈F1〉?

On the other hand, in the case of α1 = α2 = 1.5 with β = 2.5 (see Figure 2(a)), it does
not satisfy any of our condition and the boundedness D(X) and D(Y ) and convergence
toward asymptotic limits are not observed. However, we can observe the consensus in each
cluster. When α1 = 5, α2 = 0.25 and β = 2.5, the consensus in the Y -cluster is observed.
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As we may observe in Figure 2(b), the consensus in each cluster of Y emerges while the
consensus in some clusters of X does not.
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(a) α1 = α2 = 1.5, β = 2.5
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(b) α1 = 5, α2 = 0.25, β = 2.5

Figure 2. Emergence and non-emergence of phenomena under non-
sufficient conditions

?〈F2〉?

5.2. The multi-dimensional case. In this subsection, we consider the multi-dimensional
case. Here, we only consider d = 2. As we did for the one-dimensional case, we would like
to observe the phenomena varying communication weights and the singularity exponent.
Here, we also use the same type of communication weights:

φ(x) =
1

(1 + |x|2)α1
, ψ(x) =

1

(1 + |x|2)α2
, α1, α2 > 0.

Unlike the one-dimensional case, now we can expect the emergence of asymptotic con-
sensus and separation. We will use the same parameters as the one-dimensional case and
discuss what is different and what is similar. For the quantities in figures, we write

‖X − xc‖ :=

(
N1∑
i=1

|xi − xc|2
)1/2

, ‖Y − yc‖ :=

 N2∑
j=1

|yj − yc|2
1/2

.

First, when α1 = α2 = 0.25 and β = 2.5, we can observe the emergence of asymptotic
consensus and separation, which is also observed in the case α1 = α2 = 0.25 and β = 1.5 (see
Figure 3(a) and 3(b)), although our condition does not guarantee the collision avoidance
when β = 1.5,
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(a) α1 = α2 = 0.25, β = 2.5
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(b) α1 = α2 = 0.25, β = 1.5

Figure 3. Emergence of asymptotic consensus and separation
?〈F4〉?

However, when α1 = α2 = 1.5 and β = 2.5, the behavior of system (1.1) becomes
different. When the initial data is large, then only the collision avoidance is observed (see
Figure 4(a)). On the other hand, when the initial data is small, asymptotic consensus and
separation seem to emerge as depicted in Figure 4(b).
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(a) α1 = α2 = 1.5, β = 2.5 with large initial data

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3

4

5

6

7

8

9

||X-x
c
||

||Y-y
c
||

(X,Y)

(b) α1 = α2 = 1.5, β = 2.5 with small initial data

Figure 4. Emergent behaviors depending on the choice of initial data
?〈F5〉?

Finally, we present a case where partial asymptotic consensus emerges, i.e. one group
reaches an asymptotic consensus while the other does not. When α1 = 5, α2 = 0.25 and
β = 2.5, we can see the same result without the smallness condition on initial data (see
Figure 5(a)).
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Figure 5. Partial consensus
?〈F6〉?

6. Conclusion
?〈sec:5〉?

In this paper, we discussed the asymptotic dynamics of two opposing groups under at-
tractive and repulsive forces. Due to the difference between the one-dimensional and multi-
dimensional cases, we first considered the multi-dimensional case. Here, under a suitable
assumption for the singularity exponent in the repulsion force, we proved the collision
avoidance between two groups. Furthermore, with suitable conditions on system parame-
ters, initial data and communication weights, we proved the emergence of both asymptotic
consensus and separation. In the one-dimensional case, due to collision avoidance, particles
are separated into several clusters by the particles from the other group. Moreover, the
order between these clusters is preserved along time, which hinders the asymptotic consen-
sus in general. Moreover, we showed that each cluster reaches a consensus and tends to an
asymptotic limit.

Still, there are many interesting issues to be discussed concerning the dynamics of op-
posing groups. For example, the dynamics of multiple opposing groups, opposing groups
governed by second-order systems communicating via singular kernel, etc. These will be
treated in future works.
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