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Abstract. We present a local sensivity analysis for the kinetic Kuramoto

equation with random inputs in a large coupling regime. In our proposed
random kinetic Kuramoto equation (in short, RKKE), the random inputs are

encoded in the coupling strength. For the deterministic case, it is well known

that the kinetic Kuramoto equation exhibits asymptotic phase concentration
for well-prepared initial data in the large coupling regime. To see a response of

the system to the random inputs, we provide propagation of regularity, local-

in-time stability estimates for the variations of the random kinetic density
function in random parameter space. For identical oscillators with the same

natural frequencies, we introduce a Lyapunov functional measuring the phase
concentration, and provide a local sensitivity analysis for the functional.

1. Introduction. Collective behaviors of oscillatory complex systems are ubiq-
uitous in our nature, e.g., flashing of fireflies, chorusing of crickets, synchronous
firing of cardiac pacemaker and metabolic synchrony in yeast cell suspension [1, 7,
15, 32, 33] etc. Aforementioned collective patterns come down to synchronization
phenomena. The jargon “synchronization” represents the adjustment of rhythms
in an ensemble of weakly coupled oscillators. Compared to long human history,
a rigorous treatment for synchronization started only several decades ago in the
pioneering works by Kuramoto and Winfree in [25, 26, 37]. They introduced sim-
ple, continuous dynamical systems for weakly coupled oscillators, and explained
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how collective behaviors in such simple models can emerge from initial configura-
tions. Recently, emergent dynamics of coupled oscillators on networks has become
an active, emerging research field in diverse disciplines such as biology, nonlinear
dynamics, statistical physics and sociology. After Kuramoto and Winfree’s seminal
works, many phenomenological models have been used in the study of synchroniza-
tion. Among them, we are mainly interested in the prototype model, namely the
Kuramoto model. In order to fix the idea, let z be a random vector which is a
measurable vector-valued function on a sample space Ω in Rd and we denote its
probability density function (pdf) by π(z). For the simplicity of presentation, we
assume that z is one-dimensional. Due to the randomness in system parameters
such as the natural frequency and coupling strength, the phases of oscillators are
random processes as well. More precisely, let θi = θi(t, z) be the phase of the i-th
Kuramoto oscillator whose dynamics is governed by the random Kuramoto model
(in short, RKM):

∂tθi(t, z) = νi +
1

N

N∑
j=1

κij(z) sin(θj(t, z)− θi(t, z)), t > 0, (1)

where νi is an intrinsic natural frequency of the i-th oscillator whose pdf is g =
g(ν), and nonnegative random field κij = κij(z) measures the random coupling
strength between i and j-th oscillators. Throughout the paper, we assume that κij
is symmetric in i and j:

κij = κji, 1 ≤ i, j ≤ N.
For the deterministic case where all randomness were quenched, i.e.,

νi = constant, κij(z) = κij ,

emergent dynamics of (1) has been extensively studied in [2, 6, 10, 11, 12, 13, 14, 20,
23, 28, 29, 30, 34, 35, 36] where the complete synchronization and stability conditions
were proposed. The pathwise well-posedness of (1) can be done using the standard
Cauchy-Lipschitz theory. In authors’ recent work [18], a local sensitivity analysis
for (1) has been addressed. In this paper, we are interested in the correpsonding
mean-field equation which can effectively describe the dynamics of system (1) with
N � 1. Let T = R/(2πZ), and f = f(t, θ, ν, z) be an one-oscillator probability
density function on the extended phase space T × R × Ω at time t. Then, the
density function f satisfies the RKKE [1, 27]:

∂tf + ∂θ(ω[f ]f) = 0, (θ, ν, z) ∈ T× R× Ω, t > 0,

ω[f ](t, θ, ν, z) = ν − κ(z)

∫
T×R

sin(θ − θ∗)f(t, θ∗, ν∗, z)dν∗dθ∗.
(2)

When the extrinsic randomness in κ(z) and initial data f0(z) are quenched, well-
posedness and dynamic features of the kinetic Kuramoto equation have been studied
in [4, 5, 8, 27].

In this paper, we address a local sensitivity analysis for (2) to see the effect of
random parameter in f = f(t, θ, ν, z) which is one of topics in uncertainty quan-
tification (UQ). More precisely, we study the propagation of regularity of f in the
random space, and provide concentration and stability estimates of z-variations
{∂αz f}. The UQ for mean-field flocking models were first addressed in [3, 9] where
particle based gPC methods were discussed. On the other hand, systematic local
sensitivity analysis for the Cucker-smale and Kuramoto models have been addressed
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in authors’ series of recent works [16, 17, 18]. Thus, the current work is a contin-
uation of this systematic research on the local sensitivity analysis for flocking and
synchronization models.

The main results of this paper are two-fold. First, we present pathwise well-
posedness and stability estimate of the RKKE by establishing a priori estimates
(see Theorem 3.2, Theorem 3.3 and Theorem 3.4): for T ∈ (0,∞), z ∈ Ω, l ≤ k,

sup
0≤t<T

‖∂lzf(t, z)‖Wk−l,∞
θ,ν

≤ C(z, T ), sup
0≤t<T

‖f(t)‖Hlπ(L∞θ,ν) ≤ C(T )‖f0‖Hlπ(L∞θ,ν),

sup
0≤t<T

k∑
l=0

‖∂lz(f − f̃)(t, z)‖Wk−l,∞ ≤ C(z, T )

k∑
l=0

‖∂lz(f0 − f̃0)(z)‖Wk−l,∞ ,

where f and f̃ are solution processes to (2) corresponding to initial data f0 and f̃0,
respectively.

Second, we consider identical oscillator with ϕ(ν) = δ0. In this case, we can write
f(t, ν, θ, z) = ρ(t, θ, z)ϕ(ν) and ρ satisfies

∂tρ+ ∂θ(ω̃[ρ]ρ) = 0, (θ, ν, z) ∈ T× R× Ω, t > 0,

ω̃[ρ](t, θ, z) = −κ(z)

∫ 2π

0

sin(θ − θ∗)ρ(t, θ∗, z)dθ∗.

Now, we introduce a Lyapunov functional L measuring the phase concentration:

L[ρ](t, z) :=

∫
T
|θ − θρ,c(t, z)|2ρ(t, θ, z)dθ, θρ,c(t, z) :=

∫
T
θρ(t, θ, z)dθ. (3)

Note that the zero convergence of L[ρ] as t→∞ implies the asymptotic formation
of phase concentration in probability sense. This can be seen easily from Chebyshev
inequality as follows:

L[ρ](t, z) ≥ ε2

∫
|θ−θρ,c(t,z)|>ε

ρdθ = ε2P[θ − θρ,c(t, z)| > ε].

This implies

lim
t→∞

P[|θ − θρ,c(t, z)| > ε] ≤ 1

ε2
lim
t→∞

L[ρ](t, z) = 0.

Under suitable conditions on initial data and system parameters, we will show that
there exists random functions C(z) and Λ(z) such that

L[|∂zρ|](t, z) ≤ C(z)e−Λ(z)t, t ≥ 0.

(see Theorem 4.3 for details). However, higher-order sensitivity analysis for L[|∂αz ρ|]
(t, z) with α� 1 might lead to the exponential growth (see Remark 4), a phenom-
enon not observed in earlier works in this direction.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the random kinetic Kuramoto equation and discuss its basic properties. In Section
3, we study a pathwise well-posedness of the RKKE by providing a priori estimates
such as boundedness of H l

π(L∞θ,ν) in any finite time interval, and provide the stabil-
ity estimates for the RKKE. In Section 4, we perform a local sensitivity analysis for
a Lyapunov functional (3). Finally, Section 5 is devoted to a brief summary of our
main results and some remaining issues to be explored in future. In Appendices A
and B we provide the proof for Theorem 3.2 and Lemma 4.2, respectively.
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Gallery of Notation: Throughout the paper, we use the following notation:
Let π : Ω → R+ ∪ {0} be a nonnegative p.d.f. function, and let y = y(z) be a

scalar-valued random function defined on Ω. Then, we define the expected value as

E[ϕ] :=

∫
Ω

ϕ(z)π(z)dz,

and a weighted L2-space:

L2
π(Ω) := {y : Ω→ R |

∫
Ω

|y(z)|2π(z)dz <∞},

with an inner product and norm:

〈y1, y2〉L2
π(Ω) :=

∫
Ω

y1(z)y2(z)π(z)dz, ‖y‖L2
π(Ω) :=

(∫
Ω

|y(z)|2π(z)dz
) 1

2

.

For k ∈ Z+ ∪ {0}, set

‖y‖Hlπ(Ω) :=
( k∑
`=0

‖∂`zy‖2L2
π(Ω)

) 1
2

, k ≥ 1, ‖y‖H0
π(Ω) := ‖y‖L2

π(Ω).

Let h = h(θ, ν, z) be scalar-valued random function defined on the extended

phase space T× R× Ω. For such h, we define a Sobolev norm W k,∞
θ,ν and a mixed

norm H l
π(L∞θ,ν) as follows.

‖h(z)‖Wk,∞
θ,ν

:=
∑

0≤α+β≤k

‖∂αθ ∂βν h(z)‖L∞(T×R),

‖h‖2Hlπ(L∞θ,ν) :=
∑
|α|≤l

‖∂αz h‖2L2
π(Ω;L∞(T×R)).

Moreover, as long as there is no confusion, we suppress π and Ω dependence in
L2
π(Ω)-norm and Hk

π(Ω)-norm:

‖y‖L2
z

:= ‖y‖L2
π(Ω), ‖y‖Hkz := ‖y‖Hkπ(Ω).

2. Preliminaries. In this section, we briefly introduce the RKKE and study its
basic properties. Let θi = θi(t, z) be a random phase process of the i-th Kuramoto
oscillator whose dynamics is governed by the following system of random ordinary
differential equations (ODEs):

∂tθi(t, z) = νi +
1

N

N∑
j=1

κij(z) sin(θj(t, z)− θi(t, z)), t > 0, 1 ≤ i ≤ N. (4)

Here, the coupling matrix (κij(z)) is assumed to be a symmetric random matrix. In
literature [1, 13, 21] on the Kuramoto model, the randomness in natural frequencies
is assumed to be time-independent and quenched so that νi is a constant parameter.
It will be interesting to see how random natural frequency νi and random coupling
strength κij(z) interplay in the synchronization process of (4). This uncertain
quantification (UQ) question for (4) was addressed in authors’ recent work [18].

Next, we consider a situation where the number of oscillators tend to infinity and
the coupling strengths κij(z) are uniform and identical:

N →∞, κij(z) = κ(z), 1 ≤ i, j ≤ N. (5)
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For the derivation of the mean-field model associated with (1) and (5), we refer
to [27, 31] for details. It is more convenient to rewrite system (4) with (5) as a
dynamical system on the extended phase space T× R:

∂tθi(t, z) = νi +
κ(z)

N

N∑
j=1

sin(θj(t, z)− θi(t, z)), t > 0,

∂tνi = 0.

(6)

Next, we return to the pathwise mean-field limit of (6) as N → ∞. The for-
mal mean-field limit equation can be easily identified using the standard BBGKY
hierarchy based on the formal weak limit of marginal distribution functions and
molecular chaos assumption (we refer to [22, 24] for a brief introduction of BBGKY
hierarchy). Note that for a frozen z ∈ Ω, the vector field generated by system
(6) is bounded and Lipschitz continuous, so it does satisfy Neunzert’s framework in
[31] based on particle-in-cell method and measure-valued solutions. In fact, this has
been rigorously done in [27] in any finite-time interval for any initial data. Recently,
for an augmented Kuramoto model uniform-in-time mean-field limit is also derived
by combining uniform stability analysis and finite-in-time mean-field limit in [21].
Thus, for each z ∈ Ω, we can perform the same argument as the deterministic case
to derive the kinetic equation with random inputs:

∂tf + ∂θ(ω[f ]f) = 0, (θ, ν) ∈ T× R, t > 0,

ω[f ](t, θ, ν, z) = ν − κ(z)

∫
T×R

sin(θ − θ∗)f(t, θ∗, ν∗, z)dν∗dθ∗
(7)

subject to initial data:

f(0, θ, ν, z) = f0(θ, ν, z). (8)

Here the initial datum f0 is assumed to satisfy the following constraints:

f0(θ, ν, z) = f0(θ + 2π, ν, z), (ν, z) ∈ R× Ω,∫
T
f0(θ, ν, z)dθ = g(ν, z),

∫
T×R

f0(θ, ν, z)dνdθ = 1.
(9)

Lemma 2.1. Let f be a smooth solution to (7), (8) and (9) satisfying additional
periodic boundary condition:

f(t, 0, ν, z) = f(t, 2π, ν, z), (ν, z) ∈ R× Ω, t > 0.

Then, for each z ∈ Ω and t > 0, we have

(i)

∫
T×R

f(t, θ, ν, z)dνdθ =

∫
T×R

f0(θ, ν, z)dνdθ.

(ii)

∫
T×R

νf(t, θ, ν, z)dνdθ =

∫
T×R

νf0(θ, ν, z)dνdθ.

Proof. We multiply 1 and ν to (7)1 and integrate the resulting relation over T×R
to obtain the desired estimates:

0 = ∂t

∫
T×R

fdνdθ +

∫
T×R

∂θ(ω[f ]f)dνdθ = ∂t

∫
T×R

fdνdθ,

0 = ∂t

∫
T×R

νfdνdθ +

∫
T×R

ν∂θ(ω[f ]f)dνdθ = ∂t

∫
T×R

νfdνdθ.
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Remark 1. Note that f satisfies

f(t, θ, ν, z) = f(t, θ + 2π, ν, z),

∫
T
f(t, θ, ν, z)dθ = g(ν),

∫
T×R

fdνdθ = 1.

Since the ν-variable is not a dynamic variable as can be seen from (6)2, thus the
ν-support of f will not be changed along the random Kuramoto flow. For a later
use, we present the above argument in the following lemma.

Lemma 2.2. Let f be a C1-regular process to (7), and suppose that the initial
process f0(z) has a compact support in ν for each z ∈ Ω: there exists a positive
random function M := M(z) > 0 such that

sup
θ∈T
|f0(θ, ν, z)| = 0, for all |ν| ≥M(z), for each z ∈ Ω.

Then for each z ∈ Ω and t > 0, we have

sup
θ∈T
|f(t, θ, ν, z)| = 0, for all |ν| ≥M(z), for each z ∈ Ω.

Before we leave this section, we state a Grönwall-type lemma to be used in later
sections.

Lemma 2.3. Let y : R+ ∪ {0} → R+ ∪ {0} be a differentiable function satisfying

y′ ≤ −αy + Ce−βt, t > 0, y(0) = y0, (10)

where α, β and C are non-negative constants α 6= β. Then y satisfies

y(t) ≤ y0e−αt +
C

α− β
(e−βt − e−αt)

Proof. We multiply (10) by eαt and integrate it over (0, t] to give

y(t)eαt ≤ y0 +
C

α− β
(e(α−β)t − 1).

This yields the desired estimate.

3. Propagation of Sobolev regularity and stability estimate. In this section,
we present a pathwise well-posedness of (2) and propagation of H l

π(L∞θ,ν)-norm of

f . First, we study a priori bound of W k,∞
θ,ν -norm.

For each l ∈ N ∪ {0}, it is easy to check that the z-variations {∂lzf} satisfy a
hierarchical system:
∂tf + ω[f ]∂θf = −(∂θω[f ])f, l = 0,

∂t(∂
l
zf) + ω[f ]∂θ(∂

l
zf) = −(∂θω[f ])(∂lzf)−

l∑
r=1

(
l

r

)
∂θ

[
(∂rzω[f ])(∂l−rz f)

]
︸ ︷︷ ︸

L.O.T.

, l ≥ 1.

(11)
Note that the L.H.S. for f and its z-variations ∂lzf have the same transport struc-
ture, while the R.H.S. for (11)2 has a lower-order z-variation terms. Thus, the
characteristics for ∂lzf will be the same as that of f and hence, independent of l.
More precisely, for a given (θ, ν) ∈ T × R and z ∈ Ω, we define a random forward
characteristics

(θ(t, z), ν(t, z)) := (θ(t; 0, θ, ν, z), ν(t; 0, θ, ν, z))
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as a solution to (11):
∂θ(s, z)

∂s
= ω[f ](θ(s, z), ν(s, z)),

∂ν(s, z)

∂s
= 0, s > 0,

(θ(0, z), ν(0, z)) = (θ, ν).
(12)

Now, we define the ν-support of the process ∂lzf and its diameter as follows:

V l(t, z) := {ν ∈ R | sup
θ∈T
|∂lzf(θ, ν, t, z)| 6= 0},

D(V l)(t, z) := sup{|ν1 − ν2| | ν1, ν2 ∈ V l(t, z)}.
(13)

For l = 0, we set

V0(t, z) =: V(t, z) and D(V0)(t, z) =: D(V)(t, z).

Note that the ν-support of the process ∂lzf is a subset of the ν-support of f .
Then, since the ν-support of f does not change along the dynamics of (11)1 by
Lemma 2.2, we have

V l(t, z) ⊆ V(t, z) = V(z) and D(V l)(t, z) ≤ D(V)(z) l ≥ 0, t ≥ 0.

3.1. Propagation of W k,∞
θ,ν -regularity. In this subsection, we study the propa-

gation of W k,∞
θ,ν -regularity of z-variations ∂lzf := ∂lzf(t, z) whose dynamics are given

by the hierarchical system (11). For notational simplicity, we set

‖h‖L∞ := ‖h‖L∞θ,ν , ‖h‖Wk,∞ := ‖h‖Wk,∞
θ,ν

,

and we denote a generic non-negative random function by C(z, T ) which depends
on T and z and it may differ from line to line.

Proposition 1. For k ∈ N and z ∈ Ω, let f0 := f0(z) be the initial process
satisfying

‖f0(z)‖Wk,∞ <∞, D(V(z)) <∞, for each z ∈ Ω.

Then, for T ∈ (0,∞), there exists a unique W k,∞-regular solution process f :=
f(t, z) such that

sup
t∈[0,T )

‖f(t, z)‖Wk,∞ ≤ C(z, T )‖f0(z)‖Wk,∞ , (14)

where C(z, T ) is a nonnegative random function C(z, T ).

Proof. The existence and uniqueness of the solution can be found in [27]. So we
only provide a priori estimate for the solution process f . We apply ∂αθ ∂

β
ν to (2)1

with 0 ≤ α+ β ≤ k to get

∂t(∂
α
θ ∂

β
ν f) + ∂α+1

θ ∂βν (ω[f ]f) = 0. (15)

Next, we split our estimate into two parts

α+ β = 0, 1 ≤ α+ β ≤ k.

Let z ∈ Ω be fixed.

• Case A (α+ β = 0): Note that

∂tf + ω[f ]∂θf = −∂θω[f ]f. (16)
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We use the method of characteristics to obtain

f(t, θ(t, z), ν(t, z), z) = f0(θ, ν, z)−
∫ t

0

(∂θω[f ]f)(s, θ(s, z), ν(s, z), z)ds. (17)

Since

|∂θω[f ](s, θ(s, z), ν(s, z), z)| ≤ κ(z)

(∫
T×R
| cos(θ∗ − θ)|f(s, θ∗, ν∗, z)dν∗dθ∗

)
≤ κ(z),

it follows from (17) that

‖f(t, z)‖L∞ ≤ ‖f0(z)‖L∞ + κ(z)

∫ t

0

‖f(τ, z)‖L∞dτ. (18)

• Case B (1 ≤ α+ β ≤ k): Next, we consider the cases:

β = 0 and β ≥ 1.

� Case B-1 (β = 0 case): In this case, we use the same argument as in Case A to
see that |∂αθ f | satisfies

∂t(∂
α
θ f) + ω[f ]∂θ(∂

α
θ f) = −

α+1∑
µ=1

(
α+ 1

µ

)
(∂µθ ω[f ])(∂α+1−µ

θ f) =: R1. (19)

On the other hand, since

|∂µθ ω[f ]| ≤ κ(z)

∫
T×R

f(θ∗, ν∗, z)dν∗dθ∗ = κ(z),

The R.H.S. of (19) can be estimated as∣∣∣R1

∣∣∣ ≤ C(α, z)

α+1∑
µ=1

‖∂α+1−µ
θ f‖L∞ ≤ C(α, z)‖f‖Wα,∞ . (20)

Now, we integrate relation (19) along the characteristics and use (20) to get

‖∂αθ f(t, z)‖L∞ ≤ ‖∂αθ f0(z)‖L∞ + C(α, z)

∫ t

0

‖f(τ, z)‖Wα,∞dτ. (21)

� Case B-2 (β ≥ 1 case): It follows from (15) that

∂t(∂
α
θ ∂

β
ν f) +ω[f ]∂θ(∂

α
θ ∂

β
ν f) +

∑
µ+λ 6=0

(
α+ 1

µ

)(
β

λ

)(
∂µθ ∂

λ
νω[f ]

)
(∂α+1−µ
θ ∂β−λν f) = 0.

(22)
Since

∂νω[f ] = 1, ∂λνω[f ] = 0, λ ≥ 2,

relation (22) can be simplified as

∂t(∂
α
θ ∂

β
ν f) + ω[f ]∂α+1

θ ∂βν f

= −β∂α+1
θ ∂β−1

ν f −
α+1∑
µ=1

(
α+ 1

µ

)
(∂µθ ω[f ])(∂α+1−µ

θ ∂βν f) =: R2.
(23)

We integrate the above relation along the characteristics and use the estimate∣∣∣R2

∣∣∣ ≤ C(α, β, z)

(
‖∂α+1
θ ∂β−1

ν f‖L∞ +

α∑
µ=0

‖∂µθ ∂
β
ν f‖L∞

)
≤ C(α, β, z)‖f‖Wα+β,∞
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to obtain

‖∂αθ ∂βν f(t, z)‖L∞ ≤ ‖∂αθ ∂βν f0(z)‖L∞ + C(α, β, z)

∫ t

0

‖f(τ, z)‖Wα+β,∞dτ. (24)

Therefore, we obtain relations (21) and (24), sum the resulting relation over all
1 ≤ α+ β ≤ k and add (18) to obtain a Gronwall’s inequality:

‖f(t, z)‖Wk,∞ ≤ ‖f0(z)‖Wk,∞ + C(α, β, z)

∫ t

0

‖f(τ, z)‖Wk,∞dτ.

Then Grönwall’s lemma yields the desired estimate (14).

Remark 2. Note that the Sobolev embedding theorem yields that for k > 2, W k,∞
θ,ν -

solution is C1(T×R) along the path. Thus, it is a classical solution to (2) along the
path.

Now, we provide a lemma regarding the estimates of the frequency ω[f ].

Lemma 3.1. For l ≤ k ∈ N and T ∈ (0,∞), suppose that the two solution processes

∂lzf := ∂lzf(t, z) and ∂lz f̃ := ∂lz f̃(t, z) to (11) satisfy the following conditions: for
each z ∈ Ω and t ∈ [0, T ),

k∑
l=0

(
‖∂lzf(t, z)‖L∞ + ‖∂lz f̃(t, z)‖L∞

)
<∞, D(V)(z) +D(Ṽ)(z) <∞.

Then, for t ∈ [0, T ) and z ∈ Ω there exists a nonnegative random function C(z)
such that

(i) |∂αθ ∂kz (ω[f ])(t, z)| ≤ C(z)

k∑
l=0

‖∂lzf(t, z)‖L∞ ,

(ii) |∂αθ ∂kz (ω[f ]− ω[f̃ ])(t, z)| ≤ C(z)

k∑
l=0

‖∂lz(f − f̃)(t, z)‖L∞ ,

(iii) ∂νω[f ] = 1, ∂αν ω[f ] = 0, α ≥ 2.

Proof. We first recall the relation:

ω[f ](t, θ, ν, z) = ν − κ(z)

∫
T×R

sin(θ − θ∗)f(t, θ∗, ν∗, z)dν∗dθ∗.

(i) It follows from (2) that

|∂αθ ∂kzω[f ]| =

∣∣∣∣∣
k∑
l=0

(
k

l

)
∂k−lz κ(z)

∫
T×R

∂αθ {sin(θ − θ∗)} ∂lzf(θ∗, ν∗, z)dθ∗dν∗

∣∣∣∣∣
≤ 2π

k∑
l=0

(
k

l

)
D(V)(z)|∂k−lz κ(z)|‖∂lzf‖L∞ ≤ C(z)

k∑
l=0

‖∂lzf‖L∞ ,

where we used
(
k
l

)
≤ 2k and C(z) is given by

C(z) := 2k+1πD(V)(z) max
0≤m≤k

|∂mz κ(z)|.

(ii) Similar to (i), we have

|∂αθ ∂kz (ω[f ]− ω[f̃ ])| ≤ C(z)

k∑
l=0

‖∂lz(f − f̃)‖L∞ ,
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where C(z) is given by

C(z) := 2k+1πmax{D(V)(z), D(Ṽ)(z)} max
0≤m≤k

|∂mz κ(z)|.

(iii) The third estimate follows from the defining relation of ω[f ] in (2).

Now, we are ready to provide well-posedness of the process ∂lzf for every l ∈ N.

Theorem 3.2. For k ∈ N and T ∈ (0,∞), suppose that the initial process f0

satisfies the following conditions: for each z ∈ Ω and l = 0, · · · , k
‖∂lzf0(z)‖Wk−l,∞ <∞, D(V)(z) <∞.

Then, there exists a unique W k−l-regular process ∂lzf to (11) satisfying

sup
t∈[0,T )

‖∂lzf(t, z)‖Wk−l,∞ ≤ C(z, T ), for each z ∈ Ω.

Proof. Since the proof is lengthy and tedious, we postpone its detailed proof in
Appendix A. Here we briefly explain why one has a lower W k−l,∞-regularity for
higher z-variation ∂lzf . In Proposition 1, we have ‖f(t, z)‖Wk,∞ ≤ C(z, T ). Then,
it follows from (11) that

∂t(∂zf) + ω[f ]∂θ(∂zf) = −(∂zω[f ])(∂θf) + · · · .
Since R.H.S. of the above relation has a term (∂θf), the above relation yields
W k−1,∞ estimate for ∂zf . Similiarly, ∂2

zf satisfies

∂t(∂
2
zf) + ω[f ]∂θ(∂

2
zf) = −2(∂zω[f ])∂θ(∂zf)− (∂2

zω[f ])(∂θf) + · · · .
Hence, the term ∂θ(∂

2
zf) has W k−2,∞-estimate. Thus, we can get at most W k−2,∞

estimate for ∂2
zf . Inductively, we can get W k−l,∞-estimate for ∂lzf . This is why we

have lower-order regularity for ∂lzf .

Next, we provide the boundedness of the solution process in H l
π(L∞θ,ν)-norm.

Theorem 3.3. For k ∈ N and T ∈ (0,∞), suppose that the initial process f0 and
coupling strength satisfy the following conditions:

k∑
l=0

sup
z∈Ω
‖∂lzf0(z)‖Wk−l,∞ <∞, sup

z∈Ω
D(V)(z) <∞,

k∑
l=0

sup
z∈Ω
|∂lzκ(z)| <∞.

Then, for T ∈ (0,∞) we have

‖f(t)‖Hkπ(L∞θ,ν) ≤ C(T )‖f0‖Hkπ(L∞θ,ν), t ∈ (0, T ).

Proof. The proof is almost similar to that of Proposition 1. Thus, we briefly outline
the proof here. By the same argument as in the proof of Proposition 1, we have

k∑
l=0

‖∂lzf(t, z)‖L∞ ≤ C(T )

k∑
l=0

(
‖∂lzf0(z)‖L∞ +

∫ t

0

‖∂lzf(τ, z)‖L∞dτ
)
.

We use Grönwall’s lemma to obtain
k∑
l=0

‖∂lzf(t, z)‖L∞ ≤ C(T )

k∑
l=0

‖∂lzf0(z)‖L∞ . (25)

Finally, we square both sides in (25), multiply by π(z) and integrate over Ω to
obtain the desired estimate:

‖f(t)‖2Hkπ(L∞θ,ν) ≤ C(T )‖f0‖2Hkπ(L∞θ,ν).
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3.2. Local-in-time stability estimate. In this subsection, we provide a local-
in-time W k,∞-stability estimate for the RKKE. More precisely, we derive pathwise
stability estimate of (2) with respect to initial data.

Proposition 2. For k ∈ N, z ∈ Ω and T ∈ (0,∞), let f and f̃ be two W k+1,∞-

processes to (2) with the initial process f0 and f̃0 satisfying the following conditions:
for each t ∈ (0, T ) and z ∈ Ω,(

‖f0(z)‖Wk+1,∞ + ‖f̃0(z)‖Wk+1,∞

)
<∞,

(
D(V)(z) +D(Ṽ)(z)

)
<∞.

Then, there exists a positive random function C(z, T ) such that for each z ∈ Ω,

sup
0≤t<T

‖(f − f̃)(t, z)‖Wk,∞ ≤ C(z, T )‖(f0 − f̃0)(z)‖Wk,∞ .

Proof. We use a similar argument as in Proposition 1 to derive the estimate

‖∂αθ ∂βν (f−f̃)‖L∞ ≤ ‖∂αθ ∂βν (f0−f̃0)‖L∞+C(z, T )

∫ t

0

‖(f−f̃)(τ, z)‖Wα+β,∞dτ, (26)

where 0 ≤ α + β ≤ k. Finally, we sum the relation (26) over all 0 ≤ α + β ≤ k to
derive

‖(f−f̃)(t, z)‖Wk,∞ ≤ ‖(f0−f̃0)(z)‖Wk,∞+C(z, T )

∫ t

0

‖(f−f̃)(τ, z)‖Wk,∞dτ. (27)

Therefore, we use Grönwall’s inequality on (27) to obtain the desired estimate.

As an application of the arguments in Theorem 3.2 and Proposition 2, we get
the local-in-time stability estimate of variations ∂lzf in W k−l,∞-norm.

Theorem 3.4. For k ∈ N and T ∈ (0,∞), suppose that two initial data f0 and f̃0

satisfy the following conditions: for each z ∈ Ω,

k∑
l=0

(
‖∂lzf0(z)‖Wk−l+1,∞ + ‖∂lz f̃0(z)‖Wk−l+1,∞

)
<∞, D(V)(z) +D(Ṽ)(z) <∞,

and let f := f(t, z) and f̃ := f̃(t, z) be two W k+1,∞-regular solution processes to

(11) with initial data f0(z) and f̃0(z), respectively. Then, there exists a positive
random function C(T, z) such that

sup
0≤t<T

k∑
l=0

‖∂lz(f − f̃)(t, z)‖Wk−l,∞ ≤ C(z, T )

k∑
l=0

‖∂lz(f0 − f̃0)(z)‖Wk−l,∞ .

Proof. We basically follow the arguments in Theorem 3.2 and Proposition 2. Thus,
we omit the details.

4. A local sensitivity analysis for phase concentration. In this section, we
provide a local sensitivity analysis for the phase concentration that emerges in
(2). Since the kinetic equation (2) has been derived from the first-order model,
it is not easy to see how frequency synchronization emerges from (2). However,
for the kinetic Kuramoto equation with g(ν) = δ0(ν), we can study the phase
synchronization using a Lyapunov functional approach. First, we set:

f(θ, ν, t, z) := ρ(θ, t, z)δ0(ν).
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We substitute this ansatz into (2) to obtain an equation for ρ:

∂tρ+ ∂θ(ω̃[ρ]ρ) = 0, θ ∈ T, t > 0,

ω̃[ρ](θ, t, z) = κ(z)

∫ 2π

0

sin(θ∗ − θ)ρ(θ∗, t, z)dθ∗,
(28)

Recall a Lyapunov functional L measuring the concentration of phases defined in
(3):

L[ρ] :=

∫
T
|θ − θρ,c|2ρ(θ)dθ, θρ,c :=

∫
T
θρ(θ)dθ.

As discussed in Introduction, if L[ρ] goes to zero, then ρ tends to δθρ,c in probability.
Next, we define several notation regarding the θ-support of ρ:

(suppθρ)(t, z) := {θ ∈ T | ρ(θ, t, z) 6= 0},
Dθ(ρ)(t, z) := sup{|θ − θ∗| | θ, θ∗ ∈ suppθρ(t, z)}.

If there is no confusion, we set θc := θρ,c, where ρ is the solution process to (28).
At this point, we would like to see the basic properties of the solution process (28).

Proposition 3. Let ρ := ρ(t, z) be a C1-regular process to (28). Then for each
z ∈ Ω, we have

(i)

∫ 2π

0

ρ(t, θ, z)dθ =

∫ 2π

0

ρ0(θ, z)dθ,

∫ 2π

0

θρ(t, θ, z)dθ =

∫ 2π

0

θρ0(θ, z)dθ.

(ii) inf
θ∈T

ρ(t, θ, z) ≥ 0, if inf
θ∈T

ρ0(θ, z) ≥ 0.

Proof. (i) The conservation of total phase can be followed by the direct integration
of (28) using the periodic boundary condition in θ-variable. For the second relation,
we multiply θ to (28)1 to get

∂t

∫ 2π

0

θρdθ =

∫ 2π

0

w̃[ρ]ρdθ = κ(z)

∫
T2

sin(θ∗ − θ)ρ(θ∗, z)ρ(θ, z)dθ∗dθ = 0,

where the last equality follows from the antisymmetry of the integrand.

(ii) For this, we consider the following characteristic:

∂

∂s
θ̃(s; 0, θ, z) = ω̃[ρ](θ̃(s; 0, θ, z), s, z), θ̃(0; 0, θ, z) = θ.

Now, we integrate (28) along the characteristic curve to yield

ρ(θ, t, z) = ρ0(θ̃(0; 0, θ, z), z) exp

(∫ t

0

−ω̃[ρ](θ̃(s; 0, θ, z), s, z)ds

)
.

From this, we can deduce the non-negativity of the process ρ.

Remark 3. Proposition 3 yields that ρc :=
∫
T ρdθ and θρ,c are constants. Moreover,

as long as the initial process is nonnegative, ρ is also nonnegative. Hence, without
loss of generality, we may assume

ρc(z) ≡ 1, θρ,c(z) ≡ 0, inf
θ∈T

ρ0(θ, z) ≥ 0, for any z ∈ Ω. (29)

Under the above setting, we have

∂lzL[ρ] = ∂lz

∫
T
|θ|2ρ(θ, z)dθ = L[∂lzρ(z)].

Thus, for the local sensitivity analysis of L[ρ], we just need to consider L[∂lzρ], which
is also bounded by L[|∂lzρ|].
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Now we provide the contraction property of the θ-support of ρ in the following
lemma.

Lemma 4.1. Suppose that the θ-support of the initial process ρ0 := ρ0(z) satisfies
the following compactness condition:

0 < Dθ(ρ
0)(z) < π, for each z ∈ Ω.

Then, for C1-regular solution process ρ := ρ(t, z) to (28), we have

Dθ(ρ)(t, z) ≤ Dθ(ρ
0)(z), for each z ∈ Ω.

Proof. Consider a forward characteristic θ̃ := θ̃(s; t, θ, z) which is defined as a solu-
tion to the following equation:

∂

∂s
θ̃(s; t, θ, z) = ω̃[ρ](θ̃(s; t, θ, z), t, z), θ̃(t; t, θ, z) = θ.

First we consider characteristic curve starting from the maximal point θM (t, z) :=
sup{θ | θ ∈ suppθρ(t, z)}. Then, it is easy to see that it is nonincreasing:

∂

∂s
θ̃(s; t, θM , z)

∣∣∣∣
s=t+

= κ(z)

∫
T

sin(θ − θM )ρ(θ, z)dθ ≤ 0. (30)

Similarly, the characteristics curve starting from the minimal point θm(t, z) :=
inf{θ | θ ∈ suppθρ(t, z)} is nondecreasing:

∂

∂s
θ̃(s; t, θm, z)

∣∣∣∣
s=t+

≥ 0. (31)

Thus, we can deduce from (30) and (31) that Dθ(ρ)(t, z) does not increase at every
time t. This implies our desired result.

Proposition 4. Let ρ := ρ(t, z) be a C1-regular solution process satisfying the
following condition:

0 < Dθ(ρ
0)(z) < π, for each z ∈ Ω

Then, L[ρ](t, z) decays exponentially fast along the sample path:

L[ρ](t, z) ≤ L[ρ0](z)e−2κ(z)R0(z)t, t ≥ 0,

where R0(z) is defined by the following relation:

R0(z) :=
sinDθ(ρ

0)(z)

Dθ(ρ0)(z)
. (32)

Proof. Under the setting (29), the functional L[ρ] becomes

L[ρ] :=

∫
T
|θ|2ρ(θ)dθ.

Then, it follows from (28) that

∂tL[ρ](t, z) = 2

∫
T
θω̃[ρ]ρdθ = 2κ(z)

∫
T2

θ sin(θ∗ − θ)ρ(θ∗, z)ρ(θ, z)dθ∗dθ

= −κ(z)

∫
T2

(θ − θ∗) sin(θ − θ∗)ρ(θ∗, z)ρ(θ, z)dθ∗dθ,

where we used the change of variable θ ↔ θ∗.
On the other hand, by assumption and Lemma 4.1,

|θ − θ∗| ≤ Dθ(ρ
0)(z) < π, ∀θ, θ∗ ∈ (suppθρ)(t, z). (33)
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Since sinx ≥ R0(z)x, x ∈ [0, Dθ(ρ
0)], we have the following relation:

x sinx ≥ R0(z)x2, ∀ x ∈ [−Dθ(ρ
0), Dθ(ρ

0)], Dθ(ρ
0) ∈ (0, π). (34)

We use (33) and (34) to yield

∂

∂t
L[ρ](t, z) ≤ −κ(z)R0(z)

∫
T2

|θ − θ∗|2ρ(θ∗, z)ρ(θ, z)dθ∗dθ

≤ −κ(z)R0(z)

∫
T2

(
θ2 + θ2

∗
)
ρ(θ∗, z)ρ(θ, z)dθ∗dθ

= −2κ(z)R0(z)L[ρ](t, z),

(35)

where we used

|θ − θ∗|2 = |θ − θc|2 + |θ∗ − θc|2 + 2(θ − θc)(θc − θ∗)
and Proposition 4.1 (i).

Finally, we use Grönwall’s lemma on (35) to obtain the desired result.

As a direct corollary of Proposition 4, we have the following exponential decay
of E[L[ρ]](t).

Corollary 1. Suppose that the initial data and coupling strength satisfy the follow-
ing conditions:

0 ≤ sup
z∈Ω

Dθ(ρ
0)(z) < π − ε and inf

z∈Ω
κ(z) ≥ η > 0

where ε is a positive constant. Then, for any C1-regular solution process ρ := ρ(t, z)
to (28), there exists a positive constant C = C(ε, η) such that

E[L[ρ]](t) ≤ E[L[ρ0]]e−2Ct.

Before we consider the local sensitivity analysis about phase concentration, we
first provide the following technical lemma.

Lemma 4.2. For k > 1, let ρ be a Ck-regular solution process to (28) satisfying

Dθ(ρ
0)(z) <

π

2
, for each z ∈ Ω.

Then for α < k, we have the following upper and lower bound estimates:

(i) ∂tL[|∂αθ ρ|](t, z)

≤ −2κ(z)R0(z)
(
L[|∂αθ ρ|](t, z) + ‖∂αθ ρ(t, z)‖L1

θ
L[ρ](t, z)

)
+ 2κ(z)‖∂αθ ρ‖L1

θ

√
L[ρ] + ακL[|∂αθ ρ|](t, z) + κ(z)

α+1∑
µ=2

(
α+ 1

µ

)
L[|∂α+1−µ

θ ρ|](t, z),

(ii) ∂tL[|∂αθ ρ|](t, z)

≥ −2κ(z)
(
L[|∂αθ ρ|](t, z) + ‖∂αθ ρ(t, z)‖L1

θ
L[ρ](t, z)

)
− 2κ(z)‖∂αθ ρ‖L1

θ

√
L[ρ]

+ ακ cosDθ(ρ
0)(z)L[|∂αθ ρ|](t, z)− κ(z)

α+1∑
µ=2

(
α+ 1

µ

)
L[|∂α+1−µ

θ ρ|](t, z),

where R0(z) is defined in (32).

Proof. Since the proof is rather lengthy, we leave its proof to Appendix B.



THE KINETIC KURAMOTO EQUATION WITH RANDOM INPUTS 331

Now, we are ready to provide the local sensitivity analysis for phase concentra-
tion. Note that for l ∈ N, ∂lzρ satisfies

∂t(∂
l
zρ) + ω̃[ρ]∂θ(∂

l
zρ) = −(∂θω̃[ρ])∂lzρ− ∂θ

[ l∑
r=1

(
l

r

)
∂rz ω̃[ρ]∂l−rz ρ

]
. (36)

Note that the θ-support of ∂lzρ is a subset of the θ-support of ρ, which is contractive.
Now, we would like to analyze the first-order derivative of the functional Λ[ρ] with
respect to z-variable.

Theorem 4.3. Suppose that initial density ρ0 satisfies

0 < Dθ(ρ
0)(z) <

π

2
, R0(z) =

sinDθ(ρ
0)(z)

Dθ(ρ0)(z)
>

1

2
, for each z ∈ Ω,

and the coupling strength κ is continuously differentiable and bounded. Let ρ :=
ρ(t, z) be a C2-regular global solution to (28) satisfying a priori condition:

J [ρ](z) := sup
t≥0

(‖∂zρ(z)‖L1
θ

+ ‖∂θρ(z)‖L1
θ
) <∞, for each z ∈ Ω.

Then we have

L[|∂zρ|](t, z) ≤ L[|∂zρ0|](z)e−2κ(z)R0(z)t +
D(z)

κ(z)
e−κ(z)(2R0(z)−1)t,

where the non-negative random function D is given by

D(z) : = 2κ(z)J [ρ]
√
L[ρ0]

+ (|∂zκ(z)|+ κ(z)J [ρ])

(
L[ρ0] + L[|∂θρ0|] +

2J [ρ]
√
L[ρ0] + L[ρ0]

1−R0(z)

)
.

Proof. We differentiate (28) with respect to z to yield

∂t(∂zρ) + ∂θ(∂zω̃[ρ]ρ+ ω̃[ρ]∂zρ) = 0. (37)

We multiply (37) by sgn(∂zρ) to yield

∂t|∂zρ| = −∂θ(ω̃[ρ]|∂zρ|)− ∂θ(∂zω̃[ρ]ρ)sgn(∂zρ). (38)

Then, one can use (38) to obtain

∂tL[|∂zρ|] = −
∫
T
θ2 {∂θ(ω̃[ρ]|∂zρ|) + ∂θ(∂zω̃[ρ]ρ)sgn(∂zρ)} dθ =: I11 + I12. (39)

Next, we estimate I11 and I12 as follows:
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• Step A (Estimates for I11): By direct calculation, one has

I11 = 2

∫
T
θω̃[ρ]|∂zρ|dθ

= 2κ

∫
T2

θ sin(θ∗ − θ)ρ(θ∗)|∂zρ(θ)|dθ∗dθ

= κ

∫
T2

sin(θ∗ − θ) (θρ(θ∗)|∂zρ(θ)| − θ∗ρ(θ)|∂zρ(θ∗)|) dθ∗dθ

= −κ
∫
T2

(θ − θ∗) sin(θ − θ∗) (ρ(θ∗)|∂zρ(θ)|+ ρ(θ)|∂zρ(θ∗)|) dθ∗dθ

+ κ

∫
T2

sin(θ∗ − θ)(θ∗ρ(θ∗)|∂zρ(θ)| − θρ(θ)|∂zρ(θ∗)|)dθ∗dθ

=: I111 + I112.

(40)

� (Estimate of I111): We use relation (34) and similar argument as in I311 of
Appendix B to yield

I111 ≤ −2κR0

(
L[|∂zρ|] + ‖∂zρ‖L1

θ
L[ρ]

)
. (41)

� (Estimate of I112): Again similar to I312 in Appendix B, we use Proposition 4 to
find

I112 ≤ 2κ‖∂zρ‖L1
θ

√
L[ρ] ≤ 2κ‖∂zρ‖L1

θ

√
L[ρ0]e−κR0t. (42)

In (40), we combine (41) and (42) to obtain

I11 ≤ −2κR0

(
L[|∂zρ|] + ‖∂zρ‖L1

θ
L[ρ]

)
+ 2κ‖∂zρ‖L1

θ

√
L[ρ0]e−κR0t. (43)

• Step B (Estimates for I12): Note that

I12 = −
∫
T
θ2(∂θ∂zω̃[ρ]ρ+ ∂zω̃[ρ]∂θρ)sgn(∂zρ) dθ =: I121 + I122. (44)

� (Estimate of I121): In this case, one gets

I121 =

∫
T2

θ2 cos(θ∗ − θ) (∂zκρ(θ∗) + κ∂zρ(θ∗)) ρ(θ)sgn(∂zρ(θ))dθ∗dθ

≤
(
|∂zκ|+ κ‖∂zρ‖L1

θ

)
L[ρ].

(45)

� (Estimate of I122): Note that

I122 =

∫
T2

θ2 cos(θ∗ − θ)(∂zκρ(θ∗) + κ(z)∂zρ(θ∗))∂θρ(θ)sgn(∂zρ(θ))dθ∗dθ

≤
(
|∂zκ|+ κ‖∂zρ‖L1

θ

)
L[|∂θρ|].

(46)

It follows from Proposition 4 and Lemma 4.2 that

∂

∂t
L[|∂θρ|](t, z)

≤ −2κR0

(
L[|∂θρ|] + ‖∂θρ‖L1

θ
L[ρ]

)
+ 2κ‖∂θρ‖L1

θ

√
L[ρ] + κL[|∂θρ|] + κL[ρ]

≤ −κ(2R0 − 1)L[|∂θρ|] + κ
(

2‖∂θρ‖L1
θ

√
L[ρ] + L[ρ]

)
≤ −κ(2R0 − 1)L[|∂θρ|] + κ

(
2J [ρ]

√
L[ρ0] + L[ρ0]

)
e−κR0t,

(47)
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where J := J [ρ](z) denotes the following random functional:

J [ρ](z) := sup
t≥0

(
‖∂zρ‖L1

θ
+ ‖∂θρ‖L1

θ

)
.

Thus we use the Grönwall-type inequality in Lemma 2.3 on (47) to yield

L[|∂θρ|] ≤

(
L[|∂θρ0|] +

2J [ρ]
√
L[ρ0] + L[ρ0]

1−R0

)
e−κ(2R0−1)t.

Therefore, we can obtain

I12 ≤
(
|∂zκ|+ κ‖∂zρ‖L1

θ

)
L[ρ] +

(
|∂zκ|+ κ‖∂zρ‖L1

θ

)
L[|∂θρ|]

≤ (|∂zκ|+ κJ [ρ])L[ρ0]e−2κR0t

+ (|∂zκ|+ κJ [ρ])

(
L[|∂θρ0|] +

2J [ρ]
√
L[ρ0] + L[ρ0]

1−R0

)
e−κ(2R0−1)t

≤ (|∂zκ|+ κJ [ρ])

(
L[ρ0] + L[|∂θρ0|] +

2J [ρ]
√
L[ρ0] + L[ρ0]

1−R0

)
e−κ(2R0−1)t.

(48)

We combine (43) and (48) to yield

∂

∂t
L[|∂zρ|]

≤ −2κR0

(
L[|∂zρ|] + ‖∂zρ‖L1

θ
L[ρ]

)
+ 2κ‖∂zρ‖L1

θ

√
L[ρ0]e−κR0t

+ (|∂zκ|+ κJ [ρ])

(
L[ρ0] + L[|∂θρ0|] +

2J [ρ]
√
L[ρ0] + L[ρ0]

1−R0

)
e−κ(2R0−1)t

≤ −2κR0L[|∂zρ|] +De−κ(2R0−1)t,

where the random function D := D(z) was given by

D(z)

:= 2κJ [ρ]
√
L[ρ0] + (|∂zκ|+ κJ [ρ])

(
L[ρ0] + L[|∂θρ0|] +

2J [ρ]
√
L[ρ0] + L[ρ0]

1−R0

)
.

Hence, we use the Grönwall type inequality to obtain

L[|∂zρ|] ≤ L[|∂zρ0|]e−2κR0t +
D
κ
e−κ(2R0−1)t.

This yields our desired result.

Remark 4. In this remark, we discuss our results about local sensitivity analysis
for the functional L[ρ].

1. Note that in the proof of Theorem 4.3, we needed the temporal decay of
L[|∂θρ|](t, z) to derive the temporal decay of L[|∂zρ|](t, z). Similarly, we need-
ed the decay of L[|∂2

θρ|](t, z) to get the decay of L[|∂2
zρ|](t, z). Recall that the

estimate (i) in Lemma 4.2 yields that for α = 2,

∂tL[|∂2
θρ|](t, z) ≤ 2κ(z) (1−R0(z))L[|∂2

θρ|](t, z) + L.O.T.
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Since the coefficient 2κ(z) (1−R0(z)) > 0, the above differential inequality
does not yield the time-decay of L[|∂2

θρ|]. Thus, it prohibits our local sensi-
tivity analysis for the phase concentration for higher order derivatives.

2. On the other hand, it follows from Lemma 4.2 that

∂tL[|∂αθ ρ|](t, z) ≥ κ(z)
(
ακ cosDθ(ρ

0)(z)− 2
)
L[|∂αθ ρ|](t, z) + L.O.T.

Thus, if α is large enough to satisfy

α cosDθ(ρ
0)(z)− 2 > 0 for some z ∈ Ω,

then we can deduce the exponential growth of L[|∂α′θ ρ|(z)] for α′ ≥ α and such
z ∈ Ω. Thus, it might lead the exponential growth for L[|∂αz ρ|] for α� 1.

3. We may provide some heuristic reason for the above observation; By Propo-
sition 4, we have

ρ(t, θ, z)→ δθc(z)(θ) in probability, as t→∞.

Since ρ converges to a Dirac measure concentrated at a single phase θc(z), the
graph of ρ is expected to show a steep slope near θ = θc(z), which implies a
rapid growth of |∂αθ ρ| near θ = θc(z). However, since the θ-support of ρ also
shrinks to the phase θc(z), the term |θ − θc(z)|2 in the integrand of L[|∂αθ ρ|]
weakens the growth effect from |∂αθ ρ|. Thus, the growth and decay of L[|∂θρ|]
will be determined by the dominance of the decay term |θ − θc(z)|2 over the
growth term |∂θρ|. Hence, the possibie exponential growth of L[|∂αθ ρ|] can
be due to the dominance of the rapid growth of |∂αθ ρ| over the decay from
|θ − θc(z)|2.

5. Conclusion. In this paper, we provided a local sensitivity analysis for the ki-
netic Kuramoto equation with random inputs in a large coupling regime. In the
absence of random inputs, it is well known that the kinetic Kuramoto model ex-
hibits a phase concentration phenomena in the large coupling regime. In authors’
earlier series of works, we have begun a systematic local sensitivity analysis for the
Kuramoto model with random inputs. For the Kuramoto model, we provided a
sufficient framework for the local sensitivity analysis on the asymptotic dynamics
of solution process. In this work, we have not only shown the well-posedness of the
uncertain problem and stability under random perturbation, but also conducted
local sensitivity analysis regarding the phase concentration that could be observed
in the Kuramoto model for identical oscillators. For this, we have considered a
Lyapunov functional measuring the phase concentration and performed a local sen-
sitivity analysis on the functional. In summary, we found two interesting effects
due to uncertainties for (2):

• (Decreasing (θ, ν)-regularity for higher-order z-regularity estimate
for f): Propagation of high-order regularity in z-variable is mea-
sured in low-order Sobolev norm in the sense that for T ∈ (0,∞), z ∈
Ω ⊂ R, l ≤ k,

‖∂lzf0(z)‖Wk−l,∞
θ,ν

<∞ =⇒ sup
0≤t<T

‖∂lzf(t, z)‖Wk−l,∞
θ,ν

≤ C(z, T ).

• (Formation of zero θ-variance and unbounded variance of ∂αθ ρ): The
θ-variances for ∂αθ ρ with |α| ≤ 1 tend to zero exponentially fast,
whereas variances of higher order quantity ∂αθ ρ with α � 1 grows
exponentially fast.
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Of course, there are several interesting remaining issues on the role of random
inputs. For example, in a small and critical coupling regimes, it is not known
how the random inputs affects the overall collective dynamics or not. This will be
addressed in future works.

Appendix A. Proof of Theorem 3.2. Since the local existence of regular so-
lutions can be done using the standard argument based on contraction mapping
theorem, we only provide a priori estimates to conclude the global-in-time exis-
tence of regular solutions in any finite-time interval. A priori estimates can be done
inductively.

Recall that ∂lzf satisfies

∂tf + ω[f ]∂θf + (∂θω[f ])f = 0, l = 0,

∂t(∂
l
zf) + ω[f ]∂θ(∂

l
zf) + (∂θω[f ])(∂lzf) = −

l∑
r=1

(
l

r

)
∂θ

[
(∂rzω[f ])(∂l−rz f)

]
, l ≥ 1.

(49)

• (Initial step): For l = 0, Proposition 1 yields

sup
t∈[0,T )

‖f(t, z)‖Wk,∞ ≤ C(z, T )‖f0(z)‖Wk,∞ .

• (Inductive step): Suppose that l ≥ 1 and for 0 ≤ r < l, there exists a unique
W k−r,∞-regular process ∂rzf to (11) for each z ∈ Ω satisfying the following finiteness
condition:

sup
t∈[0,T )

‖∂rzf(t, z)‖Wk−r,∞ ≤ C(z, T ), 0 ≤ r ≤ l − 1. (50)

In order to get the desired estimate, we need to estimate ‖∂αθ ∂βν f‖L∞ . For this, we
consider the following two cases:

(α, β) = (0, 0), 1 ≤ α+ β ≤ k − l.
� Case A ((α, β) = (0, 0)): It follows from (11) that

∂t(∂
l
zf) + ω[f ]∂θ(∂

l
zf)

= −(∂θω[f ])(∂lzf)−
l∑

r=1

(
l

r

)
∂θ∂

r
zω[f ]∂l−rz f −

l∑
r=1

(
l

r

)
∂rzω[f ]∂θ∂

l−r
z f

=: R3.

(51)

We use Lemma 3.1, (50), |∂θω[f ]| ≤ κ(z) and
(
l
r

)
≤ 2l to estimate the R.H.S. of

(51) as follows.

|(∂θω[f ])(∂lzf)| ≤ κ(z)‖∂lzf‖L∞ ,∣∣∣ l∑
r=1

(
l

r

)
∂θ∂

r
zω[f ]∂l−rz f

∣∣∣ ≤ 2lC(z)

l∑
r=1

(
r∑
p=0

‖∂pzf‖L∞
)
‖∂l−rz f‖L∞ ≤ C(z, T ),

∣∣∣ l∑
r=1

(
l

r

)
∂rzω[f ]∂θ∂

l−r
z f

∣∣∣ ≤ 2lC(z)C(z, T )

l∑
r=1

(
r∑
p=0

‖∂pzf‖L∞
)
≤ C(z, T ).

Thus, we have

|R3| ≤ C(z, T )(‖∂lzf‖L∞ + 1). (52)

Next, we integrate the above relation (51) along the characteristics using the relation
(52) to get
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‖∂lzf(t, z)‖L∞ ≤ ‖∂lzf0(z)‖L∞ + C(z, T )

(
1 +

∫ t

0

‖∂lzf(τ, z)‖L∞dτ
)
. (53)

� Case B (1 ≤ α+ β ≤ k): For 1 ≤ α+ β ≤ k− l, we differentiate (2) with respect
to θ and ν for α- and β-times respectively, to get

∂t(∂
α
θ ∂

β
ν ∂

l
zf) +

α+1∑
µ=0

β∑
λ=0

l∑
r=0

(
α+ 1

µ

)(
β

λ

)(
l

r

)
∂µθ ∂

λ
ν ∂

r
zω[f ]∂α+1−µ

θ ∂β−λν ∂l−rz f = 0.

(54)
� Case B.1 (β ≥ 1): In this case,

∂t(∂
α
θ ∂

β
ν ∂

l
zf) + ω[f ]∂θ(∂

α
θ ∂

β
ν ∂

l
zf)

= −β∂α+1
θ ∂β−1

ν ∂lzf −
α+1∑
µ=1

(
α+ 1

µ

)
∂µθ ω[f ]∂α+1−µ

θ ∂βν ∂
l
zf

−
α+1∑
µ=0

l∑
r=1

(
α+ 1

µ

)(
l

r

)
∂µθ ∂

r
zω[f ]∂α+1−µ

θ ∂βν ∂
l−r
z f

=: I21 + I22 + I23.

(55)

Below, we separately estimate I2n’s as follows.
� (Estimate of I21): It is easy to see that

|I21| ≤ β‖∂lzf‖Wα+β,∞ . (56)

� (Estimate of I22): We use |∂µθ ω[f ]| ≤ κ(z) to get

|I22| ≤
α+1∑
µ=1

(
α+ 1

µ

) ∣∣∣∂µθ ω[f ]∂α+1−µ
θ ∂βν ∂

l
zf
∣∣∣

≤ C(z)

α+1∑
µ=1

‖∂α+1−µ
θ ∂βν ∂

l
zf‖L∞ ≤ C(z)‖∂lzf‖Wα+β,∞ .

(57)

� (Estimate of I23): We use Lemma 3.1 to obtain

|I23| ≤
α+1∑
µ=0

l∑
r=1

(
α+ 1

µ

)(
l

r

) ∣∣∣∂µθ ∂rzω[f ]∂α+1−µ
θ ∂βν ∂

l−r
z f

∣∣∣
≤ 2α+12lC(z)

α+1∑
µ=0

l∑
r=1

(
r∑
p=0

‖∂pzf‖L∞
)
‖∂α+1−µ
θ ∂βν ∂

l−r
z f‖L∞ .

(58)

Now, we combine all estimates (56), (57), (58) and use the induction assumption
to get

|I21 + I22 + I23| ≤ C(z, T )

(
‖∂lzf‖Wα+β,∞ +

α+1∑
µ=0

l∑
r=1

‖∂α+1−µ
θ ∂βν ∂

l−r
z f‖L∞

)
≤ C(z, T )

(
‖∂lzf‖Wα+β,∞ + 1

)
,

(59)

Next, we integrate (55) along the characteristics and use (59) to yield

‖∂αθ ∂βν ∂lzf(t, z)‖L∞ ≤ ‖∂αθ ∂βν ∂lzf0(z)‖L∞+C(z, T )

(
1 +

∫ t

0

‖∂lzf(τ, z)‖Wα+β,∞dτ

)
.

(60)
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� Case B.2 (β = 0): Similar to Case B.1, we get

‖∂αθ ∂lzf(t, z)‖L∞ ≤ ‖∂αθ ∂lzf0(z)‖L∞ + C(z, T )

(
1 +

∫ t

0

‖∂lzf(τ, z)‖Wα,∞dτ

)
. (61)

Finally, we gather the results in (60) and (61), sum those over all 1 ≤ α+β ≤ k− l
and add the result in (53) to obtain

‖∂lzf(t, z)‖Wk−l,∞ ≤ ‖∂lzf0(z)‖Wk−l,∞ + C(z, T )

(
1 +

∫ t

0

‖∂lzf(τ, z)‖Wk−l,∞dτ

)
.

Finally, we use Grönwall’s lemma to derive the desired estimate.

Appendix B. Proof of lemma 4.2. In this section, we present a proof of Lemma
4.2. It follows from (28) that

∂t(∂
α
θ ρ) + ∂α+1

θ (ω̃[ρ]ρ) = 0, (62)

or equivalently,

∂t(∂
α
θ ρ) + ∂θ(ω̃[ρ]∂αθ ρ) + α∂θω̃[ρ]∂αθ ρ+

α+1∑
µ=2

(
α+ 1

µ

)
∂µθ ω̃[ρ]∂α+1−µ

θ ρ = 0. (63)

We multiply (63) by sgn(∂αθ ρ) to yield

∂

∂t
L[|∂αθ ρ|] =

∫
T
θ2∂t|∂αθ ρ|dθ = 2

∫
T
θω̃[ρ]|∂αθ ρ|dθ − α

∫
T
θ2∂θω̃[ρ]|∂αθ ρ|dθ

−
α+1∑
µ=2

(
α+ 1

µ

)∫
T

sgn(∂αθ ρ)θ2∂µθ ω̃[ρ]∂α+1−µ
θ ρ dθ.

=: I31 + I32 + I33

(64)

(i) (An upper bound estimate): we separately estimate I3n’s as follows:

• Case A (Estimates for I31): In this case, one can yield

I31 = 2κ(z)

∫
T2

θ sin(θ∗ − θ)ρ(θ∗)|∂αθ ρ(θ)|dθ∗dθ

= κ(z)

∫
T2

sin(θ∗ − θ) (θρ(θ∗)|∂αθ (θ)| − θ∗ρ(θ)|∂αθ (θ∗)|) dθ∗dθ

= −κ(z)

∫
T2

(θ − θ∗) sin(θ − θ∗)(ρ(θ)|∂αθ ρ(θ∗)|+ ρ(θ∗)|∂αθ ρ(θ)|)dθ∗dθ

+ κ(z)

∫
T2

sin(θ − θ∗)(θρ(θ)|∂αθ ρ(θ∗)| − θ∗ρ(θ∗)|∂αθ ρ(θ)|)dθ∗dθ.

=: I311 + I312.

(65)

� (Estimate of I311): Direct calculation leads to

I311 ≤ −κ̃(z)

∫
T2

|θ − θ∗|2(ρ(θ)|∂αθ ρ(θ∗)|+ ρ(θ∗)|∂αθ ρ(θ)|dθ∗dθ

= − ˜κ(z)

∫
T2

(θ2 + θ2
∗)(ρ(θ)|∂αθ ρ(θ∗)|+ ρ(θ∗)|∂αθ ρ(θ)|dθ∗dθ

= −2κ̃
(
L[|∂αθ ρ|] + ‖∂αθ ρ‖L1

θ
L[ρ]

)
.

(66)
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� (Estimate of I312): Here, one obtains

I312 ≤ κ(z)

∫
T2

|θ∗|ρ(θ∗)|∂αθ ρ(θ)|+ |θ|ρ(θ)|∂αθ ρ(θ∗)|dθ∗dθ

= 2κ(z)‖∂αθ ρ‖L1
θ

∫
T
|θ|ρ(θ)dθ

≤ 2κ(z)‖∂αθ ρ‖L1
θ

√
L[ρ],

(67)

where we used Cauchy-Schwarz inequality. In (65), we combine (66) and (67) to
obtain

I31 ≤ −2κ̃
(
L[|∂αθ ρ|] + ‖∂αθ ρ‖L1

θ
L[ρ]

)
+ 2κ(z)‖∂αθ ρ‖L1

θ

√
L[ρ]. (68)

• Case B (Estimates for I32): Note that

I32 = ακ(z)

∫
T2

θ2 cos(θ∗ − θ)ρ(θ∗)|∂αθ ρ(θ)|dθ∗dθ

≤ ακ(z)

∫
T
θ2|∂αθ ρ(θ)|dθ = ακ(z)L[|∂αθ ρ|].

(69)

• Case C (Estimates for I33): One can get easily that

I33 ≤
α+1∑
µ=2

(
α+ 1

µ

)∫
T
θ2|∂α+1−µ

θ ρ||∂µθ ω̃[ρ]|dθ ≤ κ(z)

α+1∑
µ=2

(
α+ 1

µ

)
L[|∂α+1−µ

θ ρ|],

(70)
where we used

|∂µθ w̃[ρ]| ≤ κ(z)

∫
T
ρ(θ∗)dθ∗ = κ(z).

Therefore, we combine all the estimates for I3n’s to obtain

∂

∂t
L[|∂αθ ρ|] ≤ −2κ̃

(
L[|∂αθ ρ|] + ‖∂αθ ρ‖L1

θ
L[ρ]

)
+ 2κ(z)‖∂αθ ρ‖L1

θ

√
L[ρ]

+ ακL[|∂αθ ρ|] + κ

α+1∑
µ=2

(
α+ 1

µ

)
L[|∂α+1−µ

θ ρ|],

which is our desired upper-bound estimate.

(ii) (A lower bound estimate): we will estimate separately I3n’s similarly to the
upper bound case. Thus we estimate first I31k’s as follows:

I311 ≥ −κ(z)

∫
T2

|θ − θ∗|2(ρ(θ)|∂αθ ρ(θ∗)|+ ρ(θ∗)|∂αθ ρ(θ)|)dθ∗dθ

≥ −κ(z)
(
L[|∂αθ ρ|] + ‖∂αθ ρ‖L1

θ
L[ρ]

)
,

I312 ≥ −2κ(z)‖∂αθ ρ‖L1
θ

√
L[ρ].

For I32, one gets

I32 ≥ ακ(z) cosDθ(ρ
0)(z)

∫
T
θ2|∂αθ ρ(θ)|dθ = ακ(z) cosDθ(ρ

0)(z)L[|∂αθ ρ|].

For I33, one can obtain

I33 ≥ −
α+1∑
µ=2

(
α+ 1

µ

)∫
T
θ2|∂α+1−µ

θ ρ||∂µθ w̃[ρ]|dθ ≥ −κ(z)

α+1∑
µ=2

(
α+ 1

µ

)
L[|∂α+1−µ

θ ρ|].

We combine all estimates for I3n’s to yield
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∂

∂t
L[|∂αθ ρ|] ≥ −2κ

(
L[|∂αθ ρ|] + ‖∂αθ ρ‖L1

θ
L[ρ]

)
− 2κ(z)‖∂αθ ρ‖L1

θ

√
L[ρ]

+ ακ cosDθ(ρ
0)L[|∂αθ ρ|]− κ

α+1∑
µ=2

(
α+ 1

µ

)
L[|∂α+1−µ

θ ρ|],

which gives our desired lower-bound estimate.
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