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An asymptotic-preserving (AP) scheme is efficient in solving multiscale problems where kinetic and hydro-
dynamic regimes coexist. In this article, we extend the BGK-penalization-based AP scheme, originally
introduced by Filbet and Jin for the single species Boltzmann equation (Filbet and Jin, J Comput Phys
229 (2010) 7625–7648), to its multispecies counterpart. For the multispecies Boltzmann equation, the new
difficulties arise due to: (1) the breaking down of the conservation laws for each species and (2) different
convergence rates to equilibria for different species in disparate masses systems. To resolve these issues,
we find a suitable penalty function—the local Maxwellian that is based on the mean velocity and mean
temperature and justify various asymptotic properties of this method. This AP scheme does not contain any
nonlinear nonlocal implicit solver, yet it can capture the fluid dynamic limit with time step and mesh size
independent of the Knudsen number. Numerical examples demonstrate the correct asymptotic-behavior of
the scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 29: 1056–1080, 2013
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I. INTRODUCTION

In kinetic theory, the Boltzmann equation is a fundamental equation to describe the evolution of
rarefied gases. In this article, we are interested in numerical solution of the Boltzmann equation for
multispecies gas mixture. The most basic example is high-altitude gas, which could be modeled
as a binary mixture of oxygen and nitrogen. Other applications of gas mixture may come from
nuclear engineering or evaporation–condensation.
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One of the difficulties in numerically solving the Boltzmann equation comes from the varying
Knudsen number, which describes the ratio of the mean free path over a typical length scale such
as the domain size. If the Knudsen number is small, the collision term becomes numerically stiff.
When using an explicit scheme, to guarantee the numerical stability, one has to resolve the small
Knudsen number to avoid instability, and this causes a tremendous computational cost. On the
other hand, it is very difficult to use implicit schemes because of the nonlinear and the nonlocal
nature of the collision operator.

The Chapman-Enskog expansion for the Boltzmann equation yields the compressible Euler or
Navier–Stokes equations in the limit of vanishing Knudsen number. Generally speaking, numer-
ically solving the hydrodynamic system is much more efficient, so when the Knudsen number
is small, one can just solve this set of equations in lower dimension. However, in zones where
these macroscopic models break down, one has to come back to solve the Boltzmann equation.
This domain decomposition approach has attracted a great amount of attentions [1–10]. The main
difficulty there is to determine the matching interface conditions between two different domains
in which different physical models are used.

Another approach, the one we are going to pursue in this article, is called the asymptotic-
preserving (AP) method. This method dates back to the 90s from the last century and has been
widely used in time-dependent kinetic and hyperbolic systems since then. This approach looks
for simple and cheap solvers for the Boltzmann equation that can preserve asymptotic limits from
the microscopic to the macroscopic models in the discrete setting, which means that the numer-
ical solution to the Boltzmann equation should converge to that of the Euler equations when the
Knudsen number vanishes. Compared with multiphysics domain decomposition methods, this
framework only solves one set of equation: the microscopic one. In the hydrodynamic regime,
it becomes a robust hydrodynamic solver “automatically” without resolving the small Knudsen
number or switching to the macroscopic model. As summarized by Jin [11], an AP scheme for
kinetic equations should have the following features:

• it preserves the discrete analogy of the Chapman-Enskog expansion, namely, it is a suitable
scheme for the kinetic equation, yet, when holding the mesh size and time step fixed and let-
ting the Knudsen number go to zero, the scheme becomes a suitable scheme for the limiting
fluid dynamic Euler equations;

• implicit collision terms can be implemented efficiently.

There are several variations of the AP property, including weakly AP, relaxed-AP, and strongly
AP, defined as follows (see [12] and also a recent review [13]):

• weakly AP. If the data are within O(ε) of the local equilibrium initially, they remain so for
all future time steps;

• relaxed AP. For nonequilibrium initial data, the solution will be projected to the local
equilibrium beyond an initial layer (after several time steps).

• strongly AP. For nonequilibrium initial data, the solution will be projected to the local
equilibrium immediately in one time step.

In general, the strongly AP property is preferred and was the designing principle of most of the
classical AP schemes [14,15]. The relaxed-AP is a concept introduced recently in [12], which was
shown numerically to be sufficient to capture the hydrodynamic limit when the Knudsen number
goes to zero. The weakly AP is often a necessary condition for the AP property. Many non-AP
schemes do not satisfy this property, namely solutions initially close to the local equilibrium can
move away. See discussion in [12].
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Several AP schemes have recently been designed for the Boltzmann equation for monospecies.
One approach was to use the micro–macro decomposition method [16] (see its multispecies exten-
sion in [17]), but the issue of designing an efficient implicit collision term, which is necessary
for numerical stability independent of the Knudsen number, is still unsolved. An earlier approach
introduced by Gabetta et al., [18] uses the truncated Wild Sum for uniform numerical stability
of the collision term. For a simple BGK model, it was realized by Coron and Perthame in [19]
that an implicit BGK operator can be integrated explicitly, using the basic conservation properties
of the BGK operator. Utilizing this property, Filbet and Jin [12] introduced the BGK penaliza-
tion method for the Boltzmann collision operator. The main idea is to subtract the Boltzmann
operator by a BGK operator and then add the BGK operator back. Only the latter, BGK oper-
ator is treated implicitly, whereas the complicated Boltzmann operator is solved explicitly. The
entire scheme is implemented explicitly, yet the numerical stability is independent of the Knudsen
number, and the relaxed AP property was achieved (which was verified numerically). Yan and
Jin recently extended this approach to a positive and strongly AP scheme by adding in an extra
relaxation step [20]. This BGK penalization idea, in the space homogeneous case, agrees with
the Wild Sum approach [18], but they differ when the space is inhomogeneous. Another imple-
mentations can be found using the exponential Runge–Kutta method, see Dimarco and Pareschi
[21], resulting a strongly AP scheme with positivity. A rigorous justification of the AP prop-
erty of this methodology for hyperbolic systems with stiff relaxation was carried out recently
in [22]. The BGK penalization method has also been extended to the Fokker–Planck–Laudau
equation [23], the quantum Boltzmann equation [24], and the quantum Fokker–Planck–Landau
equation [25].

In this article, we generalize the BGK-penalization idea of Filbet–Jin to the multispecies
Boltzmann equation. Several new difficulties arise here. First, there are several possible choices
of the local Maxwellian, and one has to determine the one that suits our needs. We found that
a suitable choice is the local Maxwellian that depends on the “mean” velocity and mean tem-
perature. Second, to justify various AP properties, one needs to prove that the velocities and
temperatures of different species equilibrate, a property one does not encounter for the single
species Boltzmann equation. We justify this property for the proposed scheme, in the relaxed-AP
sense. Finally, we demonstrate that this method can also be used for gas mixtures with disparate
masses, which arises in ion–electron evolution problem in plasma [26–29].

This article is organized as follows. We describe the Boltzmann equation for the multispecies
system and one of its related BGK models in Section II, including their theoretical properties. In
Section III, we give details of the numerical scheme. This is followed by Section IV where we
prove various AP properties of the scheme. In Section V, we discuss the disparate masses system.
We show several numerical examples in Section VI.

II. THE MULTISPECIES MODELS

A. The Multispecies Boltzmann Equation

The Boltzmann equation describes the evolution of the density distribution of rarefied gases. We
use fi(t , x, v) to represent the distribution function of the ith species at time t on the phase space
(x, v), and f = (f1, f2, · · · , fN)T . The Boltzmann equation for the multispecies system is given
by [30]:

∂tfi + v · ∇xfi = Qi(f , f ), t ≥ 0, (x, v) ∈ R
d × R

d , (1)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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with

Qi(f , f ) =
N∑

k=1

Qik(f , f ), (2a)

Qik(f , f )(v) =
∫

Sd−1+

∫
Rd

(
f ′

i f
′
k∗ − fifk∗

)
Bik(|v − v∗|, �)dv∗d�, (2b)

where x is the position of the particle, Bik is the collision kernel, and Bik = Bki , (thus Qik = Qki);
v, v∗ are precollisional velocities; v′ and v′

∗ are postcollisional velocities; f ′
i = fi(t , x, v′) and

f ′
k∗ = fk(t , x, v′

∗); � is a unit vector, and Sd−1
+ is the semisphere defined by g · � ≥ 0, where g is

relative velocity

g = v − v∗.

There are many variations for the collision kernel Bik . One of the simple cases is the Maxwell
molecule when Bik = Bik

(
g·�
|g|
)
. The postcollisional velocities v′ and v′

∗ satisfy:

v′ = v − 2μik

mi

(g · �)�, (3a)

v′
∗ = v∗ + 2μik

mk

(g · �)�, (3b)

with μik = mimk

mi+mk
being the reduced mass and mi and mk being the mass for species i and k,

respectively. This deduction is based on momentum and energy conservations:

miv + mkv∗ = miv
′ + mkv

′
∗,

mi |v|2 + mk|v∗|2 = mi |v′|2 + mk|v′
∗|2.

B. Properties of the Multispecies Boltzmann Equation

In d-dimensional space, we define the macroscopic quantities for species i: ni is the number
density; ρi is the mass density; ui is the average velocity; Ei is the total energy; ei is the specific
internal energy; Ti is the temperature; Si is the stress tensor; and qi is the heat flux vector, given by:

ni =
∫

fidv, ρi = mini ,

ρiui = mi

∫
vfidv,

Ei = 1

2
ρiu

2
i + niei = 1

2
mi

∫
|v|2fidv,

ei = d

2
Ti = mi

2ni

∫
fi |v − ui |2dv,

Si =
∫

(v − ui) ⊗ (v − ui)fidv,

qi = 1

2
mi

∫
(v − ui)|v − ui |2fidv. (4)
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We also have global quantities for the mixture: the total mass density ρ, the number density n,
the mean velocity ū, the total energy E, the internal energy nē, and the mean temperature T̄ = 2ē

d

are defined by:

ρ =
∑

i

ρi , n =
∑

i

ni , (5a)

ρū =
∑

i

ρiui , (5b)

E = nē + 1

2
ρ|ū|2 = d

2
nT̄ + ρ

2
|ū|2 =

∑
i

Ei . (5c)

Conservations. In the gas mixture system, for each species, the mass is conserved but not the
momentum and energy. This means that the first moment of the collision term is zero, but the second
and the third are not. They are obtained by multiplying the collision term with φ = mi

(
1, v, 1

2 |v|2)T
and then integrating with respect to v. Usually, explicit expressions for these moments cannot be
obtained, but for some special case, for example, the Maxwell molecule, explicit expression is
available:

〈miQi〉 =
∫

miQi(f )dv = 0,

〈mivQi〉 =
∫

mivQi(f )dv =
n∑

k=1

2μikχiknink[uk − ui],
〈

1

2
miv

2Qi

〉
=
∫

mi

2
|v|2Qi(f )dv

=
n∑

k=1

2miχiknink

[(
μik

mi

)2 (
|uk − ui |2 + 2

ek

mk

+ 2
ei

mi

)

+ μik

mi

(
(uk − ui) · ui − 2

ei

mi

)]
, (6)

where χik = ∫
(cos θ)2Bik(θ)dθ , with θ = arccos( g·�

|g| ). One can check [31] for power law
molecules.

Based on these formulas, when taking moments of the Boltzmann equation, one obtains the
corresponding evolution of the macroscopic quantities. Taking the 1D Maxwell molecule, for
example,

∂tρi + ∂x(ρiui) = 〈miQi〉 = 0, or ∂tni + ∂x(niui) = 0,

∂t (ρiui) + ∂x(Si + ρiu
2
i ) = 1

ε
〈mivQi〉 = 1

ε

∑
k

2Bikninkμik[uk − ui],

∂tEi + ∂x(Eiui + Siui + qi) = 1

ε

〈
1

2
mi |v|2Qi

〉
= 1

ε

∑
k

2Biknink

(
μ2

ik

mimk

)
(a + b), (7)
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where a = (mkuk +miui) · (uk −ui) and b = 2(ek − ei). However, the total momentum and total
energy are still conserved. By summing up the momentum and energy equations for all species,
one obtains:

∂t (ρū) + ∂x

(∑
i

Si +
∑

i

ρiu
2
i

)
= 1

ε

∑
i

〈miviQi〉 = 0,

∂tE + ∂x

(∑
i

Eiui +
∑

i

Siui +
∑

i

qi

)
= 1

ε

∑
i

〈
1

2
miv

2
i Qi

〉
= 0. (8)

These hold for all kinds of cross-sections.

The Local Maxwellian. The local equilibrium is reached when the gaining part and losing part
of collision terms balance out, namely Qi(f ) = 0 for each i. It is given by [32]:

fi = Mi = ni

(
mi

2πT̄

)d/2

e
− mi |v−ū|2

2T̄ , (9)

where T̄ is the mean temperature and ū is mean velocity defined in (2.5). We call this Maxwellian
the “unified Maxwellian,” because the velocity ū and temperature T̄ are given by those for the
entire system instead of those for each single species.

The Euler Limit. Expanding fi around the unified Maxwellian (9), the standard Chapman-
Enskog expansion shows that at the local equilibrium, the collision term vanishes, and the system
yields its Euler limit [32]:

∂tρi + ∇ · (ρiū) = 0,

∂t (ρū) + ∇ · (ρū ⊗ ū + nT̄ I) = 0,

∂tE + ∇ · ((E + nT̄ )ū) = 0. (10)

Here I is the identity matrix. Note that in the equation for ρi , we have ū instead of ui as in (7).
This is because when ε → 0, ui → ū, and Ti → T̄ for all i.

C. A BGK Model

The BGK operator is a classical approximation for the Boltzmann collision operator. There are
several BGK models, but most of them either suffer from the loss of positivity [33] or fail to
satisfy the indifferentiability principle [34]. The positivity guarantees that the distribution func-
tion is always positive, and indifferentiability requires that when different species share the same
mass, equations of the system should be consistent with the single species Boltzmann equation.
We choose the BGK model proposed by Andries et al. [32], the one that guarantees both of these
two properties.

The model reads:

∂tfi + v · ∇xfi = νi

ε
(M̃i − fi), (11)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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with νi being collision frequency and M̃i being a Maxwellian:

νi =
∑

k

nkχik ,

M̃i = ni

(
mi

2πT̃i

)d/2

e
− mi |v−ũi |2

2T̃i . (12)

The way M̃ is defined is to capture the moments of the collision Q, that is, νi(M̃i − fi) shares
the same first five moments as Qi . For the Maxwell molecule, explicit expressions are computed
from (6):

νiρiũi − νiρiui = 〈mivQi〉 =
n∑

k=1

2μikχiknink[uk − ui], (13a)

νiẼi − νiEi =
〈

1

2
miv

2Qi

〉
(13b)

=
n∑

k=1

2miχiknink

[(
μik

mi

)2 (
|uk − ui |2 + 2

ek

mk

+ 2
ei

mi

)

+ μik

mi

(
(uk − ui) · ui − 2

ei

mi

)]
,

and T̃i = (2Ẽi − ρiũ
2
i )/(nid). Note that the right hand side of Eq. (13a) is just a linear operator

of macroscopic velocities. Also, when u is known, the right hand side of (13b) is linear on e. For
later reference, we define a matrix L by:

(L)ij =
{

2μijχijninj , i �= j ,

−2
∑

k μikχiknink , i = j .
(14)

Apparently, L is a symmetric matrix with each row summing up to 0, and all nondiagonal entries
are positive. As L is a symmetric weakly diagonally dominant matrix, it is seminegative defi-
nite, that is, all its eigenvalues are nonpositive. Under this definition, Eq. (13a) turns out to be
νiρiũi − νiρiui = Lu. For later convenience, we denote λ(M) the spectral radius of matrix M:

λ(M) = sup
i

(|λi(M)|), (15)

where λi(M) are eigenvalues of M.
We also mention another type of Maxwellian, which is defined by macroscopic quantities ui

and Ti for each species. We call it the “species Maxwellian”:

Mi = ni

(
mi

2πTi

)d/2

e
− mi |v−ui |2

2Ti . (16)

Remark 1. Mi − fi cannot be used as a BGK operator. In the multispecies system, one
has to introduce some mechanism into the collision term that captures the interactions between
species. Mi − fi gives no communication between the species, so it cannot be used to express the
multispecies collision.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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III. AN AP SCHEME FOR THE MULTISPECIES BOLTZMANN EQUATION

In this chapter, we derive our AP scheme for the multispecies Boltzmann equation. Our idea is
based on the BGK-penalization method proposed by Filbet and Jin [12].

A. The time discretization

Here, we adopt the same strategy and write our scheme as:

f l+1
i − f l

i

�t
+ v · ∇xf

l
i = Qi(f

l) − Pi(f
l)

ε
+ Pi(f

l+1)

ε
. (17)

The superscript l stands for the time step. Later, we will use Ql
i � Qi(f

l), P l
i � Pi(f

l) for
convenience. Pi is chosen to be the BGK operator:

Pi = β(Mi − fi), (18)

where β is a positive constant chosen for stability and positivity, see Section III-D. A simple
algebraic manipulation on (3.1) gives:

f l+1
i = εf l

i + �t
(
Ql

i − βl
(
M

l

i − f l
i

))− ε�tv · ∇xf
l
i + βl+1�tM

l+1

i

ε + βl+1�t
. (19)

The computation of the collision term Qi and the flux term v · ∇xf is relatively classical and will
be given later; Mi is defined in (9); and the choice of β is also going to be presented later.

B. The Computation of M
l+1

Taking moments of (17), one gets:

nl+1
i = nl

i − �t

∫
v · ∇xf

l
i dv,

(ρū)l+1 = (ρū)l − �t
∑

i

mi

∫
v ⊗ v∇xf

l
i dv,

El+1 = El − �t
∑

i

∫
mi

2
|v|2v · ∇xf

l
i dv,

and by the definition of T̄ in (5c),

T̄ l+1 = 2El+1 − (ρū2)l+1

dnl+1
.

The discretization of the flux term will be discussed in Section III-E.

C. The Collision Term Q

We use the spectral method introduced in [35] to compute the collision term Qi . Use a ball
B(0, S) to represent the domain of the compactly supported distribution f . Then, we periodize

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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f on v ∈ [−L, L]d with L ≥ (3 + √
2)S. L is chosen much larger than S to avoid nonphysical

collision at different periods of the periodized f . Define the Fourier transform as:

f̂ (x; p) =
∫

f (x; v)e−ip·v dv,

f (x; v) = 1

(2L)d

∑
p

f̂ (x; p)eik·v . (20)

Plugging into the collision term (2b):

Qik =
∫∫

Bik

[
f ′

i f
′
k∗ − fifk∗

]
dv∗d� ≡ Q+

ik − fiQ
−
ik ,

where we define the gaining part and losing part as:

Q+
ik =

∫∫
Bik

(
f ′

i f
′
k∗
)
dv∗d�, fiQ

−
ik =

∫∫
Bik(fifk∗)dv∗d� = fi

∫∫
Bikfk∗dv∗d�.

Using the Fourier transform (20), one gets:

Q+
ik =

∫∫
Bik

(2L)2d

[∑
p

∑
q

f̂i(x; p)eip·v′
f̂k(x; q)eiq·v′∗

]
dv∗d�.

For easier computation, one can rewrite Eqs. (3) to:

v′ = v − μik

mi

(g − |g|ω), v′
∗ = v∗ + μik

mk

(g − |g|ω) = v − g + μik

mk

(g − |g|ω).

Note the domain for ω is the entire unit sphere Sd−1 instead of the semisphere for �. Then:

Q+
ik = 1

(2L)2d

∑
p,q

f̂
p

i f̂
q

k

∫∫
Bike

i(p·v′+q·v′∗)dv∗dω

= 1

(2L)2d

∑
p,q

f̂
p

i f̂
q

k ei(p+q)·v
∫∫

Bike
iλ·g+i|g|γ ·ωdv∗dω,

where λ = −mk

mi+mk
p + −mk

mi+mk
q and γ = mk

mi+mk
p − mi

mi+mk
q. Given a specific Bik one can ana-

lytically compute the integration above. The expression, however, can be very tedious, even in
one-dimensional (1D) space, especially when Bik depends on |g|. Note that the integration domain
for g is not symmetric. But for the 1D Maxwell molecule, Bik is a constant and can be pulled
out of the integral, making the computation much easier. We show examples for the 1D Maxwell
molecule and leave other situations for further discussions. In this case,

v′ = v − 2mk

mi + mk

(v − v∗) = mi − mk

mi + mk

v + 2mk

mi + mk

v∗,

v′
∗ = v + mi − mk

mi + mk

(v − v∗) = 2mi

mi + mk

v − mi − mk

mi + mk

v∗.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Plugging in Q+
ik , one gets:

Q+
ik = Bik

(2L)2

∑
p,q

f̂
p

i f̂
q

k e
i
(

mi−mk
mi+mk

p+ 2mi
mi+mk

q
)
v

∫
e

i
( 2mk

mi+mk
p− mi−mk

mi+mk
q
)
v∗dv∗.

One can also write Q+
ik as a summation of its Fourier modes Q+

ik(v) = 1
(2L)2

∑
l Q̂

l+
ik eilv where

Q̂l+
ik =

∫
Q+

ike
−ilvdv

= Bik

(2L)2

∑
p,q

f̂
p

i f̂
q

k

∫
e

i
(

mi−mk
mi+mk

p+ 2mi
mi+mk

q−l
)
v
dv

∫
e

i
( 2mk

mi+mk
p− mi−mk

mi+mk
q
)
v∗dv∗

= Bik

∑
p,q

f̂
p

i f̂
q

k sinc(a) sinc(b),

where a =
(

mi−mk

mi+mk
p + 2mi

mi+mk
q − l

)
L and b =

(
2mk

mi+mk
p − mi−mk

mi+mk
q
)

L. The FFT and the inverse

FFT are used to speed up the computation.
The computation for fiQ

−
ik is much simpler in this special case: fiQ

−
ik = fi

∫
Bikfkdvk =

finkBik .
After getting all Qik , Qi =∑k Qik .

D. The Choice of the Free Parameter β

β should be chosen as the maximum value of the Frechet derivative ∇Qi(f ) [12]. Numerically,
to guarantee positivity, one can split the collision Q into the gaining part and the losing part
Qi = Q+

i − fiQ
−
i by Q+

i = ∑k Q+
ik and fiQ

−
i = fi

∑
k Q−

ik . Plug back in the scheme (19), one
can rearrange the scheme:

f l+1
i = ε

(
f l

i − �tv · ∇xf
l
i

)+ �tQ+
i (f l) + [(βl − Q−

i (f l)
)
f l

i + βl+1M
l+1

i − βlM
l

i

]
�t

ε + βl+1�t
.

(21)

To obtain positivity, it is sufficient to require the followings for all i [20]:

βl > Q−
i (f l),

βlM
l

i > βl−1M
l−1

i .

E. The Flux Term v · ∇x fi

Here, we give the numerical flux in 1D. Use v∂xfi,j to denote the flux term for species i at the
grid point xj . A shock-capturing finite volume method we use is [36]:

v∂xfi,j = ν(fi,j1 − fi,j1−1) − 1

2
ν(sgn(ν) − ν)(hσi,j1 − hσi,j1−1), (22)

where ν = v

h
, h is the mesh size. j1 is chosen to be j for v > 0 and j + 1 for v < 0.

σi,j = fi,j+1−fi,j
h

φi,j where φi,j is the slope limiter. For the van Leer limiter, it takes value as

φ(θ) = θ+|θ |
θ+1 and θi,j = fi,j −fi,j−1

fi,j+1−fi,j
reflects the smoothness around grid point xj .
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The discretization for the flux term in higher dimension uses the dimension-by-dimension
approach.

IV. THE AP PROPERTY OF THE TIME DISCRETIZATION

The time discrete scheme (17) is written as:

f l+1
i − f l

i

�t
+ v · ∇xf

l
i = Ql

i − β
(
M

l

i − f l
i

)
ε

+ β
(
M

l+1

i − f l+1
i

)
ε

. (23)

We will show below that this method is weakly AP for the Maxwell molecule, and relaxed-AP
for the BGK model given in Section II-C. Later, we always assume that �t � ε. Besides the
definition for the linear operator L in (14) and λ(M) in (15), we also define:

δul
i = ul

i − ūl , δT l
i = T l

i − T̄ l , (24)

and

D =

⎡⎢⎢⎢⎢⎣
ρ1 0 . . . 0

0 ρ2
. . .

...
...

. . .
. . .

...
0 . . . . . . ρN

⎤⎥⎥⎥⎥⎦ . (25)

A. Weakly AP

Lemma 4.1. For the Maxwell molecule, if δul
i = O(ε) and δT l

i = O(ε) for ∀i, then
δul+1

i = O(ε) and δT l+1
i = O(ε).

Proof. Rewrite scheme (23) as:

f l+1
i − M

l+1

i = ε
(− M

l+1

i + M
l

i

)− ε�tv · ∇xf
l
i

ε + β�t
+ �tQl

i

ε + β�t
− (Ml

i − f l
i

)
. (26)

Take the first moment on both sides. On the left hand side, one gets (ρiui)
l+1 − (ρiū)l+1, whereas

on the right hand side, the first term is O(ε). The second term gives:

�t

ε + β�t
〈mivQl

i〉 = �t

ε + β�t

∑
k

2χikμiknink

[
ul

k − ul
i

]
= �t

ε + β�t

∑
k

2χikμiknink

(
δul

k − δul
i

) = O(ε). (27)

The third term gives: 〈
miv

(
M

l

i − f l
i

)〉 = ρi

(
ūl − ul

i

) = O(ε).

So the entire right hand side is of O(ε), thus the term on the left hand side, (ρiui)
l+1 − (ρiū)l+1 =

O(ε), that is, δul+1
i = O(ε). Similar analysis can be carried out for T .
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Remark 2. In the proof, we used that the collision kernel is for the Maxwell molecule in (27).
The proof can be extended to other collision kernels as long as one can show the moments of Q

is of O(ε) whenever δu = O(ε).

Theorem 4.1. The method is weakly AP; namely, if M
l

i −f l
i = O(ε), then M

l+1

i −f l+1
i = O(ε).

Proof. As M
l

i − f l
i = O(ε), both Pi(f

l) and Qi(f
l) are of O(ε). Plugging back into the

scheme (26), one gets f l+1
i − M

l+1

i = O(ε).

B. Relaxed-AP

Lemma 4.2. For the Maxwell molecules, when �t � 1, in the limit of ε → 0, there ∃L, such
that ∀l > L, δul = O(ε), given big enough β.

Proof. We prove the result for the 1D case. The proof for higher dimension can be carried
out similarly. The proof follows that of [12]. One can take moments of numerical scheme (23):

(ρu)l+1 − (ρu)l

�t
+ ∂x

∫
v2 mf ldv = 1

ε
(Llul + βl

D
lδul − βl+1

D
l+1δul+1),

⇒ (ε + βl+1�t)Dl+1δul+1

= ((ε + βl�t)Dl + �tLl)δul + ε((ρū)l − (ρū)l+1) − ε�t∂x

∫
v2 mf ldv,

⇒ (ε + βl+1�t)(Dl + O(�t))δul+1 = [(ε + βl�t)Dl + �tLl]δul + O(ε),

where L
l ū = 0 and D

l+1 = D
l + O(�t) were used.

After some simple algebra, one can rewrite the previous equation as:

δul+1 =
[

βl

βl+1
I + 1

βl+1
(Dl)−1

L
l + O(�t)

]
δul + O(ε).

Define Au as:

Au =
[

βl

βl+1
I + 1

βl+1
(Dl)−1

L
l + O(�t)

]
. (28)

As the eigenvalues for L are nonpositive, if one chooses βl+1 + βl > λ((Dl)−1
L

l), given small
enough �t , |λ(Au)| < 1, thus in the limit of ε → 1, δu would decrease to O(ε), and we get our
conclusion.

The same analysis can be carried out for T . We call this property proved above “macro-AP.”

Remark 3. The proof earlier is also valid for the BGK model in Section II-C. It can also be
extended to other kinds of collision kernel, but the corresponding L may not be linear on u, and
the requirement on β may not have an explicit expression. In that case, one needs to define λ(L)

as the spectrum of the nonlinear operator L.
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Theorem 4.2. If the problem is macro-AP, then, ∃L such that ∀l > L, Ml
i − M

l

i = O(ε), and

M̃l
i − M

l

i = O(ε).

Proof. It is a straightforward conclusion from the lemma earlier, and from the definition for
M̃ in (12).

Remark 4. Up to now, we have shown that Mi approaches to Mi for the Boltzmann collision
operator with the Maxwell molecule collision kernel. Rearranging scheme (23), one gets:

f l+1 − M
l+1 = (ε + β�t)(f l − M

l
) + �tQl

ε + β�t
+ ε(M

l − M
l+1

) − ε�t v · ∇xf
l

ε + β�t
. (29)

The second term on the right is of O(ε). So, one can get relaxed-AP only if it can be shown
that Q and f − M have opposite signs. We can prove this for limited form of Q, say the BGK
operator introduced in Section II-C. Later in Section VI, we will show that numerically the scheme
is relaxed-AP for the general Boltzmann collision defined in (2).

Theorem 4.3. The scheme is relaxed-AP for the BGK operator Q = ν(M̃ − f ) defined in
Section II-C.

Proof. Plug in the definition for Q, (29) writes:

f l+1 − M
l+1 = ε + β�t − ν�t

ε + β�t
(f l − M

l
) + ν�t(M̃l − M

l
)

ε + β�t
+ O(ε)

= ε + β�t − ν�t

ε + β�t
(f l − M

l
) + O(ε)

The second equality comes from Theorem 4.2 and Remark 3. Define:

α = ε + β�t − ν�t

ε + β�t
, (30)

and we call it the convergent rate to the unified Maxwellian M . In the limit of ε → 0, if one has
β > ν

2 , then |α| < 1, thus |f − M| keeps diminishing until reaching to O(ε), and we get the
relaxed-AP.

V. DISPARATE MASSES

This section is for the system of gas mixture with disparate masses in the space homogeneous
case. The mathematical problem was first pointed out by Grad [26] and has attracted great interests
since then. The fundamental example is plasma, for which, the basic derivation can be found in
[27, 28]. For these systems, it is the different time scalings for different species to reach to the
equilibria that makes the problem difficult. Generally speaking, the light species should be able to
get to the equilibrium faster, that is to say there is a time period when the light species is in hydro-
dynamic regime while the heavy species is, on the other hand, in kinetic regime. Analyses of the
scalings of the collision operators have been done based on both postulate physical consideration
[37, 38] and formal derivation [39, 40].
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FIG. 1. Distribution for heavy species is much narrower than that of the light species. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

A. Theoretical Rescaling Analysis

In homogeneous space, the disparate masses system should be written as:

{
∂tfH = QH = QHH + QHL = ∫BHH

(
f ′

Hf ′
H∗ − fHfH∗

)
dv∗ + ∫BHL

(
f ′

Hf ′
L∗ − fHfL∗

)
dv∗,

∂tfL = QL = QLL + QLH = ∫ BLL

(
f ′

Lf ′
L∗ − fLfL∗

)
dv∗ + ∫ BLH

(
f ′

H∗f ′
L − fH∗fL

)
dv∗.

(31)

Now, the small parameter that makes the collision term stiff is the ratio of mass ε = √
mL/mH

where the subindices H and L stand for heavy and light, respectively. While assuming that the
two species have densities and temperatures of the same order of magnitude, one could obtain that
fH is much narrower than fL as shown in Fig. 1. To analyze the magnitude of the collision terms,
we define f̃H(v) = fH(εv) to stretch fH to a function that has comparable variance as fL. As
derived in [39, 40], the scaling ratio of the two collision terms is QH/QL = O(ε), which means
that the collision QL has stronger effect and that the light species gets to the hydrodynamical
regime much faster. For convenience, we write both QH and QL as O(1) term and put ε in front
of QH to represent its magnitude. The system turns out to be:

{
∂tfH = εQH,

∂tfL = QL.
(32)
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One can also rescale the time by τ and obtain:⎧⎪⎨⎪⎩
∂tfH = ε

τ
QH,

∂tfL = 1

τ
QL.

(33)

When τ = O(ε), the light species is in hydrodynamic regime, but the heavy one is still in kinetic
regime; and when τ = O(ε2), both species should be close to the equilibria.

Remark 5. The inhomogeneous problem gets even harder to analyze, especially when the dif-
ferent species have different spatial rescaling coefficients. But numerically it makes very little
difference: one simply needs to add the flux term v · ∇xf to the homogeneous scheme.

B. The Numerical Scheme

The scheme we adopt for (32) is:

f l+1
H − f l

H

�t
= ε

τ

(
Ql

H − β
(
Ml

H − f l
H

))+ βε

τ

(
Ml+1

H − f l+1
H

)
, (34a)

f l+1
L − f l

L

�t
= 1

τ

(
Ql

L − β
(
Ml

L − f l
L

))+ β

τ

(
Ml+1

L − f l+1
L

)
, (34b)

where β = O(1).

Theorem 5.1. This scheme yields the following behavior at: O
(

1
ε

)
and O

(
1
ε2

)
.

• at τ = O
(

1
ε

)
, the scheme is first order consistent to ∂tfH = QH, and f l

L is an O(ε)

approximation of ML;
• at τ = O

(
1
ε2

)
, both f l

H and f l
L are within O(ε) of the unified Maxwellians MH and ML,

respectively.

Proof. To prove the second statement:
At this time scale, τ = O(ε2), the system turns out to be:⎧⎪⎨⎪⎩

∂tfH = 1

ε
QH,

∂tfL = 1

ε2
QL.

By the same arguments as in the previous sections, one gets:{
f l

H − M
l

H = O(ε),

f l
L − M

l

L = O(ε2).

for l large enough.
To prove the first statement:
At this time scale, τ = O(ε), system (33) can be written as:⎧⎪⎨⎪⎩

∂tfH = QH,

∂tfL = 1

ε
QL.
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The scheme still gives f l
L → M

l

L. One just needs to show that the scheme gives a correct
discretization of the equation for fH too. Write (5.4a) as (set τ = ε):

f l+1
H − f l

H

�t
= Ql

H − β
(
Ml

H − f l
H

)+ β
(
Ml+1

H − f l+1
H

)
.

Rearrange it, one gets:

f l+1
H − f l

H

�t
= Ql

H − β�t

1 + β�t
Ql

H + β

1 + β�t

(
Ml+1

H − Ml
H

)
.

The second and the third terms on the right are both of order �t , that is, the scheme gives a
first order discretization to ∂tfH = QH.

VI. NUMERICAL EXAMPLES

For comparison, the examples chosen are similar to those in [17]. We also perturb the data on
the level of macroscopic quantities. For all the examples later: when ε is not very small, so that
solving the Boltzmann equation is still possible using the basic explicit scheme with a resolved
mesh, we compare our numerical results to those of the forward Euler, and when ε is unbearably
small for the forward Euler, we compare our results to its Euler limit. To solve the Euler equations,
we used the CLAWPACK Euler solver [41].

A. A Stationary Shock

In this example, we show numerical solution to a Riemann problem of two species. The analytical
solution to the Euler equations is a stationary shock. Here, the subscripts 1 and 2 stand for different
species.{

m1 = 1, m2 = 1.5, n1 = n2 = 1, u1 = 1.8, u2 = 1.3, T1 = 0.3, T2 = 0.35, if x < 0;

m1 = 1, m2 = 1.5, n1 = n2 = 1.401869, u1 = u2 = 1.07, T1 = T2 = 0.8605, if x > 0.

The initial distribution for f is given by summation of two Gaussian functions, so it is far away
from the unified Maxwellian M:

f (t = 0) =
2∑

i=1

Aie
−Bi (v−Ci )

2
, (35)

where

B1 = B2 = ρ

4E − 2ρu2(1 + κ2)
, A1 = A2 = n

2

√
B1

π
, and C1 − u = u − C2 = κu, (36)

That is, the two Gaussian functions have the same height and variation, but their centers are 2κu

away from each other. In the numerical experiment, we choose κ = 0.2, �x = 10−2 and �t is
chosen to satisfy the CFL condition: 10−3 in our simulation. Numerically, we check whether the
scheme gives the Euler limit when ε goes to zero; and whether it matches well with the forward
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FIG. 2. The stationary shock problem. As ε → 0, solution of the Boltzmann equation goes to the Euler
limit. t = 0.1. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Euler method with relatively fine mesh when ε is big. We first show in Fig. 2 that as ε goes to zero,
the numerical solution converges to the Euler limit, the stationary shock in this case. In Fig. 3,
we show that the AP scheme matches very well with the numerical results given by the forward
Euler method for ε = 10−1. Then, we show in Fig. 4, that given an initial data far away from the
unified Maxwellian M , f gets close to M quickly with ε = 10−5. This verifies that the scheme is
relaxed-AP numerically. Figure 5 shows that smaller ε gives faster convergence to the equilibria
for macroscopic quantities.

B. A Sod Problem

In this example, we solve a Sod problem. The initial data are given by:{
m1 = m2 = 1, n1 = 1, n2 = 1.2, u1 = 0.6, u2 = −0.5, T1 = T2 = 0.709, if x < 0;

m1 = m2 = 1, n1 = 0.125, n2 = 0.2, u1 = −0.2, u2 = 0.125, T1 = T2 = 0.075, if x > 0.

The initial distribution is also given by (35) and (36) with κ = 0.2. For all ε, we choose �x = 10−2

and �t = 10−3. In this problem, m1 = m2, so we first show the numerical indifferentiability in
Fig. 6, that is: computing the problem as a multispecies system gives the same result as computing

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ASYMPTOTIC-PRESERVING SCHEME FOR MULTISPECIES BOLTZMANN EQUATIONS 1073

FIG. 3. The stationary shock problem. ε = 0.1 and t = 0.1. The dashed line is given by the AP scheme,
and the solid line is given by the forward Euler with a fine mesh: �x = 0.01 and �t = 0.0005. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIG. 4. The stationary shock problem. ε = 10−5, δf = f1 −M1 diminishes as time evolves. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 5. The stationary shock problem. u1 and u2 at x = −0.5 on the left and T1 and T2 on the right, as
functions of time, for ε = 10−2 and 10−5, respectively. Note the different time scales for the two figures.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the monospecies Boltzmann equation. In Fig. 7, we show that as ε goes to zero, the numerical
solution converges to the Euler limit. For ε as big as 10−1 and 10−2, we compare the results with
those of the forward Euler with a fine mesh. They match well as shown in Fig. 8. In Fig. 9, we
show that for ε = 10−4, although the initial f is far away from the unified Maxwellian M , as
time evolves, it converges to M . This numerically verifies the relaxed-AP property. In Fig. 10, we
show the evolution of u with different ε. Apparently different species gradually share the same
velocity, and the smaller ε is, the faster the convergence is.

FIG. 6. The Sod problem. Indifferentiability. t = 0.1. ρ, u, and T are computed using two species model
(“o”) and one species model (“.”). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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FIG. 7. The Sod problem. t = 0.1. As ε → 0, the numerical results go to the Euler limit. Solid lines give
the Euler limit computed using [41]. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

FIG. 8. The Sod problem. t = 0.1. For ε = 0.1 and 0.01, we compare the results of the AP scheme, given
by the circled lines, and the results of the forward Euler with a fine mesh, given by the solid lines. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 9. The Sod problem. ε = 10−4 and δf = f1 − M1. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

FIG. 10. The Sod problem. The three figures show velocities u1 and u2 at x = −0.3 as functions of time
for ε = 0.1, 0.01, and 10−5. Note different time scales for three figures. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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FIG. 11. The disparate masses problem. The left figure shows the initial distributions, and the right figure
shows the time evolutions of fH and fL. fH is put at the top, and fL is at the bottom. At t = 0.007, fL is
close to ML, whereas fH is still far away from the equilibrium. Note the different scales for v. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

C. A Disparate Masses Problem

In this example, we solve the disparate masses system. Define ε =
√

mL
mH

, we want to verify that

the light species gets close to the unified Maxwellian ML faster than the heavy one. We solve an
inhomogeneous problem with the following initial data:

mH = 8, mL = 0.08, uH = 0, uL = 0.5, TH = TL = 2.5, nH = 1, and nL = 1.2.

The initial distribution functions are still given by the summation of two Gaussians as in (35), with
parameters A1 = A2 and B1 = B2 defined in (36), and C1 and C2 defined by: C1−u = u−C2 = κ .
We choose κ = 0.5 for the heavy species and κ = 4 for the light one. In Fig. 11, on the left we
show the initial distribution functions for the two species, both of which are given by summa-
tion of two Gaussian functions and are far away from the Maxwellian. On the right, we show
several snapshots of the distribution functions as they evolve. In Fig. 12, we show that as time
evolves, the velocities converge toward each other. Note that the heavy species weighted more
when computing for the mean velocity ū as in (5b), thus its average velocity does not change
much.

VII. CONCLUSIONS

Motivated by the work of Filbet–Jin [12], we use an appropriate BGK operator that is defined by
the common velocity and common temperature to penalize the stiff collision operator for mul-
tispecies Boltzmann equation, which yields an AP scheme. This scheme can capture the Euler
limit with mesh size and time step independent of the Knudsen number, thus it is suitable for
simulating the multispecies Boltzmann equation efficiently in both the kinetic and fluid regimes.
The BGK penalization allows one to avoid inverting the nonlinear Boltzmann collision operator
in the fluid regime. This approach is also applied to system of gas mixture with disparate masses.
Numerical results were used to demonstrate the validity of the scheme.
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FIG. 12. The disparate masses problem. The velocities for the two species converge to each other. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

In the future, we will extend and verify numerically this method to the case of more general
collision kernels and in higher space dimension.

The second author thanks Dr. Cory Hauck and Dr. Bokai Yan for stimulating discussions and
the referee for suggesting many improvements.
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